| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Author: kenton@google.com (Kenton Varda) |
| // Based on original Protocol Buffers design by |
| // Sanjay Ghemawat, Jeff Dean, and others. |
| // |
| // This header is logically internal, but is made public because it is used |
| // from protocol-compiler-generated code, which may reside in other components. |
| |
| #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
| #define GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
| |
| #include <vector> |
| #include <map> |
| #include <utility> |
| #include <string> |
| |
| |
| #include <google/protobuf/stubs/common.h> |
| |
| #include <google/protobuf/repeated_field.h> |
| |
| namespace google { |
| |
| namespace protobuf { |
| class Arena; |
| class Descriptor; // descriptor.h |
| class FieldDescriptor; // descriptor.h |
| class DescriptorPool; // descriptor.h |
| class MessageLite; // message_lite.h |
| class Message; // message.h |
| class MessageFactory; // message.h |
| class UnknownFieldSet; // unknown_field_set.h |
| namespace io { |
| class CodedInputStream; // coded_stream.h |
| class CodedOutputStream; // coded_stream.h |
| } |
| namespace internal { |
| class FieldSkipper; // wire_format_lite.h |
| } |
| } |
| |
| namespace protobuf { |
| namespace internal { |
| |
| // Used to store values of type WireFormatLite::FieldType without having to |
| // #include wire_format_lite.h. Also, ensures that we use only one byte to |
| // store these values, which is important to keep the layout of |
| // ExtensionSet::Extension small. |
| typedef uint8 FieldType; |
| |
| // A function which, given an integer value, returns true if the number |
| // matches one of the defined values for the corresponding enum type. This |
| // is used with RegisterEnumExtension, below. |
| typedef bool EnumValidityFunc(int number); |
| |
| // Version of the above which takes an argument. This is needed to deal with |
| // extensions that are not compiled in. |
| typedef bool EnumValidityFuncWithArg(const void* arg, int number); |
| |
| // Information about a registered extension. |
| struct ExtensionInfo { |
| inline ExtensionInfo() {} |
| inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked) |
| : type(type_param), is_repeated(isrepeated), is_packed(ispacked), |
| descriptor(NULL) {} |
| |
| FieldType type; |
| bool is_repeated; |
| bool is_packed; |
| |
| struct EnumValidityCheck { |
| EnumValidityFuncWithArg* func; |
| const void* arg; |
| }; |
| |
| union { |
| EnumValidityCheck enum_validity_check; |
| const MessageLite* message_prototype; |
| }; |
| |
| // The descriptor for this extension, if one exists and is known. May be |
| // NULL. Must not be NULL if the descriptor for the extension does not |
| // live in the same pool as the descriptor for the containing type. |
| const FieldDescriptor* descriptor; |
| }; |
| |
| // Abstract interface for an object which looks up extension definitions. Used |
| // when parsing. |
| class LIBPROTOBUF_EXPORT ExtensionFinder { |
| public: |
| virtual ~ExtensionFinder(); |
| |
| // Find the extension with the given containing type and number. |
| virtual bool Find(int number, ExtensionInfo* output) = 0; |
| }; |
| |
| // Implementation of ExtensionFinder which finds extensions defined in .proto |
| // files which have been compiled into the binary. |
| class LIBPROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder { |
| public: |
| GeneratedExtensionFinder(const MessageLite* containing_type) |
| : containing_type_(containing_type) {} |
| virtual ~GeneratedExtensionFinder() {} |
| |
| // Returns true and fills in *output if found, otherwise returns false. |
| virtual bool Find(int number, ExtensionInfo* output); |
| |
| private: |
| const MessageLite* containing_type_; |
| }; |
| |
| // A FieldSkipper used for parsing MessageSet. |
| class MessageSetFieldSkipper; |
| |
| // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for |
| // finding extensions from a DescriptorPool. |
| |
| // This is an internal helper class intended for use within the protocol buffer |
| // library and generated classes. Clients should not use it directly. Instead, |
| // use the generated accessors such as GetExtension() of the class being |
| // extended. |
| // |
| // This class manages extensions for a protocol message object. The |
| // message's HasExtension(), GetExtension(), MutableExtension(), and |
| // ClearExtension() methods are just thin wrappers around the embedded |
| // ExtensionSet. When parsing, if a tag number is encountered which is |
| // inside one of the message type's extension ranges, the tag is passed |
| // off to the ExtensionSet for parsing. Etc. |
| class LIBPROTOBUF_EXPORT ExtensionSet { |
| public: |
| ExtensionSet(); |
| explicit ExtensionSet(::google::protobuf::Arena* arena); |
| ~ExtensionSet(); |
| |
| // These are called at startup by protocol-compiler-generated code to |
| // register known extensions. The registrations are used by ParseField() |
| // to look up extensions for parsed field numbers. Note that dynamic parsing |
| // does not use ParseField(); only protocol-compiler-generated parsing |
| // methods do. |
| static void RegisterExtension(const MessageLite* containing_type, |
| int number, FieldType type, |
| bool is_repeated, bool is_packed); |
| static void RegisterEnumExtension(const MessageLite* containing_type, |
| int number, FieldType type, |
| bool is_repeated, bool is_packed, |
| EnumValidityFunc* is_valid); |
| static void RegisterMessageExtension(const MessageLite* containing_type, |
| int number, FieldType type, |
| bool is_repeated, bool is_packed, |
| const MessageLite* prototype); |
| |
| // ================================================================= |
| |
| // Add all fields which are currently present to the given vector. This |
| // is useful to implement Reflection::ListFields(). |
| void AppendToList(const Descriptor* containing_type, |
| const DescriptorPool* pool, |
| std::vector<const FieldDescriptor*>* output) const; |
| |
| // ================================================================= |
