blob: 477fdcbdb3e2df5260247d8f579132a12ad46449 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: jschorr@google.com (Joseph Schorr)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <math.h>
#include <stdlib.h>
#include <limits>
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/io/tokenizer.h>
#include <google/protobuf/unittest.pb.h>
#include <google/protobuf/unittest_mset.pb.h>
#include <google/protobuf/test_util.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/testing/file.h>
#include <google/protobuf/testing/googletest.h>
#include <gtest/gtest.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/substitute.h>
namespace google {
namespace protobuf {
// Can't use an anonymous namespace here due to brokenness of Tru64 compiler.
namespace text_format_unittest {
inline bool IsNaN(double value) {
// NaN is never equal to anything, even itself.
return value != value;
}
// A basic string with different escapable characters for testing.
const string kEscapeTestString =
"\"A string with ' characters \n and \r newlines and \t tabs and \001 "
"slashes \\ and multiple spaces";
// A representation of the above string with all the characters escaped.
const string kEscapeTestStringEscaped =
"\"\\\"A string with \\' characters \\n and \\r newlines "
"and \\t tabs and \\001 slashes \\\\ and multiple spaces\"";
class TextFormatTest : public testing::Test {
public:
static void SetUpTestCase() {
GOOGLE_CHECK_OK(File::GetContents(
TestSourceDir() +
"/google/protobuf/"
"testdata/text_format_unittest_data_oneof_implemented.txt",
&static_proto_debug_string_, true));
}
TextFormatTest() : proto_debug_string_(static_proto_debug_string_) {}
protected:
// Debug string read from text_format_unittest_data.txt.
const string proto_debug_string_;
unittest::TestAllTypes proto_;
private:
static string static_proto_debug_string_;
};
string TextFormatTest::static_proto_debug_string_;
class TextFormatExtensionsTest : public testing::Test {
public:
static void SetUpTestCase() {
GOOGLE_CHECK_OK(File::GetContents(TestSourceDir() +
"/google/protobuf/testdata/"
"text_format_unittest_extensions_data.txt",
&static_proto_debug_string_, true));
}
TextFormatExtensionsTest()
: proto_debug_string_(static_proto_debug_string_) {}
protected:
// Debug string read from text_format_unittest_data.txt.
const string proto_debug_string_;
unittest::TestAllExtensions proto_;
private:
static string static_proto_debug_string_;
};
string TextFormatExtensionsTest::static_proto_debug_string_;
TEST_F(TextFormatTest, Basic) {
TestUtil::SetAllFields(&proto_);
EXPECT_EQ(proto_debug_string_, proto_.DebugString());
}
TEST_F(TextFormatExtensionsTest, Extensions) {
TestUtil::SetAllExtensions(&proto_);
EXPECT_EQ(proto_debug_string_, proto_.DebugString());
}
TEST_F(TextFormatTest, ShortDebugString) {
proto_.set_optional_int32(1);
proto_.set_optional_string("hello");
proto_.mutable_optional_nested_message()->set_bb(2);
proto_.mutable_optional_foreign_message();
EXPECT_EQ("optional_int32: 1 optional_string: \"hello\" "
"optional_nested_message { bb: 2 } "
"optional_foreign_message { }",
proto_.ShortDebugString());
}
TEST_F(TextFormatTest, ShortPrimitiveRepeateds) {
proto_.set_optional_int32(123);
proto_.add_repeated_int32(456);
proto_.add_repeated_int32(789);
proto_.add_repeated_string("foo");
proto_.add_repeated_string("bar");
proto_.add_repeated_nested_message()->set_bb(2);
proto_.add_repeated_nested_message()->set_bb(3);
proto_.add_repeated_nested_enum(unittest::TestAllTypes::FOO);
proto_.add_repeated_nested_enum(unittest::TestAllTypes::BAR);
TextFormat::Printer printer;
printer.SetUseShortRepeatedPrimitives(true);
string text;
printer.PrintToString(proto_, &text);
EXPECT_EQ("optional_int32: 123\n"
"repeated_int32: [456, 789]\n"
"repeated_string: \"foo\"\n"
"repeated_string: \"bar\"\n"
"repeated_nested_message {\n bb: 2\n}\n"
"repeated_nested_message {\n bb: 3\n}\n"
"repeated_nested_enum: [FOO, BAR]\n",
text);
// Try in single-line mode.
printer.SetSingleLineMode(true);
printer.PrintToString(proto_, &text);
EXPECT_EQ("optional_int32: 123 "
"repeated_int32: [456, 789] "
"repeated_string: \"foo\" "
"repeated_string: \"bar\" "
"repeated_nested_message { bb: 2 } "
"repeated_nested_message { bb: 3 } "
"repeated_nested_enum: [FOO, BAR] ",
text);
}
TEST_F(TextFormatTest, StringEscape) {
// Set the string value to test.
proto_.set_optional_string(kEscapeTestString);
// Get the DebugString from the proto.
string debug_string = proto_.DebugString();
string utf8_debug_string = proto_.Utf8DebugString();
// Hardcode a correct value to test against.
string correct_string = "optional_string: "
+ kEscapeTestStringEscaped
+ "\n";
// Compare.
EXPECT_EQ(correct_string, debug_string);
// UTF-8 string is the same as non-UTF-8 because
// the protocol buffer contains no UTF-8 text.
EXPECT_EQ(correct_string, utf8_debug_string);
string expected_short_debug_string = "optional_string: "
+ kEscapeTestStringEscaped;
EXPECT_EQ(expected_short_debug_string, proto_.ShortDebugString());
}
TEST_F(TextFormatTest, Utf8DebugString) {
// Set the string value to test.
proto_.set_optional_string("\350\260\267\346\255\214");
proto_.set_optional_bytes("\350\260\267\346\255\214");
// Get the DebugString from the proto.
string debug_string = proto_.DebugString();
string utf8_debug_string = proto_.Utf8DebugString();
// Hardcode a correct value to test against.
string correct_utf8_string =
"optional_string: "
"\"\350\260\267\346\255\214\""
"\n"
"optional_bytes: "
"\"\\350\\260\\267\\346\\255\\214\""
"\n";
string correct_string =
"optional_string: "
"\"\\350\\260\\267\\346\\255\\214\""
"\n"
"optional_bytes: "
"\"\\350\\260\\267\\346\\255\\214\""
"\n";
// Compare.
EXPECT_EQ(correct_utf8_string, utf8_debug_string);
EXPECT_EQ(correct_string, debug_string);
}
TEST_F(TextFormatTest, PrintUnknownFields) {
// Test printing of unknown fields in a message.
unittest::TestEmptyMessage message;
UnknownFieldSet* unknown_fields = message.mutable_unknown_fields();
unknown_fields->AddVarint(5, 1);
unknown_fields->AddFixed32(5, 2);
unknown_fields->AddFixed64(5, 3);
unknown_fields->AddLengthDelimited(5, "4");
unknown_fields->AddGroup(5)->AddVarint(10, 5);
unknown_fields->AddVarint(8, 1);
unknown_fields->AddVarint(8, 2);
unknown_fields->AddVarint(8, 3);
EXPECT_EQ(
"5: 1\n"
"5: 0x00000002\n"
"5: 0x0000000000000003\n"
"5: \"4\"\n"
"5 {\n"
" 10: 5\n"
"}\n"
"8: 1\n"
"8: 2\n"
"8: 3\n",
message.DebugString());
}
TEST_F(TextFormatTest, PrintUnknownFieldsHidden) {
// Test printing of unknown fields in a message when suppressed.
unittest::OneString message;
message.set_data("data");
UnknownFieldSet* unknown_fields = message.mutable_unknown_fields();
unknown_fields->AddVarint(5, 1);
unknown_fields->AddFixed32(5, 2);
unknown_fields->AddFixed64(5, 3);
unknown_fields->AddLengthDelimited(5, "4");
unknown_fields->AddGroup(5)->AddVarint(10, 5);
unknown_fields->AddVarint(8, 1);
unknown_fields->AddVarint(8, 2);
unknown_fields->AddVarint(8, 3);
TextFormat::Printer printer;
printer.SetHideUnknownFields(true);
string output;
printer.PrintToString(message, &output);
EXPECT_EQ("data: \"data\"\n", output);
}
TEST_F(TextFormatTest, PrintUnknownMessage) {
// Test heuristic printing of messages in an UnknownFieldSet.
protobuf_unittest::TestAllTypes message;
// Cases which should not be interpreted as sub-messages.
// 'a' is a valid FIXED64 tag, so for the string to be parseable as a message
// it should be followed by 8 bytes. Since this string only has two
// subsequent bytes, it should be treated as a string.
message.add_repeated_string("abc");
// 'd' happens to be a valid ENDGROUP tag. So,
// UnknownFieldSet::MergeFromCodedStream() will successfully parse "def", but
// the ConsumedEntireMessage() check should fail.
message.add_repeated_string("def");
// A zero-length string should never be interpreted as a message even though
// it is technically valid as one.
message.add_repeated_string("");
// Case which should be interpreted as a sub-message.
// An actual nested message with content should always be interpreted as a
// nested message.
message.add_repeated_nested_message()->set_bb(123);
string data;
message.SerializeToString(&data);
string text;
UnknownFieldSet unknown_fields;
EXPECT_TRUE(unknown_fields.ParseFromString(data));
EXPECT_TRUE(TextFormat::PrintUnknownFieldsToString(unknown_fields, &text));
EXPECT_EQ(
"44: \"abc\"\n"
"44: \"def\"\n"
"44: \"\"\n"
"48 {\n"
" 1: 123\n"
"}\n",
text);
}
TEST_F(TextFormatTest, PrintMessageWithIndent) {
// Test adding an initial indent to printing.
protobuf_unittest::TestAllTypes message;
message.add_repeated_string("abc");
message.add_repeated_string("def");
message.add_repeated_nested_message()->set_bb(123);
string text;
TextFormat::Printer printer;
printer.SetInitialIndentLevel(1);
EXPECT_TRUE(printer.PrintToString(message, &text));
EXPECT_EQ(
" repeated_string: \"abc\"\n"
" repeated_string: \"def\"\n"
" repeated_nested_message {\n"
" bb: 123\n"
" }\n",
text);
}
TEST_F(TextFormatTest, PrintMessageSingleLine) {
// Test printing a message on a single line.
protobuf_unittest::TestAllTypes message;
message.add_repeated_string("abc");
message.add_repeated_string("def");
message.add_repeated_nested_message()->set_bb(123);
string text;
TextFormat::Printer printer;
printer.SetInitialIndentLevel(1);
printer.SetSingleLineMode(true);
EXPECT_TRUE(printer.PrintToString(message, &text));
EXPECT_EQ(
" repeated_string: \"abc\" repeated_string: \"def\" "
"repeated_nested_message { bb: 123 } ",
text);
}
TEST_F(TextFormatTest, PrintBufferTooSmall) {
// Test printing a message to a buffer that is too small.
protobuf_unittest::TestAllTypes message;
message.add_repeated_string("abc");
message.add_repeated_string("def");
char buffer[1] = "";
io::ArrayOutputStream output_stream(buffer, 1);
EXPECT_FALSE(TextFormat::Print(message, &output_stream));
EXPECT_EQ(buffer[0], 'r');
EXPECT_EQ(output_stream.ByteCount(), 1);
}
// A printer that appends 'u' to all unsigned int32.
class CustomUInt32FieldValuePrinter : public TextFormat::FieldValuePrinter {
public:
virtual string PrintUInt32(uint32 val) const {
return StrCat(FieldValuePrinter::PrintUInt32(val), "u");
}
};
TEST_F(TextFormatTest, DefaultCustomFieldPrinter) {
protobuf_unittest::TestAllTypes message;
message.set_optional_uint32(42);
message.add_repeated_uint32(1);
message.add_repeated_uint32(2);
message.add_repeated_uint32(3);
TextFormat::Printer printer;
printer.SetDefaultFieldValuePrinter(new CustomUInt32FieldValuePrinter());
// Let's see if that works well together with the repeated primitives:
printer.SetUseShortRepeatedPrimitives(true);
string text;
printer.PrintToString(message, &text);
EXPECT_EQ("optional_uint32: 42u\nrepeated_uint32: [1u, 2u, 3u]\n", text);
}
class CustomInt32FieldValuePrinter : public TextFormat::FieldValuePrinter {
public:
virtual string PrintInt32(int32 val) const {
return StrCat("value-is(", FieldValuePrinter::PrintInt32(val), ")");
}
};
TEST_F(TextFormatTest, FieldSpecificCustomPrinter) {
protobuf_unittest::TestAllTypes message;
message.set_optional_int32(42); // This will be handled by our Printer.
message.add_repeated_int32(42); // This will be printed as number.
TextFormat::Printer printer;
EXPECT_TRUE(printer.RegisterFieldValuePrinter(
message.GetDescriptor()->FindFieldByName("optional_int32"),
new CustomInt32FieldValuePrinter()));
string text;
printer.PrintToString(message, &text);
EXPECT_EQ("optional_int32: value-is(42)\nrepeated_int32: 42\n", text);
}
TEST_F(TextFormatTest, ErrorCasesRegisteringFieldValuePrinterShouldFail) {
protobuf_unittest::TestAllTypes message;
TextFormat::Printer printer;
// NULL printer.
EXPECT_FALSE(printer.RegisterFieldValuePrinter(
message.GetDescriptor()->FindFieldByName("optional_int32"),
NULL));
// Because registration fails, the ownership of this printer is never taken.
TextFormat::FieldValuePrinter my_field_printer;
// NULL field
EXPECT_FALSE(printer.RegisterFieldValuePrinter(NULL, &my_field_printer));
}
class CustomMessageFieldValuePrinter : public TextFormat::FieldValuePrinter {
public:
virtual string PrintInt32(int32 v) const {
return StrCat(FieldValuePrinter::PrintInt32(v), " # x", ToHex(v));
}
virtual string PrintMessageStart(const Message& message,
int field_index,
int field_count,
bool single_line_mode) const {
if (single_line_mode) {
return " { ";
}
return StrCat(
" { # ", message.GetDescriptor()->name(), ": ", field_index, "\n");
}
};
TEST_F(TextFormatTest, CustomPrinterForComments) {
protobuf_unittest::TestAllTypes message;
message.mutable_optional_nested_message();
message.mutable_optional_import_message()->set_d(42);
message.add_repeated_nested_message();
message.add_repeated_nested_message();
message.add_repeated_import_message()->set_d(43);
message.add_repeated_import_message()->set_d(44);
TextFormat::Printer printer;
CustomMessageFieldValuePrinter my_field_printer;
printer.SetDefaultFieldValuePrinter(new CustomMessageFieldValuePrinter());
string text;
printer.PrintToString(message, &text);
EXPECT_EQ(
"optional_nested_message { # NestedMessage: -1\n"
"}\n"
"optional_import_message { # ImportMessage: -1\n"
" d: 42 # x2a\n"
"}\n"
"repeated_nested_message { # NestedMessage: 0\n"
"}\n"
"repeated_nested_message { # NestedMessage: 1\n"
"}\n"
"repeated_import_message { # ImportMessage: 0\n"
" d: 43 # x2b\n"
"}\n"
"repeated_import_message { # ImportMessage: 1\n"
" d: 44 # x2c\n"
"}\n",
text);
}
class CustomMultilineCommentPrinter : public TextFormat::FieldValuePrinter {
public:
virtual string PrintMessageStart(const Message& message,
int field_index,
int field_count,
bool single_line_comment) const {
return StrCat(" { # 1\n", " # 2\n");
}
};
TEST_F(TextFormatTest, CustomPrinterForMultilineComments) {
protobuf_unittest::TestAllTypes message;
message.mutable_optional_nested_message();
message.mutable_optional_import_message()->set_d(42);
TextFormat::Printer printer;
CustomMessageFieldValuePrinter my_field_printer;
printer.SetDefaultFieldValuePrinter(new CustomMultilineCommentPrinter());
string text;
printer.PrintToString(message, &text);
EXPECT_EQ(
"optional_nested_message { # 1\n"
" # 2\n"
"}\n"
"optional_import_message { # 1\n"
" # 2\n"
" d: 42\n"
"}\n",
text);
}
TEST_F(TextFormatTest, ParseBasic) {
io::ArrayInputStream input_stream(proto_debug_string_.data(),
proto_debug_string_.size());
TextFormat::Parse(&input_stream, &proto_);
TestUtil::ExpectAllFieldsSet(proto_);
}
TEST_F(TextFormatExtensionsTest, ParseExtensions) {
io::ArrayInputStream input_stream(proto_debug_string_.data(),
proto_debug_string_.size());
TextFormat::Parse(&input_stream, &proto_);
TestUtil::ExpectAllExtensionsSet(proto_);
}
TEST_F(TextFormatTest, ParseEnumFieldFromNumber) {
// Create a parse string with a numerical value for an enum field.
string parse_string = strings::Substitute("optional_nested_enum: $0",
unittest::TestAllTypes::BAZ);
EXPECT_TRUE(TextFormat::ParseFromString(parse_string, &proto_));
EXPECT_TRUE(proto_.has_optional_nested_enum());
EXPECT_EQ(unittest::TestAllTypes::BAZ, proto_.optional_nested_enum());
}
TEST_F(TextFormatTest, ParseEnumFieldFromNegativeNumber) {
ASSERT_LT(unittest::SPARSE_E, 0);
string parse_string = strings::Substitute("sparse_enum: $0",
unittest::SPARSE_E);
unittest::SparseEnumMessage proto;
EXPECT_TRUE(TextFormat::ParseFromString(parse_string, &proto));
EXPECT_TRUE(proto.has_sparse_enum());
EXPECT_EQ(unittest::SPARSE_E, proto.sparse_enum());
}
TEST_F(TextFormatTest, ParseStringEscape) {
// Create a parse string with escpaed characters in it.
string parse_string = "optional_string: "
+ kEscapeTestStringEscaped
+ "\n";
io::ArrayInputStream input_stream(parse_string.data(),
parse_string.size());
TextFormat::Parse(&input_stream, &proto_);
// Compare.
EXPECT_EQ(kEscapeTestString, proto_.optional_string());
}
TEST_F(TextFormatTest, ParseConcatenatedString) {
// Create a parse string with multiple parts on one line.
string parse_string = "optional_string: \"foo\" \"bar\"\n";
io::ArrayInputStream input_stream1(parse_string.data(),
parse_string.size());
TextFormat::Parse(&input_stream1, &proto_);
// Compare.
EXPECT_EQ("foobar", proto_.optional_string());
// Create a parse string with multiple parts on separate lines.
parse_string = "optional_string: \"foo\"\n"
"\"bar\"\n";
io::ArrayInputStream input_stream2(parse_string.data(),
parse_string.size());
TextFormat::Parse(&input_stream2, &proto_);
// Compare.
EXPECT_EQ("foobar", proto_.optional_string());
}
TEST_F(TextFormatTest, ParseFloatWithSuffix) {
// Test that we can parse a floating-point value with 'f' appended to the
// end. This is needed for backwards-compatibility with proto1.
// Have it parse a float with the 'f' suffix.
string parse_string = "optional_float: 1.0f\n";
io::ArrayInputStream input_stream(parse_string.data(),
parse_string.size());
TextFormat::Parse(&input_stream, &proto_);
// Compare.
EXPECT_EQ(1.0, proto_.optional_float());
}
TEST_F(TextFormatTest, ParseShortRepeatedForm) {
string parse_string =
// Mixed short-form and long-form are simply concatenated.
"repeated_int32: 1\n"
"repeated_int32: [456, 789]\n"
"repeated_nested_enum: [ FOO ,BAR, # comment\n"
" 3]\n"
// Note that while the printer won't print repeated strings in short-form,
// the parser will accept them.
"repeated_string: [ \"foo\", 'bar' ]\n"
// Repeated message
"repeated_nested_message: [ { bb: 1 }, { bb : 2 }]\n"
// Repeated group
"RepeatedGroup [{ a: 3 },{ a: 4 }]\n";
ASSERT_TRUE(TextFormat::ParseFromString(parse_string, &proto_));
ASSERT_EQ(3, proto_.repeated_int32_size());
EXPECT_EQ(1, proto_.repeated_int32(0));
EXPECT_EQ(456, proto_.repeated_int32(1));
EXPECT_EQ(789, proto_.repeated_int32(2));
ASSERT_EQ(3, proto_.repeated_nested_enum_size());
EXPECT_EQ(unittest::TestAllTypes::FOO, proto_.repeated_nested_enum(0));
EXPECT_EQ(unittest::TestAllTypes::BAR, proto_.repeated_nested_enum(1));
EXPECT_EQ(unittest::TestAllTypes::BAZ, proto_.repeated_nested_enum(2));
ASSERT_EQ(2, proto_.repeated_string_size());
EXPECT_EQ("foo", proto_.repeated_string(0));
EXPECT_EQ("bar", proto_.repeated_string(1));
ASSERT_EQ(2, proto_.repeated_nested_message_size());
EXPECT_EQ(1, proto_.repeated_nested_message(0).bb());
EXPECT_EQ(2, proto_.repeated_nested_message(1).bb());
ASSERT_EQ(2, proto_.repeatedgroup_size());
EXPECT_EQ(3, proto_.repeatedgroup(0).a());
EXPECT_EQ(4, proto_.repeatedgroup(1).a());
}
TEST_F(TextFormatTest, Comments) {
// Test that comments are ignored.
string parse_string = "optional_int32: 1 # a comment\n"
"optional_int64: 2 # another comment";
io::ArrayInputStream input_stream(parse_string.data(),
parse_string.size());
TextFormat::Parse(&input_stream, &proto_);
// Compare.
EXPECT_EQ(1, proto_.optional_int32());
EXPECT_EQ(2, proto_.optional_int64());
}
TEST_F(TextFormatTest, OptionalColon) {
// Test that we can place a ':' after the field name of a nested message,
// even though we don't have to.
string parse_string = "optional_nested_message: { bb: 1}\n";
io::ArrayInputStream input_stream(parse_string.data(),
parse_string.size());
TextFormat::Parse(&input_stream, &proto_);
// Compare.
EXPECT_TRUE(proto_.has_optional_nested_message());
EXPECT_EQ(1, proto_.optional_nested_message().bb());
}
// Some platforms (e.g. Windows) insist on padding the exponent to three
// digits when one or two would be just fine.
static string RemoveRedundantZeros(string text) {
text = StringReplace(text, "e+0", "e+", true);
text = StringReplace(text, "e-0", "e-", true);
return text;
}
TEST_F(TextFormatTest, PrintExotic) {
unittest::TestAllTypes message;
// Note: In C, a negative integer literal is actually the unary negation
// operator being applied to a positive integer literal, and
// 9223372036854775808 is outside the range of int64. However, it is not
// outside the range of uint64. Confusingly, this means that everything
// works if we make the literal unsigned, even though we are negating it.
message.add_repeated_int64(-GOOGLE_ULONGLONG(9223372036854775808));
message.add_repeated_uint64(GOOGLE_ULONGLONG(18446744073709551615));
message.add_repeated_double(123.456);
message.add_repeated_double(1.23e21);
message.add_repeated_double(1.23e-18);
message.add_repeated_double(std::numeric_limits<double>::infinity());
message.add_repeated_double(-std::numeric_limits<double>::infinity());
message.add_repeated_double(std::numeric_limits<double>::quiet_NaN());
message.add_repeated_string(string("\000\001\a\b\f\n\r\t\v\\\'\"", 12));
// Fun story: We used to use 1.23e22 instead of 1.23e21 above, but this
// seemed to trigger an odd case on MinGW/GCC 3.4.5 where GCC's parsing of
// the value differed from strtod()'s parsing. That is to say, the
// following assertion fails on MinGW:
// assert(1.23e22 == strtod("1.23e22", NULL));
// As a result, SimpleDtoa() would print the value as
// "1.2300000000000001e+22" to make sure strtod() produce the exact same
// result. Our goal is to test runtime parsing, not compile-time parsing,
// so this wasn't our problem. It was found that using 1.23e21 did not
// have this problem, so we switched to that instead.
EXPECT_EQ(
"repeated_int64: -9223372036854775808\n"
"repeated_uint64: 18446744073709551615\n"
"repeated_double: 123.456\n"
"repeated_double: 1.23e+21\n"
"repeated_double: 1.23e-18\n"
"repeated_double: inf\n"
"repeated_double: -inf\n"
"repeated_double: nan\n"
"repeated_string: \"\\000\\001\\007\\010\\014\\n\\r\\t\\013\\\\\\'\\\"\"\n",
RemoveRedundantZeros(message.DebugString()));
}
TEST_F(TextFormatTest, PrintFloatPrecision) {
unittest::TestAllTypes message;
message.add_repeated_float(1.2);
message.add_repeated_float(1.23);
message.add_repeated_float(1.234);
message.add_repeated_float(1.2345);
message.add_repeated_float(1.23456);
message.add_repeated_float(1.2e10);
message.add_repeated_float(1.23e10);
message.add_repeated_float(1.234e10);
message.add_repeated_float(1.2345e10);
message.add_repeated_float(1.23456e10);
message.add_repeated_double(1.2);
message.add_repeated_double(1.23);
message.add_repeated_double(1.234);
message.add_repeated_double(1.2345);
message.add_repeated_double(1.23456);
message.add_repeated_double(1.234567);
message.add_repeated_double(1.2345678);
message.add_repeated_double(1.23456789);
message.add_repeated_double(1.234567898);
message.add_repeated_double(1.2345678987);
message.add_repeated_double(1.23456789876);
message.add_repeated_double(1.234567898765);
message.add_repeated_double(1.2345678987654);
message.add_repeated_double(1.23456789876543);
message.add_repeated_double(1.2e100);
message.add_repeated_double(1.23e100);
message.add_repeated_double(1.234e100);
message.add_repeated_double(1.2345e100);
message.add_repeated_double(1.23456e100);
message.add_repeated_double(1.234567e100);
message.add_repeated_double(1.2345678e100);
message.add_repeated_double(1.23456789e100);
message.add_repeated_double(1.234567898e100);
message.add_repeated_double(1.2345678987e100);
message.add_repeated_double(1.23456789876e100);
message.add_repeated_double(1.234567898765e100);
message.add_repeated_double(1.2345678987654e100);
message.add_repeated_double(1.23456789876543e100);
EXPECT_EQ(
"repeated_float: 1.2\n"
"repeated_float: 1.23\n"
"repeated_float: 1.234\n"
"repeated_float: 1.2345\n"
"repeated_float: 1.23456\n"
"repeated_float: 1.2e+10\n"
"repeated_float: 1.23e+10\n"
"repeated_float: 1.234e+10\n"
"repeated_float: 1.2345e+10\n"
"repeated_float: 1.23456e+10\n"
"repeated_double: 1.2\n"
"repeated_double: 1.23\n"
"repeated_double: 1.234\n"
"repeated_double: 1.2345\n"
"repeated_double: 1.23456\n"
"repeated_double: 1.234567\n"
"repeated_double: 1.2345678\n"
"repeated_double: 1.23456789\n"
"repeated_double: 1.234567898\n"
"repeated_double: 1.2345678987\n"
"repeated_double: 1.23456789876\n"
"repeated_double: 1.234567898765\n"
"repeated_double: 1.2345678987654\n"
"repeated_double: 1.23456789876543\n"
"repeated_double: 1.2e+100\n"
"repeated_double: 1.23e+100\n"
"repeated_double: 1.234e+100\n"
"repeated_double: 1.2345e+100\n"
"repeated_double: 1.23456e+100\n"
"repeated_double: 1.234567e+100\n"
"repeated_double: 1.2345678e+100\n"
"repeated_double: 1.23456789e+100\n"
"repeated_double: 1.234567898e+100\n"
"repeated_double: 1.2345678987e+100\n"
"repeated_double: 1.23456789876e+100\n"
"repeated_double: 1.234567898765e+100\n"
"repeated_double: 1.2345678987654e+100\n"
"repeated_double: 1.23456789876543e+100\n",
RemoveRedundantZeros(message.DebugString()));
}
TEST_F(TextFormatTest, AllowPartial) {
unittest::TestRequired message;
TextFormat::Parser parser;
parser.AllowPartialMessage(true);
EXPECT_TRUE(parser.ParseFromString("a: 1", &message));
EXPECT_EQ(1, message.a());
EXPECT_FALSE(message.has_b());
EXPECT_FALSE(message.has_c());
}
TEST_F(TextFormatTest, ParseExotic) {
unittest::TestAllTypes message;
ASSERT_TRUE(TextFormat::ParseFromString(
"repeated_int32: -1\n"
"repeated_int32: -2147483648\n"
"repeated_int64: -1\n"
"repeated_int64: -9223372036854775808\n"
"repeated_uint32: 4294967295\n"
"repeated_uint32: 2147483648\n"
"repeated_uint64: 18446744073709551615\n"
"repeated_uint64: 9223372036854775808\n"
"repeated_double: 123.0\n"
"repeated_double: 123.5\n"
"repeated_double: 0.125\n"
"repeated_double: 1.23E17\n"
"repeated_double: 1.235E+22\n"
"repeated_double: 1.235e-18\n"
"repeated_double: 123.456789\n"
"repeated_double: inf\n"
"repeated_double: Infinity\n"
"repeated_double: -inf\n"
"repeated_double: -Infinity\n"
"repeated_double: nan\n"
"repeated_double: NaN\n"
"repeated_string: \"\\000\\001\\a\\b\\f\\n\\r\\t\\v\\\\\\'\\\"\"\n",
&message));
ASSERT_EQ(2, message.repeated_int32_size());
EXPECT_EQ(-1, message.repeated_int32(0));
// Note: In C, a negative integer literal is actually the unary negation
// operator being applied to a positive integer literal, and 2147483648 is
// outside the range of int32. However, it is not outside the range of
// uint32. Confusingly, this means that everything works if we make the
// literal unsigned, even though we are negating it.
EXPECT_EQ(-2147483648u, message.repeated_int32(1));
ASSERT_EQ(2, message.repeated_int64_size());
EXPECT_EQ(-1, message.repeated_int64(0));
// Note: In C, a negative integer literal is actually the unary negation
// operator being applied to a positive integer literal, and
// 9223372036854775808 is outside the range of int64. However, it is not
// outside the range of uint64. Confusingly, this means that everything
// works if we make the literal unsigned, even though we are negating it.
EXPECT_EQ(-GOOGLE_ULONGLONG(9223372036854775808), message.repeated_int64(1));
ASSERT_EQ(2, message.repeated_uint32_size());
EXPECT_EQ(4294967295u, message.repeated_uint32(0));
EXPECT_EQ(2147483648u, message.repeated_uint32(1));
ASSERT_EQ(2, message.repeated_uint64_size());
EXPECT_EQ(GOOGLE_ULONGLONG(18446744073709551615), message.repeated_uint64(0));
EXPECT_EQ(GOOGLE_ULONGLONG(9223372036854775808), message.repeated_uint64(1));
ASSERT_EQ(13, message.repeated_double_size());
EXPECT_EQ(123.0 , message.repeated_double(0));
EXPECT_EQ(123.5 , message.repeated_double(1));
EXPECT_EQ(0.125 , message.repeated_double(2));
EXPECT_EQ(1.23E17 , message.repeated_double(3));
EXPECT_EQ(1.235E22 , message.repeated_double(4));
EXPECT_EQ(1.235E-18 , message.repeated_double(5));
EXPECT_EQ(123.456789, message.repeated_double(6));
EXPECT_EQ(message.repeated_double(7), numeric_limits<double>::infinity());
EXPECT_EQ(message.repeated_double(8), numeric_limits<double>::infinity());
EXPECT_EQ(message.repeated_double(9), -numeric_limits<double>::infinity());
EXPECT_EQ(message.repeated_double(10), -numeric_limits<double>::infinity());
EXPECT_TRUE(IsNaN(message.repeated_double(11)));
EXPECT_TRUE(IsNaN(message.repeated_double(12)));
// Note: Since these string literals have \0's in them, we must explicitly
// pass their sizes to string's constructor.
ASSERT_EQ(1, message.repeated_string_size());
EXPECT_EQ(string("\000\001\a\b\f\n\r\t\v\\\'\"", 12),
message.repeated_string(0));
}
TEST_F(TextFormatTest, PrintFieldsInIndexOrder) {
protobuf_unittest::TestFieldOrderings message;
// Fields are listed in index order instead of field number.
message.set_my_string("Test String"); // Field number 11
message.set_my_int(12345); // Field number 1
message.set_my_float(0.999); // Field number 101
TextFormat::Printer printer;
string text;
// By default, print in field number order.
printer.PrintToString(message, &text);
EXPECT_EQ("my_int: 12345\nmy_string: \"Test String\"\nmy_float: 0.999\n",
text);
// Print in index order.
printer.SetPrintMessageFieldsInIndexOrder(true);
printer.PrintToString(message, &text);
EXPECT_EQ("my_string: \"Test String\"\nmy_int: 12345\nmy_float: 0.999\n",
text);
}
class TextFormatParserTest : public testing::Test {
protected:
void ExpectFailure(const string& input, const string& message, int line,
int col) {
scoped_ptr<unittest::TestAllTypes> proto(new unittest::TestAllTypes);
ExpectFailure(input, message, line, col, proto.get());
}
void ExpectFailure(const string& input, const string& message, int line,
int col, Message* proto) {
ExpectMessage(input, message, line, col, proto, false);
}
void ExpectMessage(const string& input, const string& message, int line,
int col, Message* proto, bool expected_result) {
TextFormat::Parser parser;
MockErrorCollector error_collector;
parser.RecordErrorsTo(&error_collector);
EXPECT_EQ(expected_result, parser.ParseFromString(input, proto))
<< input << " -> " << proto->DebugString();
EXPECT_EQ(SimpleItoa(line) + ":" + SimpleItoa(col) + ": " + message + "\n",
error_collector.text_);
}
void ExpectSuccessAndTree(const string& input, Message* proto,
TextFormat::ParseInfoTree* info_tree) {
TextFormat::Parser parser;
MockErrorCollector error_collector;
parser.RecordErrorsTo(&error_collector);
parser.WriteLocationsTo(info_tree);
EXPECT_TRUE(parser.ParseFromString(input, proto));
}
void ExpectLocation(TextFormat::ParseInfoTree* tree,
const Descriptor* d, const string& field_name,
int index, int line, int column) {
TextFormat::ParseLocation location = tree->GetLocation(
d->FindFieldByName(field_name), index);
EXPECT_EQ(line, location.line);
EXPECT_EQ(column, location.column);
}
// An error collector which simply concatenates all its errors into a big
// block of text which can be checked.
class MockErrorCollector : public io::ErrorCollector {
public:
MockErrorCollector() {}
~MockErrorCollector() {}
string text_;
// implements ErrorCollector -------------------------------------
void AddError(int line, int column, const string& message) {
strings::SubstituteAndAppend(&text_, "$0:$1: $2\n",
line + 1, column + 1, message);
}
void AddWarning(int line, int column, const string& message) {
AddError(line, column, "WARNING:" + message);
}
};
};
TEST_F(TextFormatParserTest, ParseInfoTreeBuilding) {
scoped_ptr<unittest::TestAllTypes> message(new unittest::TestAllTypes);
const Descriptor* d = message->GetDescriptor();
string stringData =
"optional_int32: 1\n"
"optional_int64: 2\n"
" optional_double: 2.4\n"
"repeated_int32: 5\n"
"repeated_int32: 10\n"
"optional_nested_message <\n"
" bb: 78\n"
">\n"
"repeated_nested_message <\n"
" bb: 79\n"
">\n"
"repeated_nested_message <\n"
" bb: 80\n"
">";
TextFormat::ParseInfoTree tree;
ExpectSuccessAndTree(stringData, message.get(), &tree);
// Verify that the tree has the correct positions.
ExpectLocation(&tree, d, "optional_int32", -1, 0, 0);
ExpectLocation(&tree, d, "optional_int64", -1, 1, 0);
ExpectLocation(&tree, d, "optional_double", -1, 2, 2);
ExpectLocation(&tree, d, "repeated_int32", 0, 3, 0);
ExpectLocation(&tree, d, "repeated_int32", 1, 4, 0);
ExpectLocation(&tree, d, "optional_nested_message", -1, 5, 0);
ExpectLocation(&tree, d, "repeated_nested_message", 0, 8, 0);
ExpectLocation(&tree, d, "repeated_nested_message", 1, 11, 0);
// Check for fields not set. For an invalid field, the location returned
// should be -1, -1.
ExpectLocation(&tree, d, "repeated_int64", 0, -1, -1);
ExpectLocation(&tree, d, "repeated_int32", 6, -1, -1);
ExpectLocation(&tree, d, "some_unknown_field", -1, -1, -1);
// Verify inside the nested message.
const FieldDescriptor* nested_field =
d->FindFieldByName("optional_nested_message");
TextFormat::ParseInfoTree* nested_tree =
tree.GetTreeForNested(nested_field, -1);
ExpectLocation(nested_tree, nested_field->message_type(), "bb", -1, 6, 2);
// Verify inside another nested message.
nested_field = d->FindFieldByName("repeated_nested_message");
nested_tree = tree.GetTreeForNested(nested_field, 0);
ExpectLocation(nested_tree, nested_field->message_type(), "bb", -1, 9, 2);
nested_tree = tree.GetTreeForNested(nested_field, 1);
ExpectLocation(nested_tree, nested_field->message_type(), "bb", -1, 12, 2);
// Verify a NULL tree for an unknown nested field.
TextFormat::ParseInfoTree* unknown_nested_tree =
tree.GetTreeForNested(nested_field, 2);
EXPECT_EQ(NULL, unknown_nested_tree);
}
TEST_F(TextFormatParserTest, ParseFieldValueFromString) {
scoped_ptr<unittest::TestAllTypes> message(new unittest::TestAllTypes);
const Descriptor* d = message->GetDescriptor();
#define EXPECT_FIELD(name, value, valuestring) \
EXPECT_TRUE(TextFormat::ParseFieldValueFromString( \
valuestring, d->FindFieldByName("optional_" #name), message.get())); \
EXPECT_EQ(value, message->optional_##name()); \
EXPECT_TRUE(message->has_optional_##name());
#define EXPECT_BOOL_FIELD(name, value, valuestring) \
EXPECT_TRUE(TextFormat::ParseFieldValueFromString( \
valuestring, d->FindFieldByName("optional_" #name), message.get())); \
EXPECT_TRUE(message->optional_##name() == value); \
EXPECT_TRUE(message->has_optional_##name());
#define EXPECT_FLOAT_FIELD(name, value, valuestring) \
EXPECT_TRUE(TextFormat::ParseFieldValueFromString( \
valuestring, d->FindFieldByName("optional_" #name), message.get())); \
EXPECT_FLOAT_EQ(value, message->optional_##name()); \
EXPECT_TRUE(message->has_optional_##name());
#define EXPECT_DOUBLE_FIELD(name, value, valuestring) \
EXPECT_TRUE(TextFormat::ParseFieldValueFromString( \
valuestring, d->FindFieldByName("optional_" #name), message.get())); \
EXPECT_DOUBLE_EQ(value, message->optional_##name()); \
EXPECT_TRUE(message->has_optional_##name());
#define EXPECT_INVALID(name, valuestring) \
EXPECT_FALSE(TextFormat::ParseFieldValueFromString( \
valuestring, d->FindFieldByName("optional_" #name), message.get()));
// int32
EXPECT_FIELD(int32, 1, "1");
EXPECT_FIELD(int32, -1, "-1");
EXPECT_FIELD(int32, 0x1234, "0x1234");
EXPECT_INVALID(int32, "a");
EXPECT_INVALID(int32, "999999999999999999999999999999999999");
EXPECT_INVALID(int32, "1,2");
// int64
EXPECT_FIELD(int64, 1, "1");
EXPECT_FIELD(int64, -1, "-1");
EXPECT_FIELD(int64, 0x1234567812345678LL, "0x1234567812345678");
EXPECT_INVALID(int64, "a");
EXPECT_INVALID(int64, "999999999999999999999999999999999999");
EXPECT_INVALID(int64, "1,2");
// uint64
EXPECT_FIELD(uint64, 1, "1");
EXPECT_FIELD(uint64, 0xf234567812345678ULL, "0xf234567812345678");
EXPECT_INVALID(uint64, "-1");
EXPECT_INVALID(uint64, "a");
EXPECT_INVALID(uint64, "999999999999999999999999999999999999");
EXPECT_INVALID(uint64, "1,2");
// fixed32
EXPECT_FIELD(fixed32, 1, "1");
EXPECT_FIELD(fixed32, 0x12345678, "0x12345678");
EXPECT_INVALID(fixed32, "-1");
EXPECT_INVALID(fixed32, "a");
EXPECT_INVALID(fixed32, "999999999999999999999999999999999999");
EXPECT_INVALID(fixed32, "1,2");
// fixed64
EXPECT_FIELD(fixed64, 1, "1");
EXPECT_FIELD(fixed64, 0x1234567812345678ULL, "0x1234567812345678");
EXPECT_INVALID(fixed64, "-1");
EXPECT_INVALID(fixed64, "a");
EXPECT_INVALID(fixed64, "999999999999999999999999999999999999");
EXPECT_INVALID(fixed64, "1,2");
// bool
EXPECT_BOOL_FIELD(bool, true, "true");
EXPECT_BOOL_FIELD(bool, false, "false");
EXPECT_BOOL_FIELD(bool, true, "1");
EXPECT_BOOL_FIELD(bool, true, "t");
EXPECT_BOOL_FIELD(bool, false, "0");
EXPECT_BOOL_FIELD(bool, false, "f");
EXPECT_FIELD(bool, true, "True");
EXPECT_FIELD(bool, false, "False");
EXPECT_INVALID(bool, "tRue");
EXPECT_INVALID(bool, "faLse");
EXPECT_INVALID(bool, "2");
EXPECT_INVALID(bool, "-0");
EXPECT_INVALID(bool, "on");
EXPECT_INVALID(bool, "a");
// float
EXPECT_FIELD(float, 1, "1");
EXPECT_FLOAT_FIELD(float, 1.5, "1.5");
EXPECT_FLOAT_FIELD(float, 1.5e3, "1.5e3");
EXPECT_FLOAT_FIELD(float, -4.55, "-4.55");
EXPECT_INVALID(float, "a");
EXPECT_INVALID(float, "1,2");
// double
EXPECT_FIELD(double, 1, "1");
EXPECT_FIELD(double, -1, "-1");
EXPECT_DOUBLE_FIELD(double, 2.3, "2.3");
EXPECT_DOUBLE_FIELD(double, 3e5, "3e5");
EXPECT_INVALID(double, "a");
EXPECT_INVALID(double, "1,2");
// Rejects hex and oct numbers for a double field.
EXPECT_INVALID(double, "0xf");
EXPECT_INVALID(double, "012");
// string
EXPECT_FIELD(string, "hello", "\"hello\"");
EXPECT_FIELD(string, "-1.87", "'-1.87'");
EXPECT_INVALID(string, "hello"); // without quote for value
// enum
EXPECT_FIELD(nested_enum, unittest::TestAllTypes::BAR, "BAR");
EXPECT_FIELD(nested_enum, unittest::TestAllTypes::BAZ,
SimpleItoa(unittest::TestAllTypes::BAZ));
EXPECT_INVALID(nested_enum, "FOOBAR");
// message
EXPECT_TRUE(TextFormat::ParseFieldValueFromString(
"<bb:12>", d->FindFieldByName("optional_nested_message"), message.get()));
EXPECT_EQ(12, message->optional_nested_message().bb()); \
EXPECT_TRUE(message->has_optional_nested_message());
EXPECT_INVALID(nested_message, "any");
#undef EXPECT_FIELD
#undef EXPECT_BOOL_FIELD
#undef EXPECT_FLOAT_FIELD
#undef EXPECT_DOUBLE_FIELD
#undef EXPECT_INVALID
}
TEST_F(TextFormatParserTest, InvalidToken) {
ExpectFailure("optional_bool: true\n-5\n", "Expected identifier.",
2, 1);
ExpectFailure("optional_bool: true!\n", "Expected identifier.", 1, 20);
ExpectFailure("\"some string\"", "Expected identifier.", 1, 1);
}
TEST_F(TextFormatParserTest, InvalidFieldName) {
ExpectFailure(
"invalid_field: somevalue\n",
"Message type \"protobuf_unittest.TestAllTypes\" has no field named "
"\"invalid_field\".",
1, 14);
}
TEST_F(TextFormatParserTest, InvalidCapitalization) {
// We require that group names be exactly as they appear in the .proto.
ExpectFailure(
"optionalgroup {\na: 15\n}\n",
"Message type \"protobuf_unittest.TestAllTypes\" has no field named "
"\"optionalgroup\".",
1, 15);
ExpectFailure(
"OPTIONALgroup {\na: 15\n}\n",
"Message type \"protobuf_unittest.TestAllTypes\" has no field named "
"\"OPTIONALgroup\".",
1, 15);
ExpectFailure(
"Optional_Double: 10.0\n",
"Message type \"protobuf_unittest.TestAllTypes\" has no field named "
"\"Optional_Double\".",
1, 16);
}
TEST_F(TextFormatParserTest, AllowIgnoreCapitalizationError) {
TextFormat::Parser parser;
protobuf_unittest::TestAllTypes proto;
// These fields have a mismatching case.
EXPECT_FALSE(parser.ParseFromString("Optional_Double: 10.0", &proto));
EXPECT_FALSE(parser.ParseFromString("oPtIoNaLgRoUp { a: 15 }", &proto));
// ... but are parsed correctly if we match case insensitive.
parser.AllowCaseInsensitiveField(true);
EXPECT_TRUE(parser.ParseFromString("Optional_Double: 10.0", &proto));
EXPECT_EQ(10.0, proto.optional_double());
EXPECT_TRUE(parser.ParseFromString("oPtIoNaLgRoUp { a: 15 }", &proto));
EXPECT_EQ(15, proto.optionalgroup().a());
}
TEST_F(TextFormatParserTest, InvalidFieldValues) {
// Invalid values for a double/float field.
ExpectFailure("optional_double: \"hello\"\n", "Expected double.", 1, 18);
ExpectFailure("optional_double: true\n", "Expected double.", 1, 18);
ExpectFailure("optional_double: !\n", "Expected double.", 1, 18);
ExpectFailure("optional_double {\n \n}\n", "Expected \":\", found \"{\".",
1, 17);
// Invalid values for a signed integer field.
ExpectFailure("optional_int32: \"hello\"\n", "Expected integer.", 1, 17);
ExpectFailure("optional_int32: true\n", "Expected integer.", 1, 17);
ExpectFailure("optional_int32: 4.5\n", "Expected integer.", 1, 17);
ExpectFailure("optional_int32: !\n", "Expected integer.", 1, 17);
ExpectFailure("optional_int32 {\n \n}\n", "Expected \":\", found \"{\".",
1, 16);
ExpectFailure("optional_int32: 0x80000000\n",
"Integer out of range.", 1, 17);
ExpectFailure("optional_int64: 0x8000000000000000\n",
"Integer out of range.", 1, 17);
ExpectFailure("optional_int32: -0x80000001\n",
"Integer out of range.", 1, 18);
ExpectFailure("optional_int64: -0x8000000000000001\n",
"Integer out of range.", 1, 18);
// Invalid values for an unsigned integer field.
ExpectFailure("optional_uint64: \"hello\"\n", "Expected integer.", 1, 18);
ExpectFailure("optional_uint64: true\n", "Expected integer.", 1, 18);
ExpectFailure("optional_uint64: 4.5\n", "Expected integer.", 1, 18);
ExpectFailure("optional_uint64: -5\n", "Expected integer.", 1, 18);
ExpectFailure("optional_uint64: !\n", "Expected integer.", 1, 18);
ExpectFailure("optional_uint64 {\n \n}\n", "Expected \":\", found \"{\".",
1, 17);
ExpectFailure("optional_uint32: 0x100000000\n",
"Integer out of range.", 1, 18);
ExpectFailure("optional_uint64: 0x10000000000000000\n",
"Integer out of range.", 1, 18);
// Invalid values for a boolean field.
ExpectFailure("optional_bool: \"hello\"\n", "Expected identifier.", 1, 16);
ExpectFailure("optional_bool: 5\n", "Integer out of range.", 1, 16);
ExpectFailure("optional_bool: -7.5\n", "Expected identifier.", 1, 16);
ExpectFailure("optional_bool: !\n", "Expected identifier.", 1, 16);
ExpectFailure(
"optional_bool: meh\n",
"Invalid value for boolean field \"optional_bool\". Value: \"meh\".",
2, 1);
ExpectFailure("optional_bool {\n \n}\n", "Expected \":\", found \"{\".",
1, 15);
// Invalid values for a string field.
ExpectFailure("optional_string: true\n", "Expected string.", 1, 18);
ExpectFailure("optional_string: 5\n", "Expected string.", 1, 18);
ExpectFailure("optional_string: -7.5\n", "Expected string.", 1, 18);
ExpectFailure("optional_string: !\n", "Expected string.", 1, 18);
ExpectFailure("optional_string {\n \n}\n", "Expected \":\", found \"{\".",
1, 17);
// Invalid values for an enumeration field.
ExpectFailure("optional_nested_enum: \"hello\"\n",
"Expected integer or identifier.", 1, 23);
// Valid token, but enum value is not defined.
ExpectFailure("optional_nested_enum: 5\n",
"Unknown enumeration value of \"5\" for field "
"\"optional_nested_enum\".", 2, 1);
// We consume the negative sign, so the error position starts one character
// later.
ExpectFailure("optional_nested_enum: -7.5\n", "Expected integer.", 1, 24);
ExpectFailure("optional_nested_enum: !\n",
"Expected integer or identifier.", 1, 23);
ExpectFailure(
"optional_nested_enum: grah\n",
"Unknown enumeration value of \"grah\" for field "
"\"optional_nested_enum\".", 2, 1);
ExpectFailure(
"optional_nested_enum {\n \n}\n",
"Expected \":\", found \"{\".", 1, 22);
}
TEST_F(TextFormatParserTest, MessageDelimiters) {
// Non-matching delimiters.
ExpectFailure("OptionalGroup <\n \n}\n", "Expected \">\", found \"}\".",
3, 1);
// Invalid delimiters.
ExpectFailure("OptionalGroup [\n \n]\n", "Expected \"{\", found \"[\".",
1, 15);
// Unending message.
ExpectFailure("optional_nested_message {\n \nbb: 118\n",
"Expected identifier.",
4, 1);
}
TEST_F(TextFormatParserTest, UnknownExtension) {
// Non-matching delimiters.
ExpectFailure("[blahblah]: 123",
"Extension \"blahblah\" is not defined or is not an "
"extension of \"protobuf_unittest.TestAllTypes\".",
1, 11);
}
TEST_F(TextFormatParserTest, MissingRequired) {
unittest::TestRequired message;
ExpectFailure("a: 1",
"Message missing required fields: b, c",
0, 1, &message);
}
TEST_F(TextFormatParserTest, ParseDuplicateRequired) {
unittest::TestRequired message;
ExpectFailure("a: 1 b: 2 c: 3 a: 1",
"Non-repeated field \"a\" is specified multiple times.",
1, 17, &message);
}
TEST_F(TextFormatParserTest, ParseDuplicateOptional) {
unittest::ForeignMessage message;
ExpectFailure("c: 1 c: 2",
"Non-repeated field \"c\" is specified multiple times.",
1, 7, &message);
}
TEST_F(TextFormatParserTest, MergeDuplicateRequired) {
unittest::TestRequired message;
TextFormat::Parser parser;
EXPECT_TRUE(parser.MergeFromString("a: 1 b: 2 c: 3 a: 4", &message));
EXPECT_EQ(4, message.a());
}
TEST_F(TextFormatParserTest, MergeDuplicateOptional) {
unittest::ForeignMessage message;
TextFormat::Parser parser;
EXPECT_TRUE(parser.MergeFromString("c: 1 c: 2", &message));
EXPECT_EQ(2, message.c());
}
TEST_F(TextFormatParserTest, ExplicitDelimiters) {
unittest::TestRequired message;
EXPECT_TRUE(TextFormat::ParseFromString("a:1,b:2;c:3", &message));
EXPECT_EQ(1, message.a());
EXPECT_EQ(2, message.b());
EXPECT_EQ(3, message.c());
}
TEST_F(TextFormatParserTest, PrintErrorsToStderr) {
vector<string> errors;
{
ScopedMemoryLog log;
unittest::TestAllTypes proto;
EXPECT_FALSE(TextFormat::ParseFromString("no_such_field: 1", &proto));
errors = log.GetMessages(ERROR);
}
ASSERT_EQ(1, errors.size());
EXPECT_EQ("Error parsing text-format protobuf_unittest.TestAllTypes: "
"1:14: Message type \"protobuf_unittest.TestAllTypes\" has no field "
"named \"no_such_field\".",
errors[0]);
}
TEST_F(TextFormatParserTest, FailsOnTokenizationError) {
vector<string> errors;
{
ScopedMemoryLog log;
unittest::TestAllTypes proto;
EXPECT_FALSE(TextFormat::ParseFromString("\020", &proto));
errors = log.GetMessages(ERROR);
}
ASSERT_EQ(1, errors.size());
EXPECT_EQ("Error parsing text-format protobuf_unittest.TestAllTypes: "
"1:1: Invalid control characters encountered in text.",
errors[0]);
}
TEST_F(TextFormatParserTest, ParseDeprecatedField) {
unittest::TestDeprecatedFields message;
ExpectMessage("deprecated_int32: 42",
"WARNING:text format contains deprecated field "
"\"deprecated_int32\"", 1, 21, &message, true);
}
class TextFormatMessageSetTest : public testing::Test {
protected:
static const char proto_debug_string_[];
};
const char TextFormatMessageSetTest::proto_debug_string_[] =
"message_set {\n"
" [protobuf_unittest.TestMessageSetExtension1] {\n"
" i: 23\n"
" }\n"
" [protobuf_unittest.TestMessageSetExtension2] {\n"
" str: \"foo\"\n"
" }\n"
"}\n";
TEST_F(TextFormatMessageSetTest, Serialize) {
protobuf_unittest::TestMessageSetContainer proto;
protobuf_unittest::TestMessageSetExtension1* item_a =
proto.mutable_message_set()->MutableExtension(
protobuf_unittest::TestMessageSetExtension1::message_set_extension);
item_a->set_i(23);
protobuf_unittest::TestMessageSetExtension2* item_b =
proto.mutable_message_set()->MutableExtension(
protobuf_unittest::TestMessageSetExtension2::message_set_extension);
item_b->set_str("foo");
EXPECT_EQ(proto_debug_string_, proto.DebugString());
}
TEST_F(TextFormatMessageSetTest, Deserialize) {
protobuf_unittest::TestMessageSetContainer proto;
ASSERT_TRUE(TextFormat::ParseFromString(proto_debug_string_, &proto));
EXPECT_EQ(23, proto.message_set().GetExtension(
protobuf_unittest::TestMessageSetExtension1::message_set_extension).i());
EXPECT_EQ("foo", proto.message_set().GetExtension(
protobuf_unittest::TestMessageSetExtension2::message_set_extension).str());
// Ensure that these are the only entries present.
vector<const FieldDescriptor*> descriptors;
proto.message_set().GetReflection()->ListFields(
proto.message_set(), &descriptors);
EXPECT_EQ(2, descriptors.size());
}
} // namespace text_format_unittest
} // namespace protobuf
} // namespace google