| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Author: kenton@google.com (Kenton Varda) |
| // Based on original Protocol Buffers design by |
| // Sanjay Ghemawat, Jeff Dean, and others. |
| // |
| // This file contains the CodedInputStream and CodedOutputStream classes, |
| // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively, |
| // and allow you to read or write individual pieces of data in various |
| // formats. In particular, these implement the varint encoding for |
| // integers, a simple variable-length encoding in which smaller numbers |
| // take fewer bytes. |
| // |
| // Typically these classes will only be used internally by the protocol |
| // buffer library in order to encode and decode protocol buffers. Clients |
| // of the library only need to know about this class if they wish to write |
| // custom message parsing or serialization procedures. |
| // |
| // CodedOutputStream example: |
| // // Write some data to "myfile". First we write a 4-byte "magic number" |
| // // to identify the file type, then write a length-delimited string. The |
| // // string is composed of a varint giving the length followed by the raw |
| // // bytes. |
| // int fd = open("myfile", O_CREAT | O_WRONLY); |
| // ZeroCopyOutputStream* raw_output = new FileOutputStream(fd); |
| // CodedOutputStream* coded_output = new CodedOutputStream(raw_output); |
| // |
| // int magic_number = 1234; |
| // char text[] = "Hello world!"; |
| // coded_output->WriteLittleEndian32(magic_number); |
| // coded_output->WriteVarint32(strlen(text)); |
| // coded_output->WriteRaw(text, strlen(text)); |
| // |
| // delete coded_output; |
| // delete raw_output; |
| // close(fd); |
| // |
| // CodedInputStream example: |
| // // Read a file created by the above code. |
| // int fd = open("myfile", O_RDONLY); |
| // ZeroCopyInputStream* raw_input = new FileInputStream(fd); |
| // CodedInputStream coded_input = new CodedInputStream(raw_input); |
| // |
| // coded_input->ReadLittleEndian32(&magic_number); |
| // if (magic_number != 1234) { |
| // cerr << "File not in expected format." << endl; |
| // return; |
| // } |
| // |
| // uint32 size; |
| // coded_input->ReadVarint32(&size); |
| // |
| // char* text = new char[size + 1]; |
| // coded_input->ReadRaw(buffer, size); |
| // text[size] = '\0'; |
| // |
| // delete coded_input; |
| // delete raw_input; |
| // close(fd); |
| // |
| // cout << "Text is: " << text << endl; |
| // delete [] text; |
| // |
| // For those who are interested, varint encoding is defined as follows: |
| // |
| // The encoding operates on unsigned integers of up to 64 bits in length. |
| // Each byte of the encoded value has the format: |
| // * bits 0-6: Seven bits of the number being encoded. |
| // * bit 7: Zero if this is the last byte in the encoding (in which |
| // case all remaining bits of the number are zero) or 1 if |
| // more bytes follow. |
| // The first byte contains the least-significant 7 bits of the number, the |
| // second byte (if present) contains the next-least-significant 7 bits, |
| // and so on. So, the binary number 1011000101011 would be encoded in two |
| // bytes as "10101011 00101100". |
| // |
| // In theory, varint could be used to encode integers of any length. |
| // However, for practicality we set a limit at 64 bits. The maximum encoded |
| // length of a number is thus 10 bytes. |
| |
| #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |
| #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |
| |
| #include <string> |
| #include <utility> |
| #ifdef _MSC_VER |
| #if defined(_M_IX86) && \ |
| !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| #define PROTOBUF_LITTLE_ENDIAN 1 |
| #endif |
| #if _MSC_VER >= 1300 |
| // If MSVC has "/RTCc" set, it will complain about truncating casts at |
| // runtime. This file contains some intentional truncating casts. |
| #pragma runtime_checks("c", off) |
| #endif |
| #else |
| #include <sys/param.h> // __BYTE_ORDER |
| #if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \ |
| (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \ |
| !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| #define PROTOBUF_LITTLE_ENDIAN 1 |
| #endif |
| #endif |
| #include <google/protobuf/stubs/common.h> |
| |
| namespace google { |
| |
| namespace protobuf { |
| |
| class DescriptorPool; |
| class MessageFactory; |
| |
| namespace io { |
| |
| // Defined in this file. |
| class CodedInputStream; |
| class CodedOutputStream; |
| |
| // Defined in other files. |
| class ZeroCopyInputStream; // zero_copy_stream.h |
| class ZeroCopyOutputStream; // zero_copy_stream.h |
| |
| // Class which reads and decodes binary data which is composed of varint- |
| // encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream. |
| // Most users will not need to deal with CodedInputStream. |
| // |
| // Most methods of CodedInputStream that return a bool return false if an |
| // underlying I/O error occurs or if the data is malformed. Once such a |
| // failure occurs, the CodedInputStream is broken and is no longer useful. |
| class LIBPROTOBUF_EXPORT CodedInputStream { |
| public: |
| // Create a CodedInputStream that reads from the given ZeroCopyInputStream. |
| explicit CodedInputStream(ZeroCopyInputStream* input); |
| |
| // Create a CodedInputStream that reads from the given flat array. This is |
| // faster than using an ArrayInputStream. PushLimit(size) is implied by |
| // this constructor. |
| explicit CodedInputStream(const uint8* buffer, int size); |
| |
| // Destroy the CodedInputStream and position the underlying |
| // ZeroCopyInputStream at the first unread byte. If an error occurred while |
| // reading (causing a method to return false), then the exact position of |
| // the input stream may be anywhere between the last value that was read |
| // successfully and the stream's byte limit. |
| ~CodedInputStream(); |
| |
| // Return true if this CodedInputStream reads from a flat array instead of |
| // a ZeroCopyInputStream. |
| inline bool IsFlat() const; |
| |
| // Skips a number of bytes. Returns false if an underlying read error |
| // occurs. |
| bool Skip(int count); |
| |
| // Sets *data to point directly at the unread part of the CodedInputStream's |
| // underlying buffer, and *size to the size of that buffer, but does not |