| // Accessors |
| // |
| // Generated message classes include type-safe templated wrappers around |
| // these methods. Generally you should use those rather than call these |
| // directly, unless you are doing low-level memory management. |
| // |
| // When calling any of these accessors, the extension number requested |
| // MUST exist in the DescriptorPool provided to the constructor. Otheriwse, |
| // the method will fail an assert. Normally, though, you would not call |
| // these directly; you would either call the generated accessors of your |
| // message class (e.g. GetExtension()) or you would call the accessors |
| // of the reflection interface. In both cases, it is impossible to |
| // trigger this assert failure: the generated accessors only accept |
| // linked-in extension types as parameters, while the Reflection interface |
| // requires you to provide the FieldDescriptor describing the extension. |
| // |
| // When calling any of these accessors, a protocol-compiler-generated |
| // implementation of the extension corresponding to the number MUST |
| // be linked in, and the FieldDescriptor used to refer to it MUST be |
| // the one generated by that linked-in code. Otherwise, the method will |
| // die on an assert failure. The message objects returned by the message |
| // accessors are guaranteed to be of the correct linked-in type. |
| // |
| // These methods pretty much match Reflection except that: |
| // - They're not virtual. |
| // - They identify fields by number rather than FieldDescriptors. |
| // - They identify enum values using integers rather than descriptors. |
| // - Strings provide Mutable() in addition to Set() accessors. |
| |
| bool Has(int number) const; |
| int ExtensionSize(int number) const; // Size of a repeated extension. |
| int NumExtensions() const; // The number of extensions |
| FieldType ExtensionType(int number) const; |
| void ClearExtension(int number); |
| |
| // singular fields ------------------------------------------------- |
| |
| int32 GetInt32 (int number, int32 default_value) const; |
| int64 GetInt64 (int number, int64 default_value) const; |
| uint32 GetUInt32(int number, uint32 default_value) const; |
| uint64 GetUInt64(int number, uint64 default_value) const; |
| float GetFloat (int number, float default_value) const; |
| double GetDouble(int number, double default_value) const; |
| bool GetBool (int number, bool default_value) const; |
| int GetEnum (int number, int default_value) const; |
| const string & GetString (int number, const string& default_value) const; |
| const MessageLite& GetMessage(int number, |
| const MessageLite& default_value) const; |
| const MessageLite& GetMessage(int number, const Descriptor* message_type, |
| MessageFactory* factory) const; |
| |
| // |descriptor| may be NULL so long as it is known that the descriptor for |
| // the extension lives in the same pool as the descriptor for the containing |
| // type. |
| #define desc const FieldDescriptor* descriptor // avoid line wrapping |
| void SetInt32 (int number, FieldType type, int32 value, desc); |
| void SetInt64 (int number, FieldType type, int64 value, desc); |
| void SetUInt32(int number, FieldType type, uint32 value, desc); |
| void SetUInt64(int number, FieldType type, uint64 value, desc); |
| void SetFloat (int number, FieldType type, float value, desc); |
| void SetDouble(int number, FieldType type, double value, desc); |
| void SetBool (int number, FieldType type, bool value, desc); |
| void SetEnum (int number, FieldType type, int value, desc); |
| void SetString(int number, FieldType type, const string& value, desc); |
| string * MutableString (int number, FieldType type, desc); |
| MessageLite* MutableMessage(int number, FieldType type, |
| const MessageLite& prototype, desc); |
| MessageLite* MutableMessage(const FieldDescriptor* decsriptor, |
| MessageFactory* factory); |
| // Adds the given message to the ExtensionSet, taking ownership of the |
| // message object. Existing message with the same number will be deleted. |
| // If "message" is NULL, this is equivalent to "ClearExtension(number)". |
| void SetAllocatedMessage(int number, FieldType type, |
| const FieldDescriptor* descriptor, |
| MessageLite* message); |
| MessageLite* ReleaseMessage(int number, const MessageLite& prototype); |
| MessageLite* UnsafeArenaReleaseMessage( |
| int number, const MessageLite& prototype); |
| |
| MessageLite* ReleaseMessage(const FieldDescriptor* descriptor, |
| MessageFactory* factory); |
| #undef desc |
| ::google::protobuf::Arena* GetArenaNoVirtual() const { return arena_; } |
| |
| // repeated fields ------------------------------------------------- |
| |
| // Fetches a RepeatedField extension by number; returns |default_value| |
| // if no such extension exists. User should not touch this directly; it is |
| // used by the GetRepeatedExtension() method. |
| const void* GetRawRepeatedField(int number, const void* default_value) const; |
| // Fetches a mutable version of a RepeatedField extension by number, |
| // instantiating one if none exists. Similar to above, user should not use |
| // this directly; it underlies MutableRepeatedExtension(). |
| void* MutableRawRepeatedField(int number, FieldType field_type, |
| bool packed, const FieldDescriptor* desc); |
| |
| // This is an overload of MutableRawRepeatedField to maintain compatibility |
| // with old code using a previous API. This version of |
| // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension. |
| // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) |
| void* MutableRawRepeatedField(int number); |
| |
| int32 GetRepeatedInt32 (int number, int index) const; |
| int64 GetRepeatedInt64 (int number, int index) const; |
| uint32 GetRepeatedUInt32(int number, int index) const; |
| uint64 GetRepeatedUInt64(int number, int index) const; |
| float GetRepeatedFloat (int number, int index) const; |
| double GetRepeatedDouble(int number, int index) const; |
| bool GetRepeatedBool (int number, int index) const; |
| int GetRepeatedEnum (int number, int index) const; |
| const string & GetRepeatedString (int number, int index) const; |
| const MessageLite& GetRepeatedMessage(int number, int index) const; |
| |
| void SetRepeatedInt32 (int number, int index, int32 value); |
| void SetRepeatedInt64 (int number, int index, int64 value); |
| void SetRepeatedUInt32(int number, int index, uint32 value); |
| void SetRepeatedUInt64(int number, int index, uint64 value); |
| void SetRepeatedFloat (int number, int index, float value); |
| void SetRepeatedDouble(int number, int index, double value); |
| void SetRepeatedBool (int number, int index, bool value); |
| void SetRepeatedEnum (int number, int index, int value); |
| void SetRepeatedString(int number, int index, const string& value); |
| string * MutableRepeatedString (int number, int index); |
| MessageLite* MutableRepeatedMessage(int number, int index); |
| |
| #define desc const FieldDescriptor* descriptor // avoid line wrapping |
| void AddInt32 (int number, FieldType type, bool packed, int32 value, desc); |
| void AddInt64 (int number, FieldType type, bool packed, int64 value, desc); |
| void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc); |
| void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc); |
| void AddFloat (int number, FieldType type, bool packed, float value, desc); |
| void AddDouble(int number, FieldType type, bool packed, double value, desc); |
| void AddBool (int number, FieldType type, bool packed, bool value, desc); |
| void AddEnum (int number, FieldType type, bool packed, int value, desc); |
| void AddString(int number, FieldType type, const string& value, desc); |
| string * AddString (int number, FieldType type, desc); |
| MessageLite* AddMessage(int number, FieldType type, |
| const MessageLite& prototype, desc); |
| MessageLite* AddMessage(const FieldDescriptor* descriptor, |
| MessageFactory* factory); |
| #undef desc |
| |
| void RemoveLast(int number); |
| MessageLite* ReleaseLast(int number); |
| void SwapElements(int number, int index1, int index2); |
| |
| // ----------------------------------------------------------------- |
| // TODO(kenton): Hardcore memory management accessors |
| |
| // ================================================================= |
| // convenience methods for implementing methods of Message |
| // |
| // These could all be implemented in terms of the other methods of this |
| // class, but providing them here helps keep the generated code size down. |
| |
| void Clear(); |
| void MergeFrom(const ExtensionSet& other); |
| void Swap(ExtensionSet* other); |
| void SwapExtension(ExtensionSet* other, int number); |
| bool IsInitialized() const; |
| |
| // Parses a single extension from the input. The input should start out |
| // positioned immediately after the tag. |
| bool ParseField(uint32 tag, io::CodedInputStream* input, |
| ExtensionFinder* extension_finder, |
| FieldSkipper* field_skipper); |
| |
| // Specific versions for lite or full messages (constructs the appropriate |
| // FieldSkipper automatically). |containing_type| is the default |
| // instance for the containing message; it is used only to look up the |
| // extension by number. See RegisterExtension(), above. Unlike the other |
| // methods of ExtensionSet, this only works for generated message types -- |
| // it looks up extensions registered using RegisterExtension(). |
| bool ParseField(uint32 tag, io::CodedInputStream* input, |
| const MessageLite* containing_type); |
| bool ParseField(uint32 tag, io::CodedInputStream* input, |
| const Message* containing_type, |
| UnknownFieldSet* unknown_fields); |
| bool ParseField(uint32 tag, io::CodedInputStream* input, |
| const MessageLite* containing_type, |
| io::CodedOutputStream* unknown_fields); |
| |
| // Parse an entire message in MessageSet format. Such messages have no |
| // fields, only extensions. |
| bool ParseMessageSet(io::CodedInputStream* input, |
| ExtensionFinder* extension_finder, |
| MessageSetFieldSkipper* field_skipper); |
| |
| // Specific versions for lite or full messages (constructs the appropriate |
| // FieldSkipper automatically). |
| bool ParseMessageSet(io::CodedInputStream* input, |
| const MessageLite* containing_type); |
| bool ParseMessageSet(io::CodedInputStream* input, |
| const Message* containing_type, |
| UnknownFieldSet* unknown_fields); |
| |
| // Write all extension fields with field numbers in the range |
| // [start_field_number, end_field_number) |
| // to the output stream, using the cached sizes computed when ByteSize() was |
| // last called. Note that the range bounds are inclusive-exclusive. |
| void SerializeWithCachedSizes(int start_field_number, |
| int end_field_number, |
| io::CodedOutputStream* output) const; |
| |
| // Same as SerializeWithCachedSizes, but without any bounds checking. |
| // The caller must ensure that target has sufficient capacity for the |
| // serialized extensions. |
| // |
| // Returns a pointer past the last written byte. |
| uint8* SerializeWithCachedSizesToArray(int start_field_number, |
| int end_field_number, |
| uint8* target) const; |
| |
| // Like above but serializes in MessageSet format. |
| void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const; |
| uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const; |
| |
| // Returns the total serialized size of all the extensions. |
| int ByteSize() const; |
| |
| // Like ByteSize() but uses MessageSet format. |
| int MessageSetByteSize() const; |
| |
| // Returns (an estimate of) the total number of bytes used for storing the |
| // extensions in memory, excluding sizeof(*this). If the ExtensionSet is |
| // for a lite message (and thus possibly contains lite messages), the results |
| // are undefined (might work, might crash, might corrupt data, might not even |
| // be linked in). It's up to the protocol compiler to avoid calling this on |
| // such ExtensionSets (easy enough since lite messages don't implement |
| // SpaceUsed()). |
| int SpaceUsedExcludingSelf() const; |
| |
| private: |
| |
| // Interface of a lazily parsed singular message extension. |
| class LIBPROTOBUF_EXPORT LazyMessageExtension { |
| public: |
| LazyMessageExtension() {} |
| virtual ~LazyMessageExtension() {} |
| |
| virtual LazyMessageExtension* New(::google::protobuf::Arena* arena) const = 0; |
| virtual const MessageLite& GetMessage( |
| const MessageLite& prototype) const = 0; |
| virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0; |
| virtual void SetAllocatedMessage(MessageLite *message) = 0; |
| virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0; |
| virtual MessageLite* UnsafeArenaReleaseMessage( |
| const MessageLite& prototype) = 0; |
| |
| virtual bool IsInitialized() const = 0; |
| virtual int ByteSize() const = 0; |
| virtual int SpaceUsed() const = 0; |
| |
| virtual void MergeFrom(const LazyMessageExtension& other) = 0; |
| virtual void Clear() = 0; |
| |
| virtual bool ReadMessage(const MessageLite& prototype, |
| io::CodedInputStream* input) = 0; |
| virtual void WriteMessage(int number, |
| io::CodedOutputStream* output) const = 0; |
| virtual uint8* WriteMessageToArray(int number, uint8* target) const = 0; |
| private: |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension); |
| }; |
| struct Extension { |
| // The order of these fields packs Extension into 24 bytes when using 8 |
| // byte alignment. Consider this when adding or removing fields here. |
| union { |
| int32 int32_value; |
| int64 int64_value; |
| uint32 uint32_value; |
| uint64 uint64_value; |
| float float_value; |
| double double_value; |
| bool bool_value; |
| int enum_value; |
| string* string_value; |
| MessageLite* message_value; |
| LazyMessageExtension* lazymessage_value; |
| |
| RepeatedField <int32 >* repeated_int32_value; |
| RepeatedField <int64 >* repeated_int64_value; |
| RepeatedField <uint32 >* repeated_uint32_value; |
| RepeatedField <uint64 >* repeated_uint64_value; |
| RepeatedField <float >* repeated_float_value; |
| RepeatedField <double >* repeated_double_value; |
| RepeatedField <bool >* repeated_bool_value; |
| RepeatedField <int >* repeated_enum_value; |
| RepeatedPtrField<string >* repeated_string_value; |
| RepeatedPtrField<MessageLite>* repeated_message_value; |
| }; |
| |
| FieldType type; |
| bool is_repeated; |
| |
| // For singular types, indicates if the extension is "cleared". This |
| // happens when an extension is set and then later cleared by the caller. |
| // We want to keep the Extension object around for reuse, so instead of |
| // removing it from the map, we just set is_cleared = true. This has no |
| // meaning for repeated types; for those, the size of the RepeatedField |
| // simply becomes zero when cleared. |
| bool is_cleared : 4; |
| |
| // For singular message types, indicates whether lazy parsing is enabled |
| // for this extension. This field is only valid when type == TYPE_MESSAGE |
| // and !is_repeated because we only support lazy parsing for singular |
| // message types currently. If is_lazy = true, the extension is stored in |
| // lazymessage_value. Otherwise, the extension will be message_value. |
| bool is_lazy : 4; |
| |
| // For repeated types, this indicates if the [packed=true] option is set. |
| bool is_packed; |
| |
| // For packed fields, the size of the packed data is recorded here when |
| // ByteSize() is called then used during serialization. |
| // TODO(kenton): Use atomic<int> when C++ supports it. |
| mutable int cached_size; |
| |
| // The descriptor for this extension, if one exists and is known. May be |
| // NULL. Must not be NULL if the descriptor for the extension does not |
| // live in the same pool as the descriptor for the containing type. |
| const FieldDescriptor* descriptor; |
| |
| // Some helper methods for operations on a single Extension. |
| void SerializeFieldWithCachedSizes( |
| int number, |
| io::CodedOutputStream* output) const; |
| uint8* SerializeFieldWithCachedSizesToArray( |
| int number, |
| uint8* target) const; |
| void SerializeMessageSetItemWithCachedSizes( |
| int number, |
| io::CodedOutputStream* output) const; |
| uint8* SerializeMessageSetItemWithCachedSizesToArray( |
| int number, |
| uint8* target) const; |
| int ByteSize(int number) const; |
| int MessageSetItemByteSize(int number) const; |
| void Clear(); |
| int GetSize() const; |
| void Free(); |
| int SpaceUsedExcludingSelf() const; |
| }; |
| |
| |
| // Merges existing Extension from other_extension |
| void InternalExtensionMergeFrom(int number, const Extension& other_extension); |
| |
| // Returns true and fills field_number and extension if extension is found. |
| // Note to support packed repeated field compatibility, it also fills whether |
| // the tag on wire is packed, which can be different from |
| // extension->is_packed (whether packed=true is specified). |
| bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder, |
| int* field_number, ExtensionInfo* extension, |
| bool* was_packed_on_wire); |
| |
| // Returns true and fills extension if extension is found. |
| // Note to support packed repeated field compatibility, it also fills whether |
| // the tag on wire is packed, which can be different from |
| // extension->is_packed (whether packed=true is specified). |
| bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, |
| ExtensionFinder* extension_finder, |
| ExtensionInfo* extension, |
| bool* was_packed_on_wire); |
| |
| // Parses a single extension from the input. The input should start out |
| // positioned immediately after the wire tag. This method is called in |
| // ParseField() after field number and was_packed_on_wire is extracted from |
| // the wire tag and ExtensionInfo is found by the field number. |
| bool ParseFieldWithExtensionInfo(int field_number, |
| bool was_packed_on_wire, |
| const ExtensionInfo& extension, |
| io::CodedInputStream* input, |
| FieldSkipper* field_skipper); |
| |
| // Like ParseField(), but this method may parse singular message extensions |
| // lazily depending on the value of FLAGS_eagerly_parse_message_sets. |
| bool ParseFieldMaybeLazily(int wire_type, int field_number, |
| io::CodedInputStream* input, |
| ExtensionFinder* extension_finder, |
| MessageSetFieldSkipper* field_skipper); |
| |
| // Gets the extension with the given number, creating it if it does not |
| // already exist. Returns true if the extension did not already exist. |
| bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, |
| Extension** result); |
| |
| // Parse a single MessageSet item -- called just after the item group start |
| // tag has been read. |
| bool ParseMessageSetItem(io::CodedInputStream* input, |
| ExtensionFinder* extension_finder, |
| MessageSetFieldSkipper* field_skipper); |
| |
| // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This |
| // friendship should automatically extend to ExtensionSet::Extension, but |
| // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this |
| // correctly. So, we must provide helpers for calling methods of that |
| // class. |
| |
| // Defined in extension_set_heavy.cc. |
| static inline int RepeatedMessage_SpaceUsedExcludingSelf( |
| RepeatedPtrFieldBase* field); |
| |
| // The Extension struct is small enough to be passed by value, so we use it |
| // directly as the value type in the map rather than use pointers. We use |
| // a map rather than hash_map here because we expect most ExtensionSets will |
| // only contain a small number of extensions whereas hash_map is optimized |
| // for 100 elements or more. Also, we want AppendToList() to order fields |
| // by field number. |
| std::map<int, Extension> extensions_; |
| ::google::protobuf::Arena* arena_; |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet); |
| }; |
| |
| // These are just for convenience... |
| inline void ExtensionSet::SetString(int number, FieldType type, |
| const string& value, |
| const FieldDescriptor* descriptor) { |
| MutableString(number, type, descriptor)->assign(value); |
| } |
| inline void ExtensionSet::SetRepeatedString(int number, int index, |
| const string& value) { |
| MutableRepeatedString(number, index)->assign(value); |
| } |
| inline void ExtensionSet::AddString(int number, FieldType type, |
| const string& value, |
| const FieldDescriptor* descriptor) { |
| AddString(number, type, descriptor)->assign(value); |
| } |
| |
| // =================================================================== |
| // Glue for generated extension accessors |
| |
| // ------------------------------------------------------------------- |
| // Template magic |
| |
| // First we have a set of classes representing "type traits" for different |
| // field types. A type traits class knows how to implement basic accessors |
| // for extensions of a particular type given an ExtensionSet. The signature |
| // for a type traits class looks like this: |
| // |
| // class TypeTraits { |
| // public: |
| // typedef ? ConstType; |
| // typedef ? MutableType; |
| // // TypeTraits for singular fields and repeated fields will define the |
| // // symbol "Singular" or "Repeated" respectively. These two symbols will |
| // // be used in extension accessors to distinguish between singular |
| // // extensions and repeated extensions. If the TypeTraits for the passed |
| // // in extension doesn't have the expected symbol defined, it means the |
| // // user is passing a repeated extension to a singular accessor, or the |
| // // opposite. In that case the C++ compiler will generate an error |
| // // message "no matching member function" to inform the user. |
| // typedef ? Singular |
| // typedef ? Repeated |
| // |
| // static inline ConstType Get(int number, const ExtensionSet& set); |
| // static inline void Set(int number, ConstType value, ExtensionSet* set); |
| // static inline MutableType Mutable(int number, ExtensionSet* set); |
| // |
| // // Variants for repeated fields. |
| // static inline ConstType Get(int number, const ExtensionSet& set, |
| // int index); |
| // static inline void Set(int number, int index, |
| // ConstType value, ExtensionSet* set); |
| // static inline MutableType Mutable(int number, int index, |
| // ExtensionSet* set); |
| // static inline void Add(int number, ConstType value, ExtensionSet* set); |
| // static inline MutableType Add(int number, ExtensionSet* set); |
| // }; |
| // |
| // Not all of these methods make sense for all field types. For example, the |
| // "Mutable" methods only make sense for strings and messages, and the |
| // repeated methods only make sense for repeated types. So, each type |
| // traits class implements only the set of methods from this signature that it |
| // actually supports. This will cause a compiler error if the user tries to |
| // access an extension using a method that doesn't make sense for its type. |
| // For example, if "foo" is an extension of type "optional int32", then if you |
| // try to write code like: |
| // my_message.MutableExtension(foo) |
| // you will get a compile error because PrimitiveTypeTraits<int32> does not |
| // have a "Mutable()" method. |
| |
| // ------------------------------------------------------------------- |
| // PrimitiveTypeTraits |
| |
| // Since the ExtensionSet has different methods for each primitive type, |
| // we must explicitly define the methods of the type traits class for each |
| // known type. |
| template <typename Type> |
| class PrimitiveTypeTraits { |
| public: |
| typedef Type ConstType; |
| typedef Type MutableType; |
| typedef PrimitiveTypeTraits<Type> Singular; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, |
| ConstType default_value); |
| static inline void Set(int number, FieldType field_type, |
| ConstType value, ExtensionSet* set); |
| }; |
| |
| template <typename Type> |
| class RepeatedPrimitiveTypeTraits { |
| public: |
| typedef Type ConstType; |
| typedef Type MutableType; |
| typedef RepeatedPrimitiveTypeTraits<Type> Repeated; |
| |
| typedef RepeatedField<Type> RepeatedFieldType; |
| |
| static inline Type Get(int number, const ExtensionSet& set, int index); |
| static inline void Set(int number, int index, Type value, ExtensionSet* set); |
| static inline void Add(int number, FieldType field_type, |
| bool is_packed, Type value, ExtensionSet* set); |
| |
| static inline const RepeatedField<ConstType>& |
| GetRepeated(int number, const ExtensionSet& set); |
| static inline RepeatedField<Type>* |
| MutableRepeated(int number, FieldType field_type, |
| bool is_packed, ExtensionSet* set); |
| |
| static const RepeatedFieldType* GetDefaultRepeatedField(); |
| }; |
| |
| // Declared here so that this can be friended below. |
| void InitializeDefaultRepeatedFields(); |
| void DestroyDefaultRepeatedFields(); |
| |
| class LIBPROTOBUF_EXPORT RepeatedPrimitiveGenericTypeTraits { |
| private: |
| template<typename Type> friend class RepeatedPrimitiveTypeTraits; |
| friend void InitializeDefaultRepeatedFields(); |
| friend void DestroyDefaultRepeatedFields(); |
| static const RepeatedField<int32>* default_repeated_field_int32_; |
| static const RepeatedField<int64>* default_repeated_field_int64_; |
| static const RepeatedField<uint32>* default_repeated_field_uint32_; |
| static const RepeatedField<uint64>* default_repeated_field_uint64_; |
| static const RepeatedField<double>* default_repeated_field_double_; |
| static const RepeatedField<float>* default_repeated_field_float_; |
| static const RepeatedField<bool>* default_repeated_field_bool_; |
| }; |
| |
| #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ |
| template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get( \ |
| int number, const ExtensionSet& set, TYPE default_value) { \ |
| return set.Get##METHOD(number, default_value); \ |
| } \ |
| template<> inline void PrimitiveTypeTraits<TYPE>::Set( \ |
| int number, FieldType field_type, TYPE value, ExtensionSet* set) { \ |
| set->Set##METHOD(number, field_type, value, NULL); \ |
| } \ |
| \ |
| template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \ |
| int number, const ExtensionSet& set, int index) { \ |
| return set.GetRepeated##METHOD(number, index); \ |
| } \ |
| template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \ |
| int number, int index, TYPE value, ExtensionSet* set) { \ |
| set->SetRepeated##METHOD(number, index, value); \ |
| } \ |
| template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \ |
| int number, FieldType field_type, bool is_packed, \ |
| TYPE value, ExtensionSet* set) { \ |
| set->Add##METHOD(number, field_type, is_packed, value, NULL); \ |
| } \ |
| template<> inline const RepeatedField<TYPE>* \ |
| RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \ |
| return RepeatedPrimitiveGenericTypeTraits:: \ |
| default_repeated_field_##TYPE##_; \ |
| } \ |
| template<> inline const RepeatedField<TYPE>& \ |
| RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \ |
| const ExtensionSet& set) { \ |
| return *reinterpret_cast<const RepeatedField<TYPE>*>( \ |
| set.GetRawRepeatedField( \ |
| number, GetDefaultRepeatedField())); \ |
| } \ |
| template<> inline RepeatedField<TYPE>* \ |
| RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated(int number, \ |
| FieldType field_type, \ |
| bool is_packed, \ |
| ExtensionSet* set) { \ |
| return reinterpret_cast<RepeatedField<TYPE>*>( \ |
| set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \ |
| } |
| |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32, Int32) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64, Int64) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE( float, Float) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE( bool, Bool) |
| |
| #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE |
| |
| // ------------------------------------------------------------------- |
| // StringTypeTraits |
| |
| // Strings support both Set() and Mutable(). |
| class LIBPROTOBUF_EXPORT StringTypeTraits { |
| public: |
| typedef const string& ConstType; |
| typedef string* MutableType; |
| typedef StringTypeTraits Singular; |
| |
| static inline const string& Get(int number, const ExtensionSet& set, |
| ConstType default_value) { |
| return set.GetString(number, default_value); |
| } |
| static inline void Set(int number, FieldType field_type, |
| const string& value, ExtensionSet* set) { |
| set->SetString(number, field_type, value, NULL); |
| } |
| static inline string* Mutable(int number, FieldType field_type, |
| ExtensionSet* set) { |
| return set->MutableString(number, field_type, NULL); |
| } |
| }; |
| |
| class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits { |
| public: |
| typedef const string& ConstType; |
| typedef string* MutableType; |
| typedef RepeatedStringTypeTraits Repeated; |
| |
| typedef RepeatedPtrField<string> RepeatedFieldType; |
| |
| static inline const string& Get(int number, const ExtensionSet& set, |
| int index) { |
| return set.GetRepeatedString(number, index); |
| } |
| static inline void Set(int number, int index, |
| const string& value, ExtensionSet* set) { |
| set->SetRepeatedString(number, index, value); |
| } |
| static inline string* Mutable(int number, int index, ExtensionSet* set) { |
| return set->MutableRepeatedString(number, index); |
| } |
| static inline void Add(int number, FieldType field_type, |
| bool /*is_packed*/, const string& value, |
| ExtensionSet* set) { |
| set->AddString(number, field_type, value, NULL); |
| } |
| static inline string* Add(int number, FieldType field_type, |
| ExtensionSet* set) { |
| return set->AddString(number, field_type, NULL); |
| } |
| static inline const RepeatedPtrField<string>& |
| GetRepeated(int number, const ExtensionSet& set) { |
| return *reinterpret_cast<const RepeatedPtrField<string>*>( |
| set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
| } |
| |
| static inline RepeatedPtrField<string>* |
| MutableRepeated(int number, FieldType field_type, |
| bool is_packed, ExtensionSet* set) { |
| return reinterpret_cast<RepeatedPtrField<string>*>( |
| set->MutableRawRepeatedField(number, field_type, |
| is_packed, NULL)); |
| } |
| |
| static const RepeatedFieldType* GetDefaultRepeatedField() { |
| return default_repeated_field_; |
| } |
| |
| private: |
| friend void InitializeDefaultRepeatedFields(); |
| friend void DestroyDefaultRepeatedFields(); |
| static const RepeatedFieldType *default_repeated_field_; |
| }; |
| |
| // ------------------------------------------------------------------- |
| // EnumTypeTraits |
| |
| // ExtensionSet represents enums using integers internally, so we have to |
| // static_cast around. |
| template <typename Type, bool IsValid(int)> |
| class EnumTypeTraits { |
| public: |
| typedef Type ConstType; |
| typedef Type MutableType; |
| typedef EnumTypeTraits<Type, IsValid> Singular; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, |
| ConstType default_value) { |
| return static_cast<Type>(set.GetEnum(number, default_value)); |
| } |
| static inline void Set(int number, FieldType field_type, |
| ConstType value, ExtensionSet* set) { |
| GOOGLE_DCHECK(IsValid(value)); |
| set->SetEnum(number, field_type, value, NULL); |
| } |
| }; |
| |
| template <typename Type, bool IsValid(int)> |
| class RepeatedEnumTypeTraits { |
| public: |
| typedef Type ConstType; |
| typedef Type MutableType; |
| typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated; |
| |
| typedef RepeatedField<Type> RepeatedFieldType; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
| return static_cast<Type>(set.GetRepeatedEnum(number, index)); |
| } |
| static inline void Set(int number, int index, |
| ConstType value, ExtensionSet* set) { |
| GOOGLE_DCHECK(IsValid(value)); |
| set->SetRepeatedEnum(number, index, value); |
| } |
| static inline void Add(int number, FieldType field_type, |
| bool is_packed, ConstType value, ExtensionSet* set) { |
| GOOGLE_DCHECK(IsValid(value)); |
| set->AddEnum(number, field_type, is_packed, value, NULL); |
| } |
| static inline const RepeatedField<Type>& GetRepeated(int number, |
| const ExtensionSet& |
| set) { |
| // Hack: the `Extension` struct stores a RepeatedField<int> for enums. |
| // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType> |
| // so we need to do some casting magic. See message.h for similar |
| // contortions for non-extension fields. |
| return *reinterpret_cast<const RepeatedField<Type>*>( |
| set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
| } |
| |
| static inline RepeatedField<Type>* MutableRepeated(int number, |
| FieldType field_type, |
| bool is_packed, |
| ExtensionSet* set) { |
| return reinterpret_cast<RepeatedField<Type>*>( |
| set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); |
| } |
| |
| static const RepeatedFieldType* GetDefaultRepeatedField() { |
| // Hack: as noted above, repeated enum fields are internally stored as a |
| // RepeatedField<int>. We need to be able to instantiate global static |
| // objects to return as default (empty) repeated fields on non-existent |
| // extensions. We would not be able to know a-priori all of the enum types |
| // (values of |Type|) to instantiate all of these, so we just re-use int32's |
| // default repeated field object. |
| return reinterpret_cast<const RepeatedField<Type>*>( |
| RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField()); |
| } |
| }; |
| |
| // ------------------------------------------------------------------- |
| // MessageTypeTraits |
| |
| // ExtensionSet guarantees that when manipulating extensions with message |
| // types, the implementation used will be the compiled-in class representing |
| // that type. So, we can static_cast down to the exact type we expect. |
| template <typename Type> |
| class MessageTypeTraits { |
| public: |
| typedef const Type& ConstType; |
| typedef Type* MutableType; |
| typedef MessageTypeTraits<Type> Singular; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, |
| ConstType default_value) { |
| return static_cast<const Type&>( |
| set.GetMessage(number, default_value)); |
| } |
| static inline MutableType Mutable(int number, FieldType field_type, |
| ExtensionSet* set) { |
| return static_cast<Type*>( |
| set->MutableMessage(number, field_type, Type::default_instance(), NULL)); |
| } |
| static inline void SetAllocated(int number, FieldType field_type, |
| MutableType message, ExtensionSet* set) { |
| set->SetAllocatedMessage(number, field_type, NULL, message); |
| } |
| static inline MutableType Release(int number, FieldType /* field_type */, |
| ExtensionSet* set) { |
| return static_cast<Type*>(set->ReleaseMessage( |
| number, Type::default_instance())); |
| } |
| }; |
| |
| // forward declaration |
| class RepeatedMessageGenericTypeTraits; |
| |
| template <typename Type> |
| class RepeatedMessageTypeTraits { |
| public: |
| typedef const Type& ConstType; |
| typedef Type* MutableType; |
| typedef RepeatedMessageTypeTraits<Type> Repeated; |
| |
| typedef RepeatedPtrField<Type> RepeatedFieldType; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
| return static_cast<const Type&>(set.GetRepeatedMessage(number, index)); |
| } |
| static inline MutableType Mutable(int number, int index, ExtensionSet* set) { |
| return static_cast<Type*>(set->MutableRepeatedMessage(number, index)); |
| } |
| static inline MutableType Add(int number, FieldType field_type, |
| ExtensionSet* set) { |
| return static_cast<Type*>( |
| set->AddMessage(number, field_type, Type::default_instance(), NULL)); |
| } |
| static inline const RepeatedPtrField<Type>& GetRepeated(int number, |
| const ExtensionSet& |
| set) { |
| // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same |
| // casting hack applies here, because a RepeatedPtrField<MessageLite> |
| // cannot naturally become a RepeatedPtrType<Type> even though Type is |
| // presumably a message. google::protobuf::Message goes through similar contortions |
| // with a reinterpret_cast<>. |
| return *reinterpret_cast<const RepeatedPtrField<Type>*>( |
| set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
| } |
| static inline RepeatedPtrField<Type>* MutableRepeated(int number, |
| FieldType field_type, |
| bool is_packed, |
| ExtensionSet* set) { |
| return reinterpret_cast<RepeatedPtrField<Type>*>( |
| set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); |
| } |
| |
| static const RepeatedFieldType* GetDefaultRepeatedField(); |
| }; |
| |
| // This class exists only to hold a generic default empty repeated field for all |
| // message-type repeated field extensions. |
| class LIBPROTOBUF_EXPORT RepeatedMessageGenericTypeTraits { |
| public: |
| typedef RepeatedPtrField< ::google::protobuf::MessageLite*> RepeatedFieldType; |
| private: |
| template<typename Type> friend class RepeatedMessageTypeTraits; |
| friend void InitializeDefaultRepeatedFields(); |
| friend void DestroyDefaultRepeatedFields(); |
| static const RepeatedFieldType* default_repeated_field_; |
| }; |
| |
| template<typename Type> inline |
| const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType* |
| RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() { |
| return reinterpret_cast<const RepeatedFieldType*>( |
| RepeatedMessageGenericTypeTraits::default_repeated_field_); |
| } |
| |
| // ------------------------------------------------------------------- |
| // ExtensionIdentifier |
| |
| // This is the type of actual extension objects. E.g. if you have: |
| // extends Foo with optional int32 bar = 1234; |
| // then "bar" will be defined in C++ as: |
| // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234); |
| // |
| // Note that we could, in theory, supply the field number as a template |
| // parameter, and thus make an instance of ExtensionIdentifier have no |
| // actual contents. However, if we did that, then using at extension |
| // identifier would not necessarily cause the compiler to output any sort |
| // of reference to any simple defined in the extension's .pb.o file. Some |
| // linkers will actually drop object files that are not explicitly referenced, |
| // but that would be bad because it would cause this extension to not be |
| // registered at static initialization, and therefore using it would crash. |
| |
| template <typename ExtendeeType, typename TypeTraitsType, |
| FieldType field_type, bool is_packed> |
| class ExtensionIdentifier { |
| public: |
| typedef TypeTraitsType TypeTraits; |
| typedef ExtendeeType Extendee; |
| |
| ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value) |
| : number_(number), default_value_(default_value) {} |
| inline int number() const { return number_; } |
| typename TypeTraits::ConstType default_value() const { |
| return default_value_; |
| } |
| |
| private: |
| const int number_; |
| typename TypeTraits::ConstType default_value_; |
| }; |
| |
| // ------------------------------------------------------------------- |
| // Generated accessors |
| |
| // This macro should be expanded in the context of a generated type which |
| // has extensions. |
| // |
| // We use "_proto_TypeTraits" as a type name below because "TypeTraits" |
| // causes problems if the class has a nested message or enum type with that |
| // name and "_TypeTraits" is technically reserved for the C++ library since |
| // it starts with an underscore followed by a capital letter. |
| // |
| // For similar reason, we use "_field_type" and "_is_packed" as parameter names |
| // below, so that "field_type" and "is_packed" can be used as field names. |
| #define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \ |
| /* Has, Size, Clear */ \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline bool HasExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
| return _extensions_.Has(id.number()); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline void ClearExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| _extensions_.ClearExtension(id.number()); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline int ExtensionSize( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
| return _extensions_.ExtensionSize(id.number()); \ |
| } \ |
| \ |
| /* Singular accessors */ \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
| return _proto_TypeTraits::Get(id.number(), _extensions_, \ |
| id.default_value()); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| return _proto_TypeTraits::Mutable(id.number(), _field_type, \ |
| &_extensions_); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline void SetExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| typename _proto_TypeTraits::Singular::ConstType value) { \ |
| _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline void SetAllocatedExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| typename _proto_TypeTraits::Singular::MutableType value) { \ |
| _proto_TypeTraits::SetAllocated(id.number(), _field_type, \ |
| value, &_extensions_); \ |
| } \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| return _proto_TypeTraits::Release(id.number(), _field_type, \ |
| &_extensions_); \ |
| } \ |
| \ |
| /* Repeated accessors */ \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| int index) const { \ |
| return _proto_TypeTraits::Get(id.number(), _extensions_, index); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| int index) { \ |
| return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline void SetExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| int index, typename _proto_TypeTraits::Repeated::ConstType value) { \ |
| _proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline void AddExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| typename _proto_TypeTraits::Repeated::ConstType value) { \ |
| _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, \ |
| value, &_extensions_); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \ |
| GetRepeatedExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, \ |
| _is_packed>& id) const { \ |
| return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \ |
| } \ |
| \ |
| template <typename _proto_TypeTraits, \ |
| ::google::protobuf::internal::FieldType _field_type, \ |
| bool _is_packed> \ |
| inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \ |
| MutableRepeatedExtension( \ |
| const ::google::protobuf::internal::ExtensionIdentifier< \ |
| CLASSNAME, _proto_TypeTraits, _field_type, \ |
| _is_packed>& id) { \ |
| return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \ |
| _is_packed, &_extensions_); \ |
| } |
| |
| } // namespace internal |
| } // namespace protobuf |
| |
| } // namespace google |
| #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__ |