blob: 4df0ce97e309891929f7d777099c3fbec243ee9f [file] [log] [blame]
/*
*
* Copyright (c) 2020-2023 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* mbedTLS based implementation of CHIP crypto primitives
*/
#include "CHIPCryptoPALmbedTLS.h"
#include "CHIPCryptoPAL.h"
#include <type_traits>
#include <mbedtls/bignum.h>
#include <mbedtls/ccm.h>
#include <mbedtls/ctr_drbg.h>
#include <mbedtls/ecdh.h>
#include <mbedtls/ecdsa.h>
#include <mbedtls/ecp.h>
#include <mbedtls/entropy.h>
#include <mbedtls/error.h>
#include <mbedtls/hkdf.h>
#include <mbedtls/md.h>
#include <mbedtls/pkcs5.h>
#include <mbedtls/sha1.h>
#include <mbedtls/sha256.h>
#include <mbedtls/version.h>
#include <mbedtls/x509_csr.h>
#include <lib/core/CHIPSafeCasts.h>
#include <lib/support/BufferWriter.h>
#include <lib/support/BytesToHex.h>
#include <lib/support/CHIPArgParser.hpp>
#include <lib/support/CodeUtils.h>
#include <lib/support/SafeInt.h>
#include <lib/support/SafePointerCast.h>
#include <lib/support/logging/CHIPLogging.h>
#include <string.h>
namespace chip {
namespace Crypto {
typedef struct
{
bool mInitialized;
bool mDRBGSeeded;
mbedtls_ctr_drbg_context mDRBGCtxt;
mbedtls_entropy_context mEntropy;
} EntropyContext;
static EntropyContext gsEntropyContext;
static bool _isValidTagLength(size_t tag_length)
{
if (tag_length == 8 || tag_length == 12 || tag_length == 16)
{
return true;
}
return false;
}
CHIP_ERROR AES_CCM_encrypt(const uint8_t * plaintext, size_t plaintext_length, const uint8_t * aad, size_t aad_length,
const Aes128KeyHandle & key, const uint8_t * nonce, size_t nonce_length, uint8_t * ciphertext,
uint8_t * tag, size_t tag_length)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 1;
mbedtls_ccm_context context;
mbedtls_ccm_init(&context);
VerifyOrExit(plaintext != nullptr || plaintext_length == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(ciphertext != nullptr || plaintext_length == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(nonce != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(nonce_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(tag != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(_isValidTagLength(tag_length), error = CHIP_ERROR_INVALID_ARGUMENT);
if (aad_length > 0)
{
VerifyOrExit(aad != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
}
// Size of key is expressed in bits, hence the multiplication by 8.
result = mbedtls_ccm_setkey(&context, MBEDTLS_CIPHER_ID_AES, key.As<Symmetric128BitsKeyByteArray>(),
sizeof(Symmetric128BitsKeyByteArray) * 8);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
// Encrypt
result = mbedtls_ccm_encrypt_and_tag(&context, plaintext_length, Uint8::to_const_uchar(nonce), nonce_length,
Uint8::to_const_uchar(aad), aad_length, Uint8::to_const_uchar(plaintext),
Uint8::to_uchar(ciphertext), Uint8::to_uchar(tag), tag_length);
_log_mbedTLS_error(result);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
mbedtls_ccm_free(&context);
return error;
}
CHIP_ERROR AES_CCM_decrypt(const uint8_t * ciphertext, size_t ciphertext_len, const uint8_t * aad, size_t aad_len,
const uint8_t * tag, size_t tag_length, const Aes128KeyHandle & key, const uint8_t * nonce,
size_t nonce_length, uint8_t * plaintext)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 1;
mbedtls_ccm_context context;
mbedtls_ccm_init(&context);
VerifyOrExit(plaintext != nullptr || ciphertext_len == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(ciphertext != nullptr || ciphertext_len == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(tag != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(_isValidTagLength(tag_length), error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(nonce != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(nonce_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT);
if (aad_len > 0)
{
VerifyOrExit(aad != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
}
// Size of key is expressed in bits, hence the multiplication by 8.
result = mbedtls_ccm_setkey(&context, MBEDTLS_CIPHER_ID_AES, key.As<Symmetric128BitsKeyByteArray>(),
sizeof(Symmetric128BitsKeyByteArray) * 8);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
// Decrypt
result = mbedtls_ccm_auth_decrypt(&context, ciphertext_len, Uint8::to_const_uchar(nonce), nonce_length,
Uint8::to_const_uchar(aad), aad_len, Uint8::to_const_uchar(ciphertext),
Uint8::to_uchar(plaintext), Uint8::to_const_uchar(tag), tag_length);
_log_mbedTLS_error(result);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
mbedtls_ccm_free(&context);
return error;
}
CHIP_ERROR Hash_SHA256(const uint8_t * data, const size_t data_length, uint8_t * out_buffer)
{
// zero data length hash is supported.