| // advance the stream's current position. This will always either produce |
| // a non-empty buffer or return false. If the caller consumes any of |
| // this data, it should then call Skip() to skip over the consumed bytes. |
| // This may be useful for implementing external fast parsing routines for |
| // types of data not covered by the CodedInputStream interface. |
| bool GetDirectBufferPointer(const void** data, int* size); |
| |
| // Like GetDirectBufferPointer, but this method is inlined, and does not |
| // attempt to Refresh() if the buffer is currently empty. |
| inline void GetDirectBufferPointerInline(const void** data, |
| int* size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE; |
| |
| // Read raw bytes, copying them into the given buffer. |
| bool ReadRaw(void* buffer, int size); |
| |
| // Like ReadRaw, but reads into a string. |
| // |
| // Implementation Note: ReadString() grows the string gradually as it |
| // reads in the data, rather than allocating the entire requested size |
| // upfront. This prevents denial-of-service attacks in which a client |
| // could claim that a string is going to be MAX_INT bytes long in order to |
| // crash the server because it can't allocate this much space at once. |
| bool ReadString(string* buffer, int size); |
| // Like the above, with inlined optimizations. This should only be used |
| // by the protobuf implementation. |
| inline bool InternalReadStringInline(string* buffer, |
| int size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE; |
| |
| |
| // Read a 32-bit little-endian integer. |
| bool ReadLittleEndian32(uint32* value); |
| // Read a 64-bit little-endian integer. |
| bool ReadLittleEndian64(uint64* value); |
| |
| // These methods read from an externally provided buffer. The caller is |
| // responsible for ensuring that the buffer has sufficient space. |
| // Read a 32-bit little-endian integer. |
| static const uint8* ReadLittleEndian32FromArray(const uint8* buffer, |
| uint32* value); |
| // Read a 64-bit little-endian integer. |
| static const uint8* ReadLittleEndian64FromArray(const uint8* buffer, |
| uint64* value); |
| |
| // Read an unsigned integer with Varint encoding, truncating to 32 bits. |
| // Reading a 32-bit value is equivalent to reading a 64-bit one and casting |
| // it to uint32, but may be more efficient. |
| bool ReadVarint32(uint32* value); |
| // Read an unsigned integer with Varint encoding. |
| bool ReadVarint64(uint64* value); |
| |
| // Read a tag. This calls ReadVarint32() and returns the result, or returns |
| // zero (which is not a valid tag) if ReadVarint32() fails. Also, it updates |
| // the last tag value, which can be checked with LastTagWas(). |
| // Always inline because this is only called in one place per parse loop |
| // but it is called for every iteration of said loop, so it should be fast. |
| // GCC doesn't want to inline this by default. |
| uint32 ReadTag() GOOGLE_ATTRIBUTE_ALWAYS_INLINE; |
| |
| // This usually a faster alternative to ReadTag() when cutoff is a manifest |
| // constant. It does particularly well for cutoff >= 127. The first part |
| // of the return value is the tag that was read, though it can also be 0 in |
| // the cases where ReadTag() would return 0. If the second part is true |
| // then the tag is known to be in [0, cutoff]. If not, the tag either is |
| // above cutoff or is 0. (There's intentional wiggle room when tag is 0, |
| // because that can arise in several ways, and for best performance we want |
| // to avoid an extra "is tag == 0?" check here.) |
| inline std::pair<uint32, bool> ReadTagWithCutoff(uint32 cutoff) |
| GOOGLE_ATTRIBUTE_ALWAYS_INLINE; |
| |
| // Usually returns true if calling ReadVarint32() now would produce the given |
| // value. Will always return false if ReadVarint32() would not return the |
| // given value. If ExpectTag() returns true, it also advances past |
| // the varint. For best performance, use a compile-time constant as the |
| // parameter. |
| // Always inline because this collapses to a small number of instructions |
| // when given a constant parameter, but GCC doesn't want to inline by default. |
| bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE; |
| |
| // Like above, except this reads from the specified buffer. The caller is |
| // responsible for ensuring that the buffer is large enough to read a varint |
| // of the expected size. For best performance, use a compile-time constant as |
| // the expected tag parameter. |
| // |
| // Returns a pointer beyond the expected tag if it was found, or NULL if it |
| // was not. |
| static const uint8* ExpectTagFromArray( |
| const uint8* buffer, |
| uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE; |
| |
| // Usually returns true if no more bytes can be read. Always returns false |
| // if more bytes can be read. If ExpectAtEnd() returns true, a subsequent |
| // call to LastTagWas() will act as if ReadTag() had been called and returned |
| // zero, and ConsumedEntireMessage() will return true. |
| bool ExpectAtEnd(); |
| |
| // If the last call to ReadTag() or ReadTagWithCutoff() returned the |
| // given value, returns true. Otherwise, returns false; |
| // |
| // This is needed because parsers for some types of embedded messages |
| // (with field type TYPE_GROUP) don't actually know that they've reached the |
| // end of a message until they see an ENDGROUP tag, which was actually part |
| // of the enclosing message. The enclosing message would like to check that |
| // tag to make sure it had the right number, so it calls LastTagWas() on |
| // return from the embedded parser to check. |
| bool LastTagWas(uint32 expected); |
| |
| // When parsing message (but NOT a group), this method must be called |
| // immediately after MergeFromCodedStream() returns (if it returns true) |
| // to further verify that the message ended in a legitimate way. For |
| // example, this verifies that parsing did not end on an end-group tag. |
| // It also checks for some cases where, due to optimizations, |
| // MergeFromCodedStream() can incorrectly return true. |
| bool ConsumedEntireMessage(); |
| |
| // Limits ---------------------------------------------------------- |
| // Limits are used when parsing length-delimited embedded messages. |
| // After the message's length is read, PushLimit() is used to prevent |
| // the CodedInputStream from reading beyond that length. Once the |
| // embedded message has been parsed, PopLimit() is called to undo the |
| // limit. |
| |
| // Opaque type used with PushLimit() and PopLimit(). Do not modify |
| // values of this type yourself. The only reason that this isn't a |
| // struct with private internals is for efficiency. |
| typedef int Limit; |
| |
| // Places a limit on the number of bytes that the stream may read, |
| // starting from the current position. Once the stream hits this limit, |
| // it will act like the end of the input has been reached until PopLimit() |
| // is called. |
| // |
| // As the names imply, the stream conceptually has a stack of limits. The |
| // shortest limit on the stack is always enforced, even if it is not the |
| // top limit. |
| // |
| // The value returned by PushLimit() is opaque to the caller, and must |
| // be passed unchanged to the corresponding call to PopLimit(). |
| Limit PushLimit(int byte_limit); |
| |
| // Pops the last limit pushed by PushLimit(). The input must be the value |
| // returned by that call to PushLimit(). |
| void PopLimit(Limit limit); |
| |
| // Returns the number of bytes left until the nearest limit on the |
| // stack is hit, or -1 if no limits are in place. |
| int BytesUntilLimit() const; |
| |
| // Returns current position relative to the beginning of the input stream. |
| int CurrentPosition() const; |
| |
| // Total Bytes Limit ----------------------------------------------- |
| // To prevent malicious users from sending excessively large messages |
| // and causing integer overflows or memory exhaustion, CodedInputStream |
| // imposes a hard limit on the total number of bytes it will read. |
| |
| // Sets the maximum number of bytes that this CodedInputStream will read |
| // before refusing to continue. To prevent integer overflows in the |
| // protocol buffers implementation, as well as to prevent servers from |
| // allocating enormous amounts of memory to hold parsed messages, the |
| // maximum message length should be limited to the shortest length that |
| // will not harm usability. The theoretical shortest message that could |
| // cause integer overflows is 512MB. The default limit is 64MB. Apps |
| // should set shorter limits if possible. If warning_threshold is not -1, |
| // a warning will be printed to stderr after warning_threshold bytes are |
| // read. For backwards compatibility all negative values get squashed to -1, |
| // as other negative values might have special internal meanings. |
| // An error will always be printed to stderr if the limit is reached. |
| // |
| // This is unrelated to PushLimit()/PopLimit(). |
| // |
| // Hint: If you are reading this because your program is printing a |
| // warning about dangerously large protocol messages, you may be |
| // confused about what to do next. The best option is to change your |
| // design such that excessively large messages are not necessary. |
| // For example, try to design file formats to consist of many small |
| // messages rather than a single large one. If this is infeasible, |
| // you will need to increase the limit. Chances are, though, that |
| // your code never constructs a CodedInputStream on which the limit |
| // can be set. You probably parse messages by calling things like |
| // Message::ParseFromString(). In this case, you will need to change |
| // your code to instead construct some sort of ZeroCopyInputStream |
| // (e.g. an ArrayInputStream), construct a CodedInputStream around |
| // that, then call Message::ParseFromCodedStream() instead. Then |
| // you can adjust the limit. Yes, it's more work, but you're doing |
| // something unusual. |
| void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold); |
| |
| // The Total Bytes Limit minus the Current Position, or -1 if there |
| // is no Total Bytes Limit. |
| int BytesUntilTotalBytesLimit() const; |
| |
| // Recursion Limit ------------------------------------------------- |
| // To prevent corrupt or malicious messages from causing stack overflows, |
| // we must keep track of the depth of recursion when parsing embedded |
| // messages and groups. CodedInputStream keeps track of this because it |
| // is the only object that is passed down the stack during parsing. |
| |
| // Sets the maximum recursion depth. The default is 100. |
| void SetRecursionLimit(int limit); |
| |
| |
| // Increments the current recursion depth. Returns true if the depth is |
| // under the limit, false if it has gone over. |
| bool IncrementRecursionDepth(); |
| |
| // Decrements the recursion depth. |
| void DecrementRecursionDepth(); |
| |
| // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_). |
| // Using this can reduce code size and complexity in some cases. The caller |
| // is expected to check that the second part of the result is non-negative (to |
| // bail out if the depth of recursion is too high) and, if all is well, to |
| // later pass the first part of the result to PopLimit() or similar. |
| std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit( |
| int byte_limit); |
| |
| // Helper that is equivalent to: { |
| // bool result = ConsumedEntireMessage(); |
| // PopLimit(limit); |
| // DecrementRecursionDepth(); |
| // return result; } |
| // Using this can reduce code size and complexity in some cases. |
| // Do not use unless the current recursion depth is greater than zero. |
| bool DecrementRecursionDepthAndPopLimit(Limit limit); |
| |
| // Extension Registry ---------------------------------------------- |
| // ADVANCED USAGE: 99.9% of people can ignore this section. |
| // |
| // By default, when parsing extensions, the parser looks for extension |
| // definitions in the pool which owns the outer message's Descriptor. |
| // However, you may call SetExtensionRegistry() to provide an alternative |
| // pool instead. This makes it possible, for example, to parse a message |
| // using a generated class, but represent some extensions using |
| // DynamicMessage. |
| |
| // Set the pool used to look up extensions. Most users do not need to call |
| // this as the correct pool will be chosen automatically. |
| // |
| // WARNING: It is very easy to misuse this. Carefully read the requirements |
| // below. Do not use this unless you are sure you need it. Almost no one |
| // does. |
| // |
| // Let's say you are parsing a message into message object m, and you want |
| // to take advantage of SetExtensionRegistry(). You must follow these |
| // requirements: |
| // |
| // The given DescriptorPool must contain m->GetDescriptor(). It is not |
| // sufficient for it to simply contain a descriptor that has the same name |
| // and content -- it must be the *exact object*. In other words: |
| // assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) == |
| // m->GetDescriptor()); |
| // There are two ways to satisfy this requirement: |
| // 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless |
| // because this is the pool that would be used anyway if you didn't call |
| // SetExtensionRegistry() at all. |
| // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an |
| // "underlay". Read the documentation for DescriptorPool for more |
| // information about underlays. |
| // |
| // You must also provide a MessageFactory. This factory will be used to |
| // construct Message objects representing extensions. The factory's |
| // GetPrototype() MUST return non-NULL for any Descriptor which can be found |
| // through the provided pool. |
| // |
| // If the provided factory might return instances of protocol-compiler- |
| // generated (i.e. compiled-in) types, or if the outer message object m is |
| // a generated type, then the given factory MUST have this property: If |
| // GetPrototype() is given a Descriptor which resides in |
| // DescriptorPool::generated_pool(), the factory MUST return the same |
| // prototype which MessageFactory::generated_factory() would return. That |
| // is, given a descriptor for a generated type, the factory must return an |
| // instance of the generated class (NOT DynamicMessage). However, when |
| // given a descriptor for a type that is NOT in generated_pool, the factory |
| // is free to return any implementation. |
| // |
| // The reason for this requirement is that generated sub-objects may be |
| // accessed via the standard (non-reflection) extension accessor methods, |
| // and these methods will down-cast the object to the generated class type. |
| // If the object is not actually of that type, the results would be undefined. |
| // On the other hand, if an extension is not compiled in, then there is no |
| // way the code could end up accessing it via the standard accessors -- the |
| // only way to access the extension is via reflection. When using reflection, |
| // DynamicMessage and generated messages are indistinguishable, so it's fine |
| // if these objects are represented using DynamicMessage. |
| // |
| // Using DynamicMessageFactory on which you have called |
| // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the |
| // above requirement. |
| // |
| // If either pool or factory is NULL, both must be NULL. |
| // |
| // Note that this feature is ignored when parsing "lite" messages as they do |
| // not have descriptors. |
| void SetExtensionRegistry(const DescriptorPool* pool, |
| MessageFactory* factory); |
| |
| // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool |
| // has been provided. |
| const DescriptorPool* GetExtensionPool(); |
| |
| // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no |
| // factory has been provided. |
| MessageFactory* GetExtensionFactory(); |
| |
| private: |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream); |
| |
| const uint8* buffer_; |
| const uint8* buffer_end_; // pointer to the end of the buffer. |
| ZeroCopyInputStream* input_; |
| int total_bytes_read_; // total bytes read from input_, including |
| // the current buffer |
| |
| // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here |
| // so that we can BackUp() on destruction. |
| int overflow_bytes_; |
| |
| // LastTagWas() stuff. |
| uint32 last_tag_; // result of last ReadTag() or ReadTagWithCutoff(). |
| |
| // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly |
| // at EOF, or by ExpectAtEnd() when it returns true. This happens when we |
| // reach the end of a message and attempt to read another tag. |
| bool legitimate_message_end_; |
| |
| // See EnableAliasing(). |
| bool aliasing_enabled_; |
| |
| // Limits |
| Limit current_limit_; // if position = -1, no limit is applied |
| |
| // For simplicity, if the current buffer crosses a limit (either a normal |
| // limit created by PushLimit() or the total bytes limit), buffer_size_ |
| // only tracks the number of bytes before that limit. This field |
| // contains the number of bytes after it. Note that this implies that if |
| // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've |
| // hit a limit. However, if both are zero, it doesn't necessarily mean |
| // we aren't at a limit -- the buffer may have ended exactly at the limit. |
| int buffer_size_after_limit_; |
| |
| // Maximum number of bytes to read, period. This is unrelated to |
| // current_limit_. Set using SetTotalBytesLimit(). |
| int total_bytes_limit_; |
| |
| // If positive/0: Limit for bytes read after which a warning due to size |
| // should be logged. |
| // If -1: Printing of warning disabled. Can be set by client. |
| // If -2: Internal: Limit has been reached, print full size when destructing. |
| int total_bytes_warning_threshold_; |
| |
| // Current recursion budget, controlled by IncrementRecursionDepth() and |
| // similar. Starts at recursion_limit_ and goes down: if this reaches |
| // -1 we are over budget. |
| int recursion_budget_; |
| // Recursion depth limit, set by SetRecursionLimit(). |
| int recursion_limit_; |
| |
| // See SetExtensionRegistry(). |
| const DescriptorPool* extension_pool_; |
| MessageFactory* extension_factory_; |
| |
| // Private member functions. |
| |
| // Advance the buffer by a given number of bytes. |
| void Advance(int amount); |
| |
| // Back up input_ to the current buffer position. |
| void BackUpInputToCurrentPosition(); |
| |
| // Recomputes the value of buffer_size_after_limit_. Must be called after |
| // current_limit_ or total_bytes_limit_ changes. |
| void RecomputeBufferLimits(); |
| |
| // Writes an error message saying that we hit total_bytes_limit_. |
| void PrintTotalBytesLimitError(); |
| |
| // Called when the buffer runs out to request more data. Implies an |
| // Advance(BufferSize()). |
| bool Refresh(); |
| |
| // When parsing varints, we optimize for the common case of small values, and |
| // then optimize for the case when the varint fits within the current buffer |
| // piece. The Fallback method is used when we can't use the one-byte |
| // optimization. The Slow method is yet another fallback when the buffer is |
| // not large enough. Making the slow path out-of-line speeds up the common |
| // case by 10-15%. The slow path is fairly uncommon: it only triggers when a |
| // message crosses multiple buffers. |
| bool ReadVarint32Fallback(uint32* value); |
| bool ReadVarint64Fallback(uint64* value); |
| bool ReadVarint32Slow(uint32* value); |
| bool ReadVarint64Slow(uint64* value); |
| bool ReadLittleEndian32Fallback(uint32* value); |
| bool ReadLittleEndian64Fallback(uint64* value); |
| // Fallback/slow methods for reading tags. These do not update last_tag_, |
| // but will set legitimate_message_end_ if we are at the end of the input |
| // stream. |
| uint32 ReadTagFallback(); |
| uint32 ReadTagSlow(); |
| bool ReadStringFallback(string* buffer, int size); |
| |
| // Return the size of the buffer. |
| int BufferSize() const; |
| |
| static const int kDefaultTotalBytesLimit = 64 << 20; // 64MB |
| |
| static const int kDefaultTotalBytesWarningThreshold = 32 << 20; // 32MB |
| |
| static int default_recursion_limit_; // 100 by default. |
| }; |
| |
| // Class which encodes and writes binary data which is composed of varint- |
| // encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream. |
| // Most users will not need to deal with CodedOutputStream. |
| // |
| // Most methods of CodedOutputStream which return a bool return false if an |
| // underlying I/O error occurs. Once such a failure occurs, the |
| // CodedOutputStream is broken and is no longer useful. The Write* methods do |
| // not return the stream status, but will invalidate the stream if an error |
| // occurs. The client can probe HadError() to determine the status. |
| // |
| // Note that every method of CodedOutputStream which writes some data has |
| // a corresponding static "ToArray" version. These versions write directly |
| // to the provided buffer, returning a pointer past the last written byte. |
| // They require that the buffer has sufficient capacity for the encoded data. |
| // This allows an optimization where we check if an output stream has enough |
| // space for an entire message before we start writing and, if there is, we |
| // call only the ToArray methods to avoid doing bound checks for each |
| // individual value. |
| // i.e., in the example above: |
| // |
| // CodedOutputStream coded_output = new CodedOutputStream(raw_output); |
| // int magic_number = 1234; |
| // char text[] = "Hello world!"; |
| // |
| // int coded_size = sizeof(magic_number) + |
| // CodedOutputStream::VarintSize32(strlen(text)) + |
| // strlen(text); |
| // |
| // uint8* buffer = |
| // coded_output->GetDirectBufferForNBytesAndAdvance(coded_size); |
| // if (buffer != NULL) { |
| // // The output stream has enough space in the buffer: write directly to |
| // // the array. |
| // buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number, |
| // buffer); |
| // buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer); |
| // buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer); |
| // } else { |
| // // Make bound-checked writes, which will ask the underlying stream for |
| // // more space as needed. |
| // coded_output->WriteLittleEndian32(magic_number); |
| // coded_output->WriteVarint32(strlen(text)); |
| // coded_output->WriteRaw(text, strlen(text)); |
| // } |
| // |
| // delete coded_output; |
| class LIBPROTOBUF_EXPORT CodedOutputStream { |
| public: |
| // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream. |
| explicit CodedOutputStream(ZeroCopyOutputStream* output); |
| |
| // Destroy the CodedOutputStream and position the underlying |
| // ZeroCopyOutputStream immediately after the last byte written. |
| ~CodedOutputStream(); |
| |
| // Trims any unused space in the underlying buffer so that its size matches |
| // the number of bytes written by this stream. The underlying buffer will |
| // automatically be trimmed when this stream is destroyed; this call is only |
| // necessary if the underlying buffer is accessed *before* the stream is |
| // destroyed. |
| void Trim(); |
| |
| // Skips a number of bytes, leaving the bytes unmodified in the underlying |
| // buffer. Returns false if an underlying write error occurs. This is |
| // mainly useful with GetDirectBufferPointer(). |
| bool Skip(int count); |
| |
| // Sets *data to point directly at the unwritten part of the |
| // CodedOutputStream's underlying buffer, and *size to the size of that |
| // buffer, but does not advance the stream's current position. This will |
| // always either produce a non-empty buffer or return false. If the caller |
| // writes any data to this buffer, it should then call Skip() to skip over |
| // the consumed bytes. This may be useful for implementing external fast |
| // serialization routines for types of data not covered by the |
| // CodedOutputStream interface. |
| bool GetDirectBufferPointer(void** data, int* size); |
| |
| // If there are at least "size" bytes available in the current buffer, |
| // returns a pointer directly into the buffer and advances over these bytes. |
| // The caller may then write directly into this buffer (e.g. using the |
| // *ToArray static methods) rather than go through CodedOutputStream. If |
| // there are not enough bytes available, returns NULL. The return pointer is |
| // invalidated as soon as any other non-const method of CodedOutputStream |
| // is called. |
| inline uint8* GetDirectBufferForNBytesAndAdvance(int size); |
| |
| // Write raw bytes, copying them from the given buffer. |
| void WriteRaw(const void* buffer, int size); |
| // Like WriteRaw() but will try to write aliased data if aliasing is |
| // turned on. |
| void WriteRawMaybeAliased(const void* data, int size); |
| // Like WriteRaw() but writing directly to the target array. |
| // This is _not_ inlined, as the compiler often optimizes memcpy into inline |
| // copy loops. Since this gets called by every field with string or bytes |
| // type, inlining may lead to a significant amount of code bloat, with only a |
| // minor performance gain. |
| static uint8* WriteRawToArray(const void* buffer, int size, uint8* target); |
| |
| // Equivalent to WriteRaw(str.data(), str.size()). |
| void WriteString(const string& str); |
| // Like WriteString() but writing directly to the target array. |
| static uint8* WriteStringToArray(const string& str, uint8* target); |
| // Write the varint-encoded size of str followed by str. |
| static uint8* WriteStringWithSizeToArray(const string& str, uint8* target); |
| |
| |
| // Instructs the CodedOutputStream to allow the underlying |
| // ZeroCopyOutputStream to hold pointers to the original structure instead of |
| // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the |
| // underlying stream does not support aliasing, then enabling it has no |
| // affect. For now, this only affects the behavior of |
| // WriteRawMaybeAliased(). |
| // |
| // NOTE: It is caller's responsibility to ensure that the chunk of memory |
| // remains live until all of the data has been consumed from the stream. |
| void EnableAliasing(bool enabled); |
| |
| // Write a 32-bit little-endian integer. |
| void WriteLittleEndian32(uint32 value); |
| // Like WriteLittleEndian32() but writing directly to the target array. |
| static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target); |
| // Write a 64-bit little-endian integer. |
| void WriteLittleEndian64(uint64 value); |
| // Like WriteLittleEndian64() but writing directly to the target array. |
| static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target); |
| |
| // Write an unsigned integer with Varint encoding. Writing a 32-bit value |
| // is equivalent to casting it to uint64 and writing it as a 64-bit value, |
| // but may be more efficient. |
| void WriteVarint32(uint32 value); |
| // Like WriteVarint32() but writing directly to the target array. |
| static uint8* WriteVarint32ToArray(uint32 value, uint8* target); |
| // Write an unsigned integer with Varint encoding. |
| void WriteVarint64(uint64 value); |
| // Like WriteVarint64() but writing directly to the target array. |
| static uint8* WriteVarint64ToArray(uint64 value, uint8* target); |
| |
| // Equivalent to WriteVarint32() except when the value is negative, |
| // in which case it must be sign-extended to a full 10 bytes. |
| void WriteVarint32SignExtended(int32 value); |
| // Like WriteVarint32SignExtended() but writing directly to the target array. |
| static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target); |
| |
| // This is identical to WriteVarint32(), but optimized for writing tags. |
| // In particular, if the input is a compile-time constant, this method |
| // compiles down to a couple instructions. |
| // Always inline because otherwise the aformentioned optimization can't work, |
| // but GCC by default doesn't want to inline this. |
| void WriteTag(uint32 value); |
| // Like WriteTag() but writing directly to the target array. |
| static uint8* WriteTagToArray( |
| uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE; |
| |
| // Returns the number of bytes needed to encode the given value as a varint. |
| static int VarintSize32(uint32 value); |
| // Returns the number of bytes needed to encode the given value as a varint. |
| static int VarintSize64(uint64 value); |
| |
| // If negative, 10 bytes. Otheriwse, same as VarintSize32(). |
| static int VarintSize32SignExtended(int32 value); |
| |
| // Compile-time equivalent of VarintSize32(). |
| template <uint32 Value> |
| struct StaticVarintSize32 { |
| static const int value = |
| (Value < (1 << 7)) |
| ? 1 |
| : (Value < (1 << 14)) |
| ? 2 |
| : (Value < (1 << 21)) |
| ? 3 |
| : (Value < (1 << 28)) |
| ? 4 |
| : 5; |
| }; |
| |
| // Returns the total number of bytes written since this object was created. |
| inline int ByteCount() const; |
| |
| // Returns true if there was an underlying I/O error since this object was |
| // created. |
| bool HadError() const { return had_error_; } |
| |
| private: |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream); |
| |
| ZeroCopyOutputStream* output_; |
| uint8* buffer_; |
| int buffer_size_; |
| int total_bytes_; // Sum of sizes of all buffers seen so far. |
| bool had_error_; // Whether an error occurred during output. |
| bool aliasing_enabled_; // See EnableAliasing(). |
| |
| // Advance the buffer by a given number of bytes. |
| void Advance(int amount); |
| |
| // Called when the buffer runs out to request more data. Implies an |
| // Advance(buffer_size_). |
| bool Refresh(); |
| |
| // Like WriteRaw() but may avoid copying if the underlying |
| // ZeroCopyOutputStream supports it. |
| void WriteAliasedRaw(const void* buffer, int size); |
| |
| // If this write might cross the end of the buffer, we compose the bytes first |
| // then use WriteRaw(). |
| void WriteVarint32SlowPath(uint32 value); |
| |
| // Always-inlined versions of WriteVarint* functions so that code can be |
| // reused, while still controlling size. For instance, WriteVarint32ToArray() |
| // should not directly call this: since it is inlined itself, doing so |
| // would greatly increase the size of generated code. Instead, it should call |
| // WriteVarint32FallbackToArray. Meanwhile, WriteVarint32() is already |
| // out-of-line, so it should just invoke this directly to avoid any extra |
| // function call overhead. |
| static uint8* WriteVarint64ToArrayInline( |
| uint64 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE; |
| |
| static int VarintSize32Fallback(uint32 value); |
| }; |
| |
| // inline methods ==================================================== |
| // The vast majority of varints are only one byte. These inline |
| // methods optimize for that case. |
| |
| inline bool CodedInputStream::ReadVarint32(uint32* value) { |
| if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) { |
| *value = *buffer_; |
| Advance(1); |
| return true; |
| } else { |
| return ReadVarint32Fallback(value); |
| } |
| } |
| |
| inline bool CodedInputStream::ReadVarint64(uint64* value) { |
| if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) { |
| *value = *buffer_; |
| Advance(1); |
| return true; |
| } else { |
| return ReadVarint64Fallback(value); |
| } |
| } |
| |
| // static |
| inline const uint8* CodedInputStream::ReadLittleEndian32FromArray( |
| const uint8* buffer, |
| uint32* value) { |
| #if defined(PROTOBUF_LITTLE_ENDIAN) |
| memcpy(value, buffer, sizeof(*value)); |
| return buffer + sizeof(*value); |
| #else |
| *value = (static_cast<uint32>(buffer[0]) ) | |
| (static_cast<uint32>(buffer[1]) << 8) | |
| (static_cast<uint32>(buffer[2]) << 16) | |
| (static_cast<uint32>(buffer[3]) << 24); |
| return buffer + sizeof(*value); |
| #endif |
| } |
| // static |
| inline const uint8* CodedInputStream::ReadLittleEndian64FromArray( |
| const uint8* buffer, |
| uint64* value) { |
| #if defined(PROTOBUF_LITTLE_ENDIAN) |
| memcpy(value, buffer, sizeof(*value)); |
| return buffer + sizeof(*value); |
| #else |
| uint32 part0 = (static_cast<uint32>(buffer[0]) ) | |
| (static_cast<uint32>(buffer[1]) << 8) | |
| (static_cast<uint32>(buffer[2]) << 16) | |
| (static_cast<uint32>(buffer[3]) << 24); |
| uint32 part1 = (static_cast<uint32>(buffer[4]) ) | |
| (static_cast<uint32>(buffer[5]) << 8) | |
| (static_cast<uint32>(buffer[6]) << 16) | |
| (static_cast<uint32>(buffer[7]) << 24); |
| *value = static_cast<uint64>(part0) | |
| (static_cast<uint64>(part1) << 32); |
| return buffer + sizeof(*value); |
| #endif |
| } |
| |
| inline bool CodedInputStream::ReadLittleEndian32(uint32* value) { |
| #if defined(PROTOBUF_LITTLE_ENDIAN) |
| if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { |
| memcpy(value, buffer_, sizeof(*value)); |
| Advance(sizeof(*value)); |
| return true; |
| } else { |
| return ReadLittleEndian32Fallback(value); |
| } |
| #else |
| return ReadLittleEndian32Fallback(value); |
| #endif |
| } |
| |
| inline bool CodedInputStream::ReadLittleEndian64(uint64* value) { |
| #if defined(PROTOBUF_LITTLE_ENDIAN) |
| if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { |
| memcpy(value, buffer_, sizeof(*value)); |
| Advance(sizeof(*value)); |
| return true; |
| } else { |
| return ReadLittleEndian64Fallback(value); |
| } |
| #else |
| return ReadLittleEndian64Fallback(value); |
| #endif |
| } |
| |
| inline uint32 CodedInputStream::ReadTag() { |
| if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] < 0x80) { |
| last_tag_ = buffer_[0]; |
| Advance(1); |
| return last_tag_; |
| } else { |
| last_tag_ = ReadTagFallback(); |
| return last_tag_; |
| } |
| } |
| |
| inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff( |
| uint32 cutoff) { |
| // In performance-sensitive code we can expect cutoff to be a compile-time |
| // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at |
| // compile time. |
| if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) { |
| // Hot case: buffer_ non_empty, buffer_[0] in [1, 128). |
| // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields |
| // is large enough then is it better to check for the two-byte case first? |
| if (static_cast<int8>(buffer_[0]) > 0) { |
| const uint32 kMax1ByteVarint = 0x7f; |
| uint32 tag = last_tag_ = buffer_[0]; |
| Advance(1); |
| return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff); |
| } |
| // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available, |
| // and tag is two bytes. The latter is tested by bitwise-and-not of the |
| // first byte and the second byte. |
| if (cutoff >= 0x80 && |
| GOOGLE_PREDICT_TRUE(buffer_ + 1 < buffer_end_) && |
| GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) { |
| const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f; |
| uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80); |
| Advance(2); |
| // It might make sense to test for tag == 0 now, but it is so rare that |
| // that we don't bother. A varint-encoded 0 should be one byte unless |
| // the encoder lost its mind. The second part of the return value of |
| // this function is allowed to be either true or false if the tag is 0, |
| // so we don't have to check for tag == 0. We may need to check whether |
| // it exceeds cutoff. |
| bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff; |
| return std::make_pair(tag, at_or_below_cutoff); |
| } |
| } |
| // Slow path |
| last_tag_ = ReadTagFallback(); |
| return std::make_pair(last_tag_, static_cast<uint32>(last_tag_ - 1) < cutoff); |
| } |
| |
| inline bool CodedInputStream::LastTagWas(uint32 expected) { |
| return last_tag_ == expected; |
| } |
| |
| inline bool CodedInputStream::ConsumedEntireMessage() { |
| return legitimate_message_end_; |
| } |
| |
| inline bool CodedInputStream::ExpectTag(uint32 expected) { |
| if (expected < (1 << 7)) { |
| if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) { |
| Advance(1); |
| return true; |
| } else { |
| return false; |
| } |
| } else if (expected < (1 << 14)) { |
| if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) && |
| buffer_[0] == static_cast<uint8>(expected | 0x80) && |
| buffer_[1] == static_cast<uint8>(expected >> 7)) { |
| Advance(2); |
| return true; |
| } else { |
| return false; |
| } |
| } else { |
| // Don't bother optimizing for larger values. |
| return false; |
| } |
| } |
| |
| inline const uint8* CodedInputStream::ExpectTagFromArray( |
| const uint8* buffer, uint32 expected) { |
| if (expected < (1 << 7)) { |
| if (buffer[0] == expected) { |
| return buffer + 1; |
| } |
| } else if (expected < (1 << 14)) { |
| if (buffer[0] == static_cast<uint8>(expected | 0x80) && |
| buffer[1] == static_cast<uint8>(expected >> 7)) { |
| return buffer + 2; |
| } |
| } |
| return NULL; |
| } |
| |
| inline void CodedInputStream::GetDirectBufferPointerInline(const void** data, |
| int* size) { |
| *data = buffer_; |
| *size = buffer_end_ - buffer_; |
| } |
| |
| inline bool CodedInputStream::ExpectAtEnd() { |
| // If we are at a limit we know no more bytes can be read. Otherwise, it's |
| // hard to say without calling Refresh(), and we'd rather not do that. |
| |
| if (buffer_ == buffer_end_ && |
| ((buffer_size_after_limit_ != 0) || |
| (total_bytes_read_ == current_limit_))) { |
| last_tag_ = 0; // Pretend we called ReadTag()... |
| legitimate_message_end_ = true; // ... and it hit EOF. |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| inline int CodedInputStream::CurrentPosition() const { |
| return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_); |
| } |
| |
| inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) { |
| if (buffer_size_ < size) { |
| return NULL; |
| } else { |
| uint8* result = buffer_; |
| Advance(size); |
| return result; |
| } |
| } |
| |
| inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value, |
| uint8* target) { |
| while (value >= 0x80) { |
| *target = static_cast<uint8>(value | 0x80); |
| value >>= 7; |
| ++target; |
| } |
| *target = static_cast<uint8>(value); |
| return target + 1; |
| } |
| |
| inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) { |
| if (value < 0) { |
| WriteVarint64(static_cast<uint64>(value)); |
| } else { |
| WriteVarint32(static_cast<uint32>(value)); |
| } |
| } |
| |
| inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray( |
| int32 value, uint8* target) { |
| if (value < 0) { |
| return WriteVarint64ToArray(static_cast<uint64>(value), target); |
| } else { |
| return WriteVarint32ToArray(static_cast<uint32>(value), target); |
| } |
| } |
| |
| inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value, |
| uint8* target) { |
| #if defined(PROTOBUF_LITTLE_ENDIAN) |
| memcpy(target, &value, sizeof(value)); |
| #else |
| target[0] = static_cast<uint8>(value); |
| target[1] = static_cast<uint8>(value >> 8); |
| target[2] = static_cast<uint8>(value >> 16); |
| target[3] = static_cast<uint8>(value >> 24); |
| #endif |
| return target + sizeof(value); |
| } |
| |
| inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value, |
| uint8* target) { |
| #if defined(PROTOBUF_LITTLE_ENDIAN) |
| memcpy(target, &value, sizeof(value)); |
| #else |
| uint32 part0 = static_cast<uint32>(value); |
| uint32 part1 = static_cast<uint32>(value >> 32); |
| |
| target[0] = static_cast<uint8>(part0); |
| target[1] = static_cast<uint8>(part0 >> 8); |
| target[2] = static_cast<uint8>(part0 >> 16); |
| target[3] = static_cast<uint8>(part0 >> 24); |
| target[4] = static_cast<uint8>(part1); |
| target[5] = static_cast<uint8>(part1 >> 8); |
| target[6] = static_cast<uint8>(part1 >> 16); |
| target[7] = static_cast<uint8>(part1 >> 24); |
| #endif |
| return target + sizeof(value); |
| } |
| |
| inline void CodedOutputStream::WriteVarint32(uint32 value) { |
| if (buffer_size_ >= 5) { |
| // Fast path: We have enough bytes left in the buffer to guarantee that |
| // this write won't cross the end, so we can skip the checks. |
| uint8* target = buffer_; |
| uint8* end = WriteVarint32ToArray(value, target); |
| int size = end - target; |
| Advance(size); |
| } else { |
| WriteVarint32SlowPath(value); |
| } |
| } |
| |
| inline void CodedOutputStream::WriteTag(uint32 value) { |
| WriteVarint32(value); |
| } |
| |
| inline uint8* CodedOutputStream::WriteTagToArray( |
| uint32 value, uint8* target) { |
| return WriteVarint32ToArray(value, target); |
| } |
| |
| inline int CodedOutputStream::VarintSize32(uint32 value) { |
| if (value < (1 << 7)) { |
| return 1; |
| } else { |
| return VarintSize32Fallback(value); |
| } |
| } |
| |
| inline int CodedOutputStream::VarintSize32SignExtended(int32 value) { |
| if (value < 0) { |
| return 10; // TODO(kenton): Make this a symbolic constant. |
| } else { |
| return VarintSize32(static_cast<uint32>(value)); |
| } |
| } |
| |
| inline void CodedOutputStream::WriteString(const string& str) { |
| WriteRaw(str.data(), static_cast<int>(str.size())); |
| } |
| |
| inline void CodedOutputStream::WriteRawMaybeAliased( |
| const void* data, int size) { |
| if (aliasing_enabled_) { |
| WriteAliasedRaw(data, size); |
| } else { |
| WriteRaw(data, size); |
| } |
| } |
| |
| inline uint8* CodedOutputStream::WriteStringToArray( |
| const string& str, uint8* target) { |
| return WriteRawToArray(str.data(), static_cast<int>(str.size()), target); |
| } |
| |
| inline int CodedOutputStream::ByteCount() const { |
| return total_bytes_ - buffer_size_; |
| } |
| |
| inline void CodedInputStream::Advance(int amount) { |
| buffer_ += amount; |
| } |
| |
| inline void CodedOutputStream::Advance(int amount) { |
| buffer_ += amount; |
| buffer_size_ -= amount; |
| } |
| |
| inline void CodedInputStream::SetRecursionLimit(int limit) { |
| recursion_budget_ += limit - recursion_limit_; |
| recursion_limit_ = limit; |
| } |
| |
| inline bool CodedInputStream::IncrementRecursionDepth() { |
| --recursion_budget_; |
| return recursion_budget_ >= 0; |
| } |
| |
| inline void CodedInputStream::DecrementRecursionDepth() { |
| if (recursion_budget_ < recursion_limit_) ++recursion_budget_; |
| } |
| |
| inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool, |
| MessageFactory* factory) { |
| extension_pool_ = pool; |
| extension_factory_ = factory; |
| } |
| |
| inline const DescriptorPool* CodedInputStream::GetExtensionPool() { |
| return extension_pool_; |
| } |
| |
| inline MessageFactory* CodedInputStream::GetExtensionFactory() { |
| return extension_factory_; |
| } |
| |
| inline int CodedInputStream::BufferSize() const { |
| return buffer_end_ - buffer_; |
| } |
| |
| inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input) |
| : buffer_(NULL), |
| buffer_end_(NULL), |
| input_(input), |
| total_bytes_read_(0), |
| overflow_bytes_(0), |
| last_tag_(0), |
| legitimate_message_end_(false), |
| aliasing_enabled_(false), |
| current_limit_(kint32max), |
| buffer_size_after_limit_(0), |
| total_bytes_limit_(kDefaultTotalBytesLimit), |
| total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold), |
| recursion_budget_(default_recursion_limit_), |
| recursion_limit_(default_recursion_limit_), |
| extension_pool_(NULL), |
| extension_factory_(NULL) { |
| // Eagerly Refresh() so buffer space is immediately available. |
| Refresh(); |
| } |
| |
| inline CodedInputStream::CodedInputStream(const uint8* buffer, int size) |
| : buffer_(buffer), |
| buffer_end_(buffer + size), |
| input_(NULL), |
| total_bytes_read_(size), |
| overflow_bytes_(0), |
| last_tag_(0), |
| legitimate_message_end_(false), |
| aliasing_enabled_(false), |
| current_limit_(size), |
| buffer_size_after_limit_(0), |
| total_bytes_limit_(kDefaultTotalBytesLimit), |
| total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold), |
| recursion_budget_(default_recursion_limit_), |
| recursion_limit_(default_recursion_limit_), |
| extension_pool_(NULL), |
| extension_factory_(NULL) { |
| // Note that setting current_limit_ == size is important to prevent some |
| // code paths from trying to access input_ and segfaulting. |
| } |
| |
| inline bool CodedInputStream::IsFlat() const { |
| return input_ == NULL; |
| } |
| |
| } // namespace io |
| } // namespace protobuf |
| |
| |
| #if defined(_MSC_VER) && _MSC_VER >= 1300 |
| #pragma runtime_checks("c", restore) |
| #endif // _MSC_VER |
| |
| } // namespace google |
| #endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |