blob: 272e6b268ab2817a1c61dcd380cc7e3c952d5d3c [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "google/protobuf/arena.h"
#include <time.h>
#include <algorithm>
#include <array>
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <memory>
#include <new> // IWYU pragma: keep for operator new
#include <string>
#include <thread>
#include <type_traits>
#include <utility>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/barrier.h"
#include "absl/utility/utility.h"
#include "google/protobuf/arena_cleanup.h"
#include "google/protobuf/arena_test_util.h"
#include "google/protobuf/descriptor.h"
#include "google/protobuf/extension_set.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream_impl_lite.h"
#include "google/protobuf/message.h"
#include "google/protobuf/message_lite.h"
#include "google/protobuf/port.h"
#include "google/protobuf/repeated_field.h"
#include "google/protobuf/test_util.h"
#include "google/protobuf/unittest.pb.h"
#include "google/protobuf/unittest_arena.pb.h"
#include "google/protobuf/unknown_field_set.h"
#include "google/protobuf/wire_format_lite.h"
#include "absl/synchronization/mutex.h"
// Must be included last
#include "google/protobuf/port_def.inc"
using proto2_arena_unittest::ArenaMessage;
using protobuf_unittest::NestedTestAllTypes;
using protobuf_unittest::TestAllExtensions;
using protobuf_unittest::TestAllTypes;
using protobuf_unittest::TestEmptyMessage;
using protobuf_unittest::TestOneof2;
using protobuf_unittest::TestRepeatedString;
using ::testing::ElementsAreArray;
namespace google {
namespace protobuf {
class Notifier {
public:
Notifier() : count_(0) {}
void Notify() { count_++; }
int GetCount() { return count_; }
private:
int count_;
};
class SimpleDataType {
public:
SimpleDataType() : notifier_(nullptr) {}
void SetNotifier(Notifier* notifier) { notifier_ = notifier; }
virtual ~SimpleDataType() {
if (notifier_ != nullptr) {
notifier_->Notify();
}
};
private:
Notifier* notifier_;
};
// A simple class that does not allow copying and so cannot be used as a
// parameter type without "const &".
class PleaseDontCopyMe {
public:
explicit PleaseDontCopyMe(int value) : value_(value) {}
PleaseDontCopyMe(const PleaseDontCopyMe&) = delete;
PleaseDontCopyMe& operator=(const PleaseDontCopyMe&) = delete;
int value() const { return value_; }
private:
int value_;
};
// A class that takes four different types as constructor arguments.
class MustBeConstructedWithOneThroughFour {
public:
MustBeConstructedWithOneThroughFour(int one, const char* two,
const std::string& three,
const PleaseDontCopyMe* four)
: one_(one), two_(two), three_(three), four_(four) {}
MustBeConstructedWithOneThroughFour(
const MustBeConstructedWithOneThroughFour&) = delete;
MustBeConstructedWithOneThroughFour& operator=(
const MustBeConstructedWithOneThroughFour&) = delete;
int one_;
const char* const two_;
std::string three_;
const PleaseDontCopyMe* four_;
};
// A class that takes eight different types as constructor arguments.