VerifyOrReturnError(data != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
#if (MBEDTLS_VERSION_NUMBER >= 0x03000000)
const int result = mbedtls_sha256(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer), 0);
#else
const int result = mbedtls_sha256_ret(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer), 0);
#endif
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR Hash_SHA1(const uint8_t * data, const size_t data_length, uint8_t * out_buffer)
{
// zero data length hash is supported.
VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
#if (MBEDTLS_VERSION_NUMBER >= 0x03000000)
const int result = mbedtls_sha1(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer));
#else
const int result = mbedtls_sha1_ret(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer));
#endif
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
static_assert(kMAX_Hash_SHA256_Context_Size >= sizeof(mbedtls_sha256_context),
"kMAX_Hash_SHA256_Context_Size is too small for the size of underlying mbedtls_sha256_context");
static inline mbedtls_sha256_context * to_inner_hash_sha256_context(HashSHA256OpaqueContext * context)
{
return SafePointerCast<mbedtls_sha256_context *>(context);
}
Hash_SHA256_stream::Hash_SHA256_stream()
{
mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext);
mbedtls_sha256_init(context);
}
Hash_SHA256_stream::~Hash_SHA256_stream()
{
Clear();
}
CHIP_ERROR Hash_SHA256_stream::Begin()
{
mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext);
#if (MBEDTLS_VERSION_NUMBER >= 0x03000000)
const int result = mbedtls_sha256_starts(context, 0);
#else
const int result = mbedtls_sha256_starts_ret(context, 0);
#endif
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR Hash_SHA256_stream::AddData(const ByteSpan data)
{
mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext);
#if (MBEDTLS_VERSION_NUMBER >= 0x03000000)
const int result = mbedtls_sha256_update(context, Uint8::to_const_uchar(data.data()), data.size());
#else
const int result = mbedtls_sha256_update_ret(context, Uint8::to_const_uchar(data.data()), data.size());
#endif
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR Hash_SHA256_stream::GetDigest(MutableByteSpan & out_buffer)
{
mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext);
// Back-up context as we are about to finalize the hash to extract digest.
mbedtls_sha256_context previous_ctx;
mbedtls_sha256_init(&previous_ctx);
mbedtls_sha256_clone(&previous_ctx, context);
// Pad + compute digest, then finalize context. It is restored next line to continue.
CHIP_ERROR result = Finish(out_buffer);
// Restore context prior to finalization.
mbedtls_sha256_clone(context, &previous_ctx);
mbedtls_sha256_free(&previous_ctx);
return result;
}
CHIP_ERROR Hash_SHA256_stream::Finish(MutableByteSpan & out_buffer)
{
VerifyOrReturnError(out_buffer.size() >= kSHA256_Hash_Length, CHIP_ERROR_BUFFER_TOO_SMALL);
mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext);
#if (MBEDTLS_VERSION_NUMBER >= 0x03000000)
const int result = mbedtls_sha256_finish(context, Uint8::to_uchar(out_buffer.data()));
#else
const int result = mbedtls_sha256_finish_ret(context, Uint8::to_uchar(out_buffer.data()));
#endif
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
out_buffer = out_buffer.SubSpan(0, kSHA256_Hash_Length);
return CHIP_NO_ERROR;
}
void Hash_SHA256_stream::Clear()
{
mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext);
mbedtls_sha256_free(context);
mbedtls_platform_zeroize(this, sizeof(*this));
}
CHIP_ERROR HKDF_sha::HKDF_SHA256(const uint8_t * secret, const size_t secret_length, const uint8_t * salt, const size_t salt_length,
const uint8_t * info, const size_t info_length, uint8_t * out_buffer, size_t out_length)
{
VerifyOrReturnError(secret != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(secret_length > 0, CHIP_ERROR_INVALID_ARGUMENT);
// Salt is optional
if (salt_length > 0)
{
VerifyOrReturnError(salt != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
}
VerifyOrReturnError(info_length > 0, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(info != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(out_length > 0, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
const mbedtls_md_info_t * const md = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256);
VerifyOrReturnError(md != nullptr, CHIP_ERROR_INTERNAL);
const int result = mbedtls_hkdf(md, Uint8::to_const_uchar(salt), salt_length, Uint8::to_const_uchar(secret), secret_length,
Uint8::to_const_uchar(info), info_length, Uint8::to_uchar(out_buffer), out_length);
_log_mbedTLS_error(result);
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR HMAC_sha::HMAC_SHA256(const uint8_t * key, size_t key_length, const uint8_t * message, size_t message_length,
uint8_t * out_buffer, size_t out_length)
{
VerifyOrReturnError(key != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(key_length > 0, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(message != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(message_length > 0, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(out_length >= kSHA256_Hash_Length, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
const mbedtls_md_info_t * const md = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256);
VerifyOrReturnError(md != nullptr, CHIP_ERROR_INTERNAL);
const int result =
mbedtls_md_hmac(md, Uint8::to_const_uchar(key), key_length, Uint8::to_const_uchar(message), message_length, out_buffer);
_log_mbedTLS_error(result);
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR HMAC_sha::HMAC_SHA256(const Hmac128KeyHandle & key, const uint8_t * message, size_t message_length, uint8_t * out_buffer,
size_t out_length)
{
return HMAC_SHA256(key.As<Symmetric128BitsKeyByteArray>(), sizeof(Symmetric128BitsKeyByteArray), message, message_length,
out_buffer, out_length);
}
CHIP_ERROR PBKDF2_sha256::pbkdf2_sha256(const uint8_t * password, size_t plen, const uint8_t * salt, size_t slen,
unsigned int iteration_count, uint32_t key_length, uint8_t * output)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
#if !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000
const mbedtls_md_info_t * md_info;
mbedtls_md_context_t md_ctxt;
constexpr int use_hmac = 1;
bool free_md_ctxt = false;
#endif // !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000
VerifyOrExit(password != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(plen > 0, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(salt != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(slen >= kSpake2p_Min_PBKDF_Salt_Length, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(slen <= kSpake2p_Max_PBKDF_Salt_Length, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(key_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(output != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT);
#if !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000
md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256);
VerifyOrExit(md_info != nullptr, error = CHIP_ERROR_INTERNAL);
mbedtls_md_init(&md_ctxt);
free_md_ctxt = true;
result = mbedtls_md_setup(&md_ctxt, md_info, use_hmac);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_pkcs5_pbkdf2_hmac(&md_ctxt, Uint8::to_const_uchar(password), plen, Uint8::to_const_uchar(salt), slen,
iteration_count, key_length, Uint8::to_uchar(output));
#else
result = mbedtls_pkcs5_pbkdf2_hmac_ext(MBEDTLS_MD_SHA256, Uint8::to_const_uchar(password), plen, Uint8::to_const_uchar(salt),
slen, iteration_count, key_length, Uint8::to_uchar(output));
#endif // !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
#if !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000
if (free_md_ctxt)
{
mbedtls_md_free(&md_ctxt);
}
#endif // !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000
return error;
}
static EntropyContext * get_entropy_context()
{
if (!gsEntropyContext.mInitialized)
{
mbedtls_entropy_init(&gsEntropyContext.mEntropy);
mbedtls_ctr_drbg_init(&gsEntropyContext.mDRBGCtxt);
gsEntropyContext.mInitialized = true;
}
return &gsEntropyContext;
}
static mbedtls_ctr_drbg_context * get_drbg_context()
{
EntropyContext * const context = get_entropy_context();
mbedtls_ctr_drbg_context * const drbgCtxt = &context->mDRBGCtxt;
if (!context->mDRBGSeeded)
{
const int status = mbedtls_ctr_drbg_seed(drbgCtxt, mbedtls_entropy_func, &context->mEntropy, nullptr, 0);
if (status != 0)
{
_log_mbedTLS_error(status);
return nullptr;
}
context->mDRBGSeeded = true;
}
return drbgCtxt;
}
CHIP_ERROR add_entropy_source(entropy_source fn_source, void * p_source, size_t threshold)
{
VerifyOrReturnError(fn_source != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
EntropyContext * const entropy_ctxt = get_entropy_context();
VerifyOrReturnError(entropy_ctxt != nullptr, CHIP_ERROR_INTERNAL);
const int result =
mbedtls_entropy_add_source(&entropy_ctxt->mEntropy, fn_source, p_source, threshold, MBEDTLS_ENTROPY_SOURCE_STRONG);
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR DRBG_get_bytes(uint8_t * out_buffer, const size_t out_length)
{
VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(out_length > 0, CHIP_ERROR_INVALID_ARGUMENT);
mbedtls_ctr_drbg_context * const drbg_ctxt = get_drbg_context();
VerifyOrReturnError(drbg_ctxt != nullptr, CHIP_ERROR_INTERNAL);
const int result = mbedtls_ctr_drbg_random(drbg_ctxt, Uint8::to_uchar(out_buffer), out_length);
VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
static int CryptoRNG(void * ctxt, uint8_t * out_buffer, size_t out_length)
{
return (chip::Crypto::DRBG_get_bytes(out_buffer, out_length) == CHIP_NO_ERROR) ? 0 : 1;
}
static inline mbedtls_ecp_keypair * to_keypair(P256KeypairContext * context)
{
return SafePointerCast<mbedtls_ecp_keypair *>(context);
}
static inline const mbedtls_ecp_keypair * to_const_keypair(const P256KeypairContext * context)
{
return SafePointerCast<const mbedtls_ecp_keypair *>(context);
}
CHIP_ERROR P256Keypair::ECDSA_sign_msg(const uint8_t * msg, const size_t msg_length, P256ECDSASignature & out_signature) const
{
VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED);
VerifyOrReturnError((msg != nullptr) && (msg_length > 0), CHIP_ERROR_INVALID_ARGUMENT);
uint8_t digest[kSHA256_Hash_Length];
memset(&digest[0], 0, sizeof(digest));
ReturnErrorOnFailure(Hash_SHA256(msg, msg_length, &digest[0]));
#if defined(MBEDTLS_ECDSA_C)
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
mbedtls_mpi r, s;
mbedtls_mpi_init(&r);
mbedtls_mpi_init(&s);
const mbedtls_ecp_keypair * keypair = to_const_keypair(&mKeypair);
mbedtls_ecdsa_context ecdsa_ctxt;
mbedtls_ecdsa_init(&ecdsa_ctxt);
result = mbedtls_ecdsa_from_keypair(&ecdsa_ctxt, keypair);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_ecdsa_sign(&ecdsa_ctxt.CHIP_CRYPTO_PAL_PRIVATE(grp), &r, &s, &ecdsa_ctxt.CHIP_CRYPTO_PAL_PRIVATE(d),
Uint8::to_const_uchar(digest), sizeof(digest), CryptoRNG, nullptr);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
VerifyOrExit((mbedtls_mpi_size(&r) <= kP256_FE_Length) && (mbedtls_mpi_size(&s) <= kP256_FE_Length),
error = CHIP_ERROR_INTERNAL);
// Concatenate r and s to output. Sizes were checked above.
result = mbedtls_mpi_write_binary(&r, out_signature.Bytes() + 0u, kP256_FE_Length);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_write_binary(&s, out_signature.Bytes() + kP256_FE_Length, kP256_FE_Length);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(out_signature.SetLength(kP256_ECDSA_Signature_Length_Raw) == CHIP_NO_ERROR, error = CHIP_ERROR_INTERNAL);
exit:
keypair = nullptr;
mbedtls_ecdsa_free(&ecdsa_ctxt);
mbedtls_mpi_free(&s);
mbedtls_mpi_free(&r);
_log_mbedTLS_error(result);
return error;
#else
return CHIP_ERROR_NOT_IMPLEMENTED;
#endif
}
CHIP_ERROR P256PublicKey::ECDSA_validate_msg_signature(const uint8_t * msg, const size_t msg_length,
const P256ECDSASignature & signature) const
{
#if defined(MBEDTLS_ECDSA_C)
VerifyOrReturnError((msg != nullptr) && (msg_length > 0), CHIP_ERROR_INVALID_ARGUMENT);
uint8_t digest[kSHA256_Hash_Length];
memset(&digest[0], 0, sizeof(digest));
ReturnErrorOnFailure(Hash_SHA256(msg, msg_length, &digest[0]));
return ECDSA_validate_hash_signature(&digest[0], sizeof(digest), signature);
#else
return CHIP_ERROR_NOT_IMPLEMENTED;
#endif
}
CHIP_ERROR P256PublicKey::ECDSA_validate_hash_signature(const uint8_t * hash, const size_t hash_length,
const P256ECDSASignature & signature) const
{
#if defined(MBEDTLS_ECDSA_C)
VerifyOrReturnError(hash != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(hash_length == kSHA256_Hash_Length, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(signature.Length() == kP256_ECDSA_Signature_Length_Raw, CHIP_ERROR_INVALID_ARGUMENT);
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
mbedtls_mpi r, s;
mbedtls_mpi_init(&r);
mbedtls_mpi_init(&s);
mbedtls_ecp_keypair keypair;
mbedtls_ecp_keypair_init(&keypair);
mbedtls_ecdsa_context ecdsa_ctxt;
mbedtls_ecdsa_init(&ecdsa_ctxt);
result = mbedtls_ecp_group_load(&keypair.CHIP_CRYPTO_PAL_PRIVATE(grp), MapECPGroupId(Type()));
VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
result = mbedtls_ecp_point_read_binary(&keypair.CHIP_CRYPTO_PAL_PRIVATE(grp), &keypair.CHIP_CRYPTO_PAL_PRIVATE(Q),
Uint8::to_const_uchar(*this), Length());
VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
result = mbedtls_ecdsa_from_keypair(&ecdsa_ctxt, &keypair);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
// Read the <r, s> big nums from the signature
result = mbedtls_mpi_read_binary(&r, Uint8::to_const_uchar(signature.ConstBytes()) + 0u, kP256_FE_Length);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_read_binary(&s, Uint8::to_const_uchar(signature.ConstBytes()) + kP256_FE_Length, kP256_FE_Length);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_ecdsa_verify(&ecdsa_ctxt.CHIP_CRYPTO_PAL_PRIVATE(grp), Uint8::to_const_uchar(hash), hash_length,
&ecdsa_ctxt.CHIP_CRYPTO_PAL_PRIVATE(Q), &r, &s);
VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_SIGNATURE);
exit:
mbedtls_ecdsa_free(&ecdsa_ctxt);
mbedtls_ecp_keypair_free(&keypair);
mbedtls_mpi_free(&s);
mbedtls_mpi_free(&r);
_log_mbedTLS_error(result);
return error;
#else
return CHIP_ERROR_NOT_IMPLEMENTED;
#endif
}
CHIP_ERROR P256Keypair::ECDH_derive_secret(const P256PublicKey & remote_public_key, P256ECDHDerivedSecret & out_secret) const
{
#if defined(MBEDTLS_ECDH_C)
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
size_t secret_length = (out_secret.Length() == 0) ? out_secret.Capacity() : out_secret.Length();
mbedtls_ecp_group ecp_grp;
mbedtls_ecp_group_init(&ecp_grp);
mbedtls_mpi mpi_secret;
mbedtls_mpi_init(&mpi_secret);
mbedtls_ecp_point ecp_pubkey;
mbedtls_ecp_point_init(&ecp_pubkey);
const mbedtls_ecp_keypair * keypair = to_const_keypair(&mKeypair);
VerifyOrExit(mInitialized, error = CHIP_ERROR_UNINITIALIZED);
result = mbedtls_ecp_group_load(&ecp_grp, MapECPGroupId(remote_public_key.Type()));
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result =
mbedtls_ecp_point_read_binary(&ecp_grp, &ecp_pubkey, Uint8::to_const_uchar(remote_public_key), remote_public_key.Length());
VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
result =
mbedtls_ecdh_compute_shared(&ecp_grp, &mpi_secret, &ecp_pubkey, &keypair->CHIP_CRYPTO_PAL_PRIVATE(d), CryptoRNG, nullptr);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_write_binary(&mpi_secret, out_secret.Bytes(), secret_length);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
SuccessOrExit(error = out_secret.SetLength(secret_length));
exit:
keypair = nullptr;
mbedtls_ecp_group_free(&ecp_grp);
mbedtls_mpi_free(&mpi_secret);
mbedtls_ecp_point_free(&ecp_pubkey);
_log_mbedTLS_error(result);
return error;
#else
return CHIP_ERROR_NOT_IMPLEMENTED;
#endif
}
void ClearSecretData(uint8_t * buf, size_t len)
{
mbedtls_platform_zeroize(buf, len);
}
// THE BELOW IS FROM `third_party/openthread/repo/third_party/mbedtls/repo/library/constant_time.c` since
// mbedtls_ct_memcmp is not available on Linux somehow :(
int mbedtls_ct_memcmp_copy(const void * a, const void * b, size_t n)
{
size_t i;
volatile const unsigned char * A = (volatile const unsigned char *) a;
volatile const unsigned char * B = (volatile const unsigned char *) b;
volatile unsigned char diff = 0;
for (i = 0; i < n; i++)
{
/* Read volatile data in order before computing diff.
* This avoids IAR compiler warning:
* 'the order of volatile accesses is undefined ..' */
unsigned char x = A[i], y = B[i];
diff |= x ^ y;
}
return ((int) diff);
}
bool IsBufferContentEqualConstantTime(const void * a, const void * b, size_t n)
{
return mbedtls_ct_memcmp_copy(a, b, n) == 0;
}
CHIP_ERROR P256Keypair::Initialize(ECPKeyTarget key_target)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
size_t pubkey_size = 0;
Clear();
mbedtls_ecp_group_id group = MapECPGroupId(mPublicKey.Type());
mbedtls_ecp_keypair * keypair = to_keypair(&mKeypair);
mbedtls_ecp_keypair_init(keypair);
result = mbedtls_ecp_gen_key(group, keypair, CryptoRNG, nullptr);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result =
mbedtls_ecp_point_write_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(grp), &keypair->CHIP_CRYPTO_PAL_PRIVATE(Q),
MBEDTLS_ECP_PF_UNCOMPRESSED, &pubkey_size, Uint8::to_uchar(mPublicKey), mPublicKey.Length());
VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(pubkey_size == mPublicKey.Length(), error = CHIP_ERROR_INVALID_ARGUMENT);
keypair = nullptr;
mInitialized = true;
exit:
if (keypair != nullptr)
{
mbedtls_ecp_keypair_free(keypair);
keypair = nullptr;
}
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR P256Keypair::Serialize(P256SerializedKeypair & output) const
{
const mbedtls_ecp_keypair * keypair = to_const_keypair(&mKeypair);
size_t len = output.Length() == 0 ? output.Capacity() : output.Length();
Encoding::BufferWriter bbuf(output.Bytes(), len);
uint8_t privkey[kP256_PrivateKey_Length];
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
bbuf.Put(mPublicKey, mPublicKey.Length());
VerifyOrExit(bbuf.Available() == sizeof(privkey), error = CHIP_ERROR_INTERNAL);
VerifyOrExit(mbedtls_mpi_size(&keypair->CHIP_CRYPTO_PAL_PRIVATE(d)) <= bbuf.Available(), error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_write_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(d), Uint8::to_uchar(privkey), sizeof(privkey));
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
bbuf.Put(privkey, sizeof(privkey));
VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_BUFFER_TOO_SMALL);
output.SetLength(bbuf.Needed());
exit:
ClearSecretData(privkey, sizeof(privkey));
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR P256Keypair::Deserialize(P256SerializedKeypair & input)
{
Encoding::BufferWriter bbuf(mPublicKey, mPublicKey.Length());
int result = 0;
CHIP_ERROR error = CHIP_NO_ERROR;
Clear();
mbedtls_ecp_keypair * keypair = to_keypair(&mKeypair);
mbedtls_ecp_keypair_init(keypair);
result = mbedtls_ecp_group_load(&keypair->CHIP_CRYPTO_PAL_PRIVATE(grp), MapECPGroupId(mPublicKey.Type()));
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(input.Length() == mPublicKey.Length() + kP256_PrivateKey_Length, error = CHIP_ERROR_INVALID_ARGUMENT);
bbuf.Put(input.ConstBytes(), mPublicKey.Length());
VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_NO_MEMORY);
result = mbedtls_ecp_point_read_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(grp), &keypair->CHIP_CRYPTO_PAL_PRIVATE(Q),
Uint8::to_const_uchar(mPublicKey), mPublicKey.Length());
VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
{
const uint8_t * privkey = input.ConstBytes() + mPublicKey.Length();
result = mbedtls_mpi_read_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(d), privkey, kP256_PrivateKey_Length);
VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT);
}
mInitialized = true;
exit:
_log_mbedTLS_error(result);
return error;
}
void P256Keypair::Clear()
{
if (mInitialized)
{
mbedtls_ecp_keypair * keypair = to_keypair(&mKeypair);
mbedtls_ecp_keypair_free(keypair);
mInitialized = false;
}
}
P256Keypair::~P256Keypair()
{
Clear();
}
CHIP_ERROR P256Keypair::NewCertificateSigningRequest(uint8_t * out_csr, size_t & csr_length) const
{
#if defined(MBEDTLS_X509_CSR_WRITE_C)
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
size_t out_length;
mbedtls_x509write_csr csr;
mbedtls_x509write_csr_init(&csr);
mbedtls_pk_context pk;
pk.CHIP_CRYPTO_PAL_PRIVATE(pk_info) = mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY);
pk.CHIP_CRYPTO_PAL_PRIVATE(pk_ctx) = to_keypair(&mKeypair);
VerifyOrExit(pk.CHIP_CRYPTO_PAL_PRIVATE(pk_info) != nullptr, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(mInitialized, error = CHIP_ERROR_UNINITIALIZED);
mbedtls_x509write_csr_set_key(&csr, &pk);
mbedtls_x509write_csr_set_md_alg(&csr, MBEDTLS_MD_SHA256);
// TODO: mbedTLS CSR parser fails if the subject name is not set (or if empty).
// CHIP Spec doesn't specify the subject name that can be used.
// Figure out the correct value and update this code.
result = mbedtls_x509write_csr_set_subject_name(&csr, "O=CSR");
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_x509write_csr_der(&csr, out_csr, csr_length, CryptoRNG, nullptr);
VerifyOrExit(result > 0, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(CanCastTo<size_t>(result), error = CHIP_ERROR_INTERNAL);
out_length = static_cast<size_t>(result);
result = 0;
VerifyOrExit(out_length <= csr_length, error = CHIP_ERROR_INTERNAL);
if (csr_length != out_length)
{
// mbedTLS API writes the CSR at the end of the provided buffer.
// Let's move it to the start of the buffer.
size_t offset = csr_length - out_length;
memmove(out_csr, &out_csr[offset], out_length);
}
csr_length = out_length;
exit:
mbedtls_x509write_csr_free(&csr);
_log_mbedTLS_error(result);
return error;
#else
ChipLogError(Crypto, "MBEDTLS_X509_CSR_WRITE_C is not enabled. CSR cannot be created");
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
#endif
}
typedef struct Spake2p_Context
{
mbedtls_ecp_group curve;
mbedtls_ecp_point M;
mbedtls_ecp_point N;
mbedtls_ecp_point X;
mbedtls_ecp_point Y;
mbedtls_ecp_point L;
mbedtls_ecp_point Z;
mbedtls_ecp_point V;
mbedtls_mpi w0;
mbedtls_mpi w1;
mbedtls_mpi xy;
mbedtls_mpi tempbn;
} Spake2p_Context;
static inline Spake2p_Context * to_inner_spake2p_context(Spake2pOpaqueContext * context)
{
return SafePointerCast<Spake2p_Context *>(context);
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::InitInternal()
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
memset(context, 0, sizeof(Spake2p_Context));
mbedtls_ecp_group_init(&context->curve);
result = mbedtls_ecp_group_load(&context->curve, MBEDTLS_ECP_DP_SECP256R1);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256) != nullptr, error = CHIP_ERROR_INTERNAL);
mbedtls_ecp_point_init(&context->M);
mbedtls_ecp_point_init(&context->N);
mbedtls_ecp_point_init(&context->X);
mbedtls_ecp_point_init(&context->Y);
mbedtls_ecp_point_init(&context->L);
mbedtls_ecp_point_init(&context->V);
mbedtls_ecp_point_init(&context->Z);
M = &context->M;
N = &context->N;
X = &context->X;
Y = &context->Y;
L = &context->L;
V = &context->V;
Z = &context->Z;
mbedtls_mpi_init(&context->w0);
mbedtls_mpi_init(&context->w1);
mbedtls_mpi_init(&context->xy);
mbedtls_mpi_init(&context->tempbn);
w0 = &context->w0;
w1 = &context->w1;
xy = &context->xy;
tempbn = &context->tempbn;
G = &context->curve.G;
order = &context->curve.N;
return error;
exit:
_log_mbedTLS_error(result);
Clear();
return error;
}
void Spake2p_P256_SHA256_HKDF_HMAC::Clear()
{
VerifyOrReturn(state != CHIP_SPAKE2P_STATE::PREINIT);
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
mbedtls_ecp_point_free(&context->M);
mbedtls_ecp_point_free(&context->N);
mbedtls_ecp_point_free(&context->X);
mbedtls_ecp_point_free(&context->Y);
mbedtls_ecp_point_free(&context->L);
mbedtls_ecp_point_free(&context->Z);
mbedtls_ecp_point_free(&context->V);
mbedtls_mpi_free(&context->w0);
mbedtls_mpi_free(&context->w1);
mbedtls_mpi_free(&context->xy);
mbedtls_mpi_free(&context->tempbn);
mbedtls_ecp_group_free(&context->curve);
state = CHIP_SPAKE2P_STATE::PREINIT;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::Mac(const uint8_t * key, size_t key_len, const uint8_t * in, size_t in_len,
MutableByteSpan & out_span)
{
HMAC_sha hmac;
VerifyOrReturnError(out_span.size() >= kSHA256_Hash_Length, CHIP_ERROR_BUFFER_TOO_SMALL);
ReturnErrorOnFailure(hmac.HMAC_SHA256(key, key_len, in, in_len, out_span.data(), kSHA256_Hash_Length));
out_span = out_span.SubSpan(0, kSHA256_Hash_Length);
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::MacVerify(const uint8_t * key, size_t key_len, const uint8_t * mac, size_t mac_len,
const uint8_t * in, size_t in_len)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
uint8_t computed_mac[kSHA256_Hash_Length];
MutableByteSpan computed_mac_span{ computed_mac };
VerifyOrExit(mac_len == kSHA256_Hash_Length, error = CHIP_ERROR_INVALID_ARGUMENT);
SuccessOrExit(error = Mac(key, key_len, in, in_len, computed_mac_span));
VerifyOrExit(computed_mac_span.size() == mac_len, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(IsBufferContentEqualConstantTime(mac, computed_mac, kSHA256_Hash_Length), error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FELoad(const uint8_t * in, size_t in_len, void * fe)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
result = mbedtls_mpi_read_binary((mbedtls_mpi *) fe, Uint8::to_const_uchar(in), in_len);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_mod_mpi((mbedtls_mpi *) fe, (mbedtls_mpi *) fe, (const mbedtls_mpi *) order);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEWrite(const void * fe, uint8_t * out, size_t out_len)
{
if (mbedtls_mpi_write_binary((const mbedtls_mpi *) fe, Uint8::to_uchar(out), out_len) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEGenerate(void * fe)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
result = mbedtls_ecp_gen_privkey(&context->curve, (mbedtls_mpi *) fe, CryptoRNG, nullptr);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEMul(void * fer, const void * fe1, const void * fe2)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
result = mbedtls_mpi_mul_mpi((mbedtls_mpi *) fer, (const mbedtls_mpi *) fe1, (const mbedtls_mpi *) fe2);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_mod_mpi((mbedtls_mpi *) fer, (mbedtls_mpi *) fer, (const mbedtls_mpi *) order);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointLoad(const uint8_t * in, size_t in_len, void * R)
{
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_point_read_binary(&context->curve, (mbedtls_ecp_point *) R, Uint8::to_const_uchar(in), in_len) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointWrite(const void * R, uint8_t * out, size_t out_len)
{
memset(out, 0, out_len);
size_t mbedtls_out_len = out_len;
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_point_write_binary(&context->curve, (const mbedtls_ecp_point *) R, MBEDTLS_ECP_PF_UNCOMPRESSED,
&mbedtls_out_len, Uint8::to_uchar(out), out_len) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointMul(void * R, const void * P1, const void * fe1)
{
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_mul(&context->curve, (mbedtls_ecp_point *) R, (const mbedtls_mpi *) fe1, (const mbedtls_ecp_point *) P1,
CryptoRNG, nullptr) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointAddMul(void * R, const void * P1, const void * fe1, const void * P2,
const void * fe2)
{
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_muladd(&context->curve, (mbedtls_ecp_point *) R, (const mbedtls_mpi *) fe1, (const mbedtls_ecp_point *) P1,
(const mbedtls_mpi *) fe2, (const mbedtls_ecp_point *) P2) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointInvert(void * R)
{
mbedtls_ecp_point * Rp = (mbedtls_ecp_point *) R;
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_mpi_sub_mpi(&Rp->CHIP_CRYPTO_PAL_PRIVATE(Y), &context->curve.P, &Rp->CHIP_CRYPTO_PAL_PRIVATE(Y)) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointCofactorMul(void * R)
{
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::ComputeL(uint8_t * Lout, size_t * L_len, const uint8_t * w1in, size_t w1in_len)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
mbedtls_ecp_group curve;
mbedtls_mpi w1_bn;
mbedtls_ecp_point Ltemp;
mbedtls_ecp_group_init(&curve);
mbedtls_mpi_init(&w1_bn);
mbedtls_ecp_point_init(&Ltemp);
result = mbedtls_ecp_group_load(&curve, MBEDTLS_ECP_DP_SECP256R1);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_read_binary(&w1_bn, Uint8::to_const_uchar(w1in), w1in_len);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_mod_mpi(&w1_bn, &w1_bn, &curve.N);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_ecp_mul(&curve, &Ltemp, &w1_bn, &curve.G, CryptoRNG, nullptr);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
memset(Lout, 0, *L_len);
result = mbedtls_ecp_point_write_binary(&curve, &Ltemp, MBEDTLS_ECP_PF_UNCOMPRESSED, L_len, Uint8::to_uchar(Lout), *L_len);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
mbedtls_ecp_point_free(&Ltemp);
mbedtls_mpi_free(&w1_bn);
mbedtls_ecp_group_free(&curve);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointIsValid(void * R)
{
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_check_pubkey(&context->curve, (mbedtls_ecp_point *) R) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
} // namespace Crypto
} // namespace chip