class MustBeConstructedWithOneThroughEight {
public:
MustBeConstructedWithOneThroughEight(int one, const char* two,
const std::string& three,
const PleaseDontCopyMe* four, int five,
const char* six,
const std::string& seven,
const std::string& eight)
: one_(one),
two_(two),
three_(three),
four_(four),
five_(five),
six_(six),
seven_(seven),
eight_(eight) {}
MustBeConstructedWithOneThroughEight(
const MustBeConstructedWithOneThroughEight&) = delete;
MustBeConstructedWithOneThroughEight& operator=(
const MustBeConstructedWithOneThroughEight&) = delete;
int one_;
const char* const two_;
std::string three_;
const PleaseDontCopyMe* four_;
int five_;
const char* const six_;
std::string seven_;
std::string eight_;
};
TEST(ArenaTest, ArenaConstructable) {
EXPECT_TRUE(Arena::is_arena_constructable<TestAllTypes>::type::value);
EXPECT_TRUE(Arena::is_arena_constructable<const TestAllTypes>::type::value);
EXPECT_FALSE(Arena::is_arena_constructable<Arena>::type::value);
}
TEST(ArenaTest, DestructorSkippable) {
EXPECT_TRUE(Arena::is_destructor_skippable<TestAllTypes>::type::value);
EXPECT_TRUE(Arena::is_destructor_skippable<const TestAllTypes>::type::value);
EXPECT_FALSE(Arena::is_destructor_skippable<Arena>::type::value);
}
template <int>
struct EmptyBase {};
struct ArenaCtorBase {
using InternalArenaConstructable_ = void;
};
struct ArenaDtorBase {
using DestructorSkippable_ = void;
};
template <bool arena_ctor, bool arena_dtor>
void TestCtorAndDtorTraits(std::vector<absl::string_view> def,
std::vector<absl::string_view> copy,
std::vector<absl::string_view> with_int) {
static auto& actions = *new std::vector<absl::string_view>;
struct TraitsProber
: std::conditional_t<arena_ctor, ArenaCtorBase, EmptyBase<0>>,
std::conditional_t<arena_dtor, ArenaDtorBase, EmptyBase<1>>,
Message {
TraitsProber() : Message(nullptr, nullptr) { actions.push_back("()"); }
TraitsProber(const TraitsProber&) : Message(nullptr, nullptr) {
actions.push_back("(const T&)");
}
explicit TraitsProber(int) : Message(nullptr, nullptr) {
actions.push_back("(int)");
}
explicit TraitsProber(Arena* arena) : Message(nullptr, nullptr) {
actions.push_back("(Arena)");
}
TraitsProber(Arena* arena, const TraitsProber&)
: Message(nullptr, nullptr) {
actions.push_back("(Arena, const T&)");
}
TraitsProber(Arena* arena, int) : Message(nullptr, nullptr) {
actions.push_back("(Arena, int)");
}
~TraitsProber() { actions.push_back("~()"); }
TraitsProber* New(Arena*) const {
ABSL_LOG(FATAL);
return nullptr;
}
const internal::ClassData* GetClassData() const PROTOBUF_FINAL {
ABSL_LOG(FATAL);
return nullptr;
}
};
static_assert(
!arena_ctor || Arena::is_arena_constructable<TraitsProber>::value, "");
static_assert(
!arena_dtor || Arena::is_destructor_skippable<TraitsProber>::value, "");
{
actions.clear();
Arena arena;
Arena::Create<TraitsProber>(&arena);
}
EXPECT_THAT(actions, ElementsAreArray(def));
const TraitsProber p;
{
actions.clear();
Arena arena;
Arena::Create<TraitsProber>(&arena, p);
}
EXPECT_THAT(actions, ElementsAreArray(copy));
{
actions.clear();
Arena arena;
Arena::Create<TraitsProber>(&arena, 17);
}
EXPECT_THAT(actions, ElementsAreArray(with_int));
}
TEST(ArenaTest, AllConstructibleAndDestructibleCombinationsWorkCorrectly) {
TestCtorAndDtorTraits<false, false>({"()", "~()"}, {"(const T&)", "~()"},
{"(int)", "~()"});
// If the object is not arena constructible, then the destructor is always
// called even if marked as skippable.
TestCtorAndDtorTraits<false, true>({"()", "~()"}, {"(const T&)", "~()"},
{"(int)", "~()"});
// Some types are arena constructible but we can't skip the destructor. Those
// are constructed with an arena but still destroyed.
TestCtorAndDtorTraits<true, false>({"(Arena)", "~()"},
{"(Arena, const T&)", "~()"},
{"(Arena, int)", "~()"});
TestCtorAndDtorTraits<true, true>({"(Arena)"}, {"(Arena, const T&)"},
{"(Arena, int)"});
}
TEST(ArenaTest, BasicCreate) {
Arena arena;
EXPECT_TRUE(Arena::Create<int32_t>(&arena) != nullptr);
EXPECT_TRUE(Arena::Create<int64_t>(&arena) != nullptr);
EXPECT_TRUE(Arena::Create<float>(&arena) != nullptr);
EXPECT_TRUE(Arena::Create<double>(&arena) != nullptr);
EXPECT_TRUE(Arena::Create<std::string>(&arena) != nullptr);
arena.Own(new int32_t);
arena.Own(new int64_t);
arena.Own(new float);
arena.Own(new double);
arena.Own(new std::string);
arena.Own<int>(nullptr);
Notifier notifier;
SimpleDataType* data = Arena::Create<SimpleDataType>(&arena);
data->SetNotifier(&notifier);
data = new SimpleDataType;
data->SetNotifier(&notifier);
arena.Own(data);
arena.Reset();
EXPECT_EQ(2, notifier.GetCount());
}
TEST(ArenaTest, CreateAndConstCopy) {
Arena arena;
const std::string s("foo");
const std::string* s_copy = Arena::Create<std::string>(&arena, s);
EXPECT_TRUE(s_copy != nullptr);
EXPECT_EQ("foo", s);
EXPECT_EQ("foo", *s_copy);
}
TEST(ArenaTest, CreateAndNonConstCopy) {
Arena arena;
std::string s("foo");
const std::string* s_copy = Arena::Create<std::string>(&arena, s);
EXPECT_TRUE(s_copy != nullptr);
EXPECT_EQ("foo", s);
EXPECT_EQ("foo", *s_copy);
}
TEST(ArenaTest, CreateAndMove) {
Arena arena;
std::string s("foo");
const std::string* s_move = Arena::Create<std::string>(&arena, std::move(s));
EXPECT_TRUE(s_move != nullptr);
EXPECT_TRUE(s.empty()); // NOLINT
EXPECT_EQ("foo", *s_move);
}
TEST(ArenaTest, CreateWithFourConstructorArguments) {
Arena arena;
const std::string three("3");
const PleaseDontCopyMe four(4);
const MustBeConstructedWithOneThroughFour* new_object =
Arena::Create<MustBeConstructedWithOneThroughFour>(&arena, 1, "2", three,
&four);
EXPECT_TRUE(new_object != nullptr);
ASSERT_EQ(1, new_object->one_);
ASSERT_STREQ("2", new_object->two_);
ASSERT_EQ("3", new_object->three_);
ASSERT_EQ(4, new_object->four_->value());
}
TEST(ArenaTest, CreateWithEightConstructorArguments) {
Arena arena;
const std::string three("3");
const PleaseDontCopyMe four(4);
const std::string seven("7");
const std::string eight("8");
const MustBeConstructedWithOneThroughEight* new_object =
Arena::Create<MustBeConstructedWithOneThroughEight>(
&arena, 1, "2", three, &four, 5, "6", seven, eight);
EXPECT_TRUE(new_object != nullptr);
ASSERT_EQ(1, new_object->one_);
ASSERT_STREQ("2", new_object->two_);
ASSERT_EQ("3", new_object->three_);
ASSERT_EQ(4, new_object->four_->value());
ASSERT_EQ(5, new_object->five_);
ASSERT_STREQ("6", new_object->six_);
ASSERT_EQ("7", new_object->seven_);
ASSERT_EQ("8", new_object->eight_);
}
class PleaseMoveMe {
public:
explicit PleaseMoveMe(const std::string& value) : value_(value) {}
PleaseMoveMe(PleaseMoveMe&&) = default;
PleaseMoveMe(const PleaseMoveMe&) = delete;
const std::string& value() const { return value_; }
private:
std::string value_;
};
TEST(ArenaTest, CreateWithMoveArguments) {
Arena arena;
PleaseMoveMe one("1");
const PleaseMoveMe* new_object =
Arena::Create<PleaseMoveMe>(&arena, std::move(one));
EXPECT_TRUE(new_object);
ASSERT_EQ("1", new_object->value());
}
TEST(ArenaTest, InitialBlockTooSmall) {
// Construct a small blocks of memory to be used by the arena allocator; then,
// allocate an object which will not fit in the initial block.
for (uint32_t size = 0; size <= internal::SerialArena::kBlockHeaderSize + 32;
size++) {
std::vector<char> arena_block(size);
ArenaOptions options;
options.initial_block = arena_block.data();
options.initial_block_size = arena_block.size();
// Try sometimes with non-default block sizes so that we exercise paths
// with and without ArenaImpl::Options.
if ((size % 2) != 0) {
options.start_block_size += 8;
}
Arena arena(options);
char* p = Arena::CreateArray<char>(&arena, 96);
uintptr_t allocation = reinterpret_cast<uintptr_t>(p);
// Ensure that the arena allocator did not return memory pointing into the
// initial block of memory.
uintptr_t arena_start = reinterpret_cast<uintptr_t>(arena_block.data());
uintptr_t arena_end = arena_start + arena_block.size();
EXPECT_FALSE(allocation >= arena_start && allocation < arena_end);
// Write to the memory we allocated; this should (but is not guaranteed to)
// trigger a check for heap corruption if the object was allocated from the
// initially-provided block.
memset(p, '\0', 96);
}
}
TEST(ArenaTest, CreateDestroy) {
TestAllTypes original;
TestUtil::SetAllFields(&original);
// Test memory leak.
Arena arena;
TestAllTypes* heap_message = Arena::Create<TestAllTypes>(nullptr);
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
*heap_message = original;
*arena_message = original;
Arena::Destroy(heap_message);
Arena::Destroy(arena_message);
// The arena message should still exist.
EXPECT_EQ(strlen(original.optional_string().c_str()),
strlen(arena_message->optional_string().c_str()));
}
TEST(ArenaTest, MoveCtorOnArena) {
Arena arena;
ASSERT_EQ(arena.SpaceUsed(), 0);
auto* original = Arena::Create<NestedTestAllTypes>(&arena);
TestUtil::SetAllFields(original->mutable_payload());
TestUtil::ExpectAllFieldsSet(original->payload());
auto usage_original = arena.SpaceUsed();
auto* moved = Arena::Create<NestedTestAllTypes>(&arena, std::move(*original));
auto usage_by_move = arena.SpaceUsed() - usage_original;
TestUtil::ExpectAllFieldsSet(moved->payload());
// The only extra allocation with moves is sizeof(NestedTestAllTypes).
EXPECT_EQ(usage_by_move, sizeof(NestedTestAllTypes));
EXPECT_LT(usage_by_move + sizeof(TestAllTypes), usage_original);
// Status after move is unspecified and must not be assumed. It's merely
// checking current implementation specifics for protobuf internal.
TestUtil::ExpectClear(original->payload());
}
TEST(ArenaTest, RepeatedFieldMoveCtorOnArena) {
Arena arena;
auto* original = Arena::Create<RepeatedField<int32_t>>(&arena);
original->Add(1);
original->Add(2);
ASSERT_EQ(original->size(), 2);
ASSERT_EQ(original->Get(0), 1);
ASSERT_EQ(original->Get(1), 2);
auto* moved =
Arena::Create<RepeatedField<int32_t>>(&arena, std::move(*original));
EXPECT_EQ(moved->size(), 2);
EXPECT_EQ(moved->Get(0), 1);
EXPECT_EQ(moved->Get(1), 2);
// Status after move is unspecified and must not be assumed. It's merely
// checking current implementation specifics for protobuf internal.
EXPECT_EQ(original->size(), 0);
}
TEST(ArenaTest, RepeatedPtrFieldMoveCtorOnArena) {
Arena arena;
ASSERT_EQ(arena.SpaceUsed(), 0);
auto* original = Arena::Create<RepeatedPtrField<TestAllTypes>>(&arena);
auto* msg = original->Add();
TestUtil::SetAllFields(msg);
TestUtil::ExpectAllFieldsSet(*msg);
auto usage_original = arena.SpaceUsed();
auto* moved = Arena::Create<RepeatedPtrField<TestAllTypes>>(
&arena, std::move(*original));
auto usage_by_move = arena.SpaceUsed() - usage_original;
EXPECT_EQ(moved->size(), 1);
TestUtil::ExpectAllFieldsSet(moved->Get(0));
// The only extra allocation with moves is sizeof(RepeatedPtrField).
EXPECT_EQ(usage_by_move, sizeof(internal::RepeatedPtrFieldBase));
EXPECT_LT(usage_by_move + sizeof(TestAllTypes), usage_original);
// Status after move is unspecified and must not be assumed. It's merely
// checking current implementation specifics for protobuf internal.
EXPECT_EQ(original->size(), 0);
}
struct OnlyArenaConstructible {
using InternalArenaConstructable_ = void;
explicit OnlyArenaConstructible(Arena* arena) {}
};
TEST(ArenaTest, ArenaOnlyTypesCanBeConstructed) {
Arena arena;
Arena::Create<OnlyArenaConstructible>(&arena);
}
TEST(ArenaTest, GetConstructTypeWorks) {
using T = TestAllTypes;
using Peer = internal::ArenaTestPeer;
using CT = typename Peer::ConstructType;
EXPECT_EQ(CT::kDefault, (Peer::GetConstructType<T>()));
EXPECT_EQ(CT::kCopy, (Peer::GetConstructType<T, const T&>()));
EXPECT_EQ(CT::kCopy, (Peer::GetConstructType<T, T&>()));
EXPECT_EQ(CT::kCopy, (Peer::GetConstructType<T, const T&&>()));
EXPECT_EQ(CT::kMove, (Peer::GetConstructType<T, T&&>()));
EXPECT_EQ(CT::kUnknown, (Peer::GetConstructType<T, double&>()));
EXPECT_EQ(CT::kUnknown, (Peer::GetConstructType<T, T&, T&>()));
// For non-protos, it's always unknown
EXPECT_EQ(CT::kUnknown, (Peer::GetConstructType<int, const int&>()));
}
#ifdef __cpp_if_constexpr
class DispatcherTestProto : public Message {
public:
using InternalArenaConstructable_ = void;
using DestructorSkippable_ = void;
// For the test below to construct.
explicit DispatcherTestProto(absl::in_place_t) : Message(nullptr, nullptr) {}
explicit DispatcherTestProto(Arena*) : Message(nullptr, nullptr) {
ABSL_LOG(FATAL);
}
DispatcherTestProto(Arena*, const DispatcherTestProto&)
: Message(nullptr, nullptr) {
ABSL_LOG(FATAL);
}
const internal::ClassData* GetClassData() const PROTOBUF_FINAL {
ABSL_LOG(FATAL);
}
};
// We use a specialization to inject behavior for the test.
// This test is very intrusive and will have to be fixed if we change the
// implementation of CreateMessage.
absl::string_view hook_called;
template <>
void* Arena::DefaultConstruct<DispatcherTestProto>(Arena*) {
hook_called = "default";
return nullptr;
}
template <>
void* Arena::CopyConstruct<DispatcherTestProto>(Arena*, const void*) {
hook_called = "copy";
return nullptr;
}
template <>
DispatcherTestProto* Arena::CreateArenaCompatible<DispatcherTestProto, int>(
Arena*, int&&) {
hook_called = "fallback";
return nullptr;
}
TEST(ArenaTest, CreateArenaConstructable) {
TestAllTypes original;
TestUtil::SetAllFields(&original);
Arena arena;
auto copied = Arena::Create<TestAllTypes>(&arena, original);
TestUtil::ExpectAllFieldsSet(*copied);
EXPECT_EQ(copied->GetArena(), &arena);
EXPECT_EQ(copied->optional_nested_message().GetArena(), &arena);
}
TEST(ArenaTest, CreateRepeatedPtrField) {
Arena arena;
auto repeated = Arena::Create<RepeatedPtrField<TestAllTypes>>(&arena);
TestUtil::SetAllFields(repeated->Add());
TestUtil::ExpectAllFieldsSet(repeated->Get(0));
EXPECT_EQ(repeated->GetArena(), &arena);
EXPECT_EQ(repeated->Get(0).GetArena(), &arena);
EXPECT_EQ(repeated->Get(0).optional_nested_message().GetArena(), &arena);
}
TEST(ArenaTest, CreateMessageDispatchesToSpecialFunctions) {
hook_called = "";
Arena::Create<DispatcherTestProto>(nullptr);
EXPECT_EQ(hook_called, "default");
DispatcherTestProto ref(absl::in_place);
const DispatcherTestProto& cref = ref;
hook_called = "";
Arena::Create<DispatcherTestProto>(nullptr);
EXPECT_EQ(hook_called, "default");
hook_called = "";
Arena::Create<DispatcherTestProto>(nullptr, ref);
EXPECT_EQ(hook_called, "copy");
hook_called = "";
Arena::Create<DispatcherTestProto>(nullptr, cref);
EXPECT_EQ(hook_called, "copy");
hook_called = "";
Arena::Create<DispatcherTestProto>(nullptr, 1);
EXPECT_EQ(hook_called, "fallback");
}
#endif // __cpp_if_constexpr
TEST(ArenaTest, Parsing) {
TestAllTypes original;
TestUtil::SetAllFields(&original);
// Test memory leak.
Arena arena;
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
arena_message->ParseFromString(original.SerializeAsString());
TestUtil::ExpectAllFieldsSet(*arena_message);
// Test that string fields have nul terminator bytes (earlier bug).
EXPECT_EQ(strlen(original.optional_string().c_str()),
strlen(arena_message->optional_string().c_str()));
}
TEST(ArenaTest, UnknownFields) {
TestAllTypes original;
TestUtil::SetAllFields(&original);
// Test basic parsing into (populating) and reading out of unknown fields on
// an arena.
Arena arena;
TestEmptyMessage* arena_message = Arena::Create<TestEmptyMessage>(&arena);
arena_message->ParseFromString(original.SerializeAsString());
TestAllTypes copied;
copied.ParseFromString(arena_message->SerializeAsString());
TestUtil::ExpectAllFieldsSet(copied);
// Exercise UFS manual manipulation (setters).
arena_message = Arena::Create<TestEmptyMessage>(&arena);
arena_message->mutable_unknown_fields()->AddVarint(
TestAllTypes::kOptionalInt32FieldNumber, 42);
copied.Clear();
copied.ParseFromString(arena_message->SerializeAsString());
EXPECT_TRUE(copied.has_optional_int32());
EXPECT_EQ(42, copied.optional_int32());
// Exercise UFS swap path.
TestEmptyMessage* arena_message_2 = Arena::Create<TestEmptyMessage>(&arena);
arena_message_2->Swap(arena_message);
copied.Clear();
copied.ParseFromString(arena_message_2->SerializeAsString());
EXPECT_TRUE(copied.has_optional_int32());
EXPECT_EQ(42, copied.optional_int32());
// Test field manipulation.
TestEmptyMessage* arena_message_3 = Arena::Create<TestEmptyMessage>(&arena);
arena_message_3->mutable_unknown_fields()->AddVarint(1000, 42);
arena_message_3->mutable_unknown_fields()->AddFixed32(1001, 42);
arena_message_3->mutable_unknown_fields()->AddFixed64(1002, 42);
arena_message_3->mutable_unknown_fields()->AddLengthDelimited(1003, "");
arena_message_3->mutable_unknown_fields()->DeleteSubrange(0, 2);
arena_message_3->mutable_unknown_fields()->DeleteByNumber(1002);
arena_message_3->mutable_unknown_fields()->DeleteByNumber(1003);
EXPECT_TRUE(arena_message_3->unknown_fields().empty());
}
TEST(ArenaTest, Swap) {
Arena arena1;
Arena arena2;
TestAllTypes* arena1_message;
TestAllTypes* arena2_message;
// Case 1: Swap(), no UFS on either message, both messages on different
// arenas. Arena pointers should remain the same after swap.
arena1_message = Arena::Create<TestAllTypes>(&arena1);
arena2_message = Arena::Create<TestAllTypes>(&arena2);
arena1_message->Swap(arena2_message);
EXPECT_EQ(&arena1, arena1_message->GetArena());
EXPECT_EQ(&arena2, arena2_message->GetArena());
// Case 2: Swap(), UFS on one message, both messages on different arenas.
arena1_message = Arena::Create<TestAllTypes>(&arena1);
arena2_message = Arena::Create<TestAllTypes>(&arena2);
arena1_message->mutable_unknown_fields()->AddVarint(1, 42);
arena1_message->Swap(arena2_message);
EXPECT_EQ(&arena1, arena1_message->GetArena());
EXPECT_EQ(&arena2, arena2_message->GetArena());
EXPECT_EQ(0, arena1_message->unknown_fields().field_count());
EXPECT_EQ(1, arena2_message->unknown_fields().field_count());
EXPECT_EQ(42, arena2_message->unknown_fields().field(0).varint());
// Case 3: Swap(), UFS on both messages, both messages on different arenas.
arena1_message = Arena::Create<TestAllTypes>(&arena1);
arena2_message = Arena::Create<TestAllTypes>(&arena2);
arena1_message->mutable_unknown_fields()->AddVarint(1, 42);
arena2_message->mutable_unknown_fields()->AddVarint(2, 84);
arena1_message->Swap(arena2_message);
EXPECT_EQ(&arena1, arena1_message->GetArena());
EXPECT_EQ(&arena2, arena2_message->GetArena());
EXPECT_EQ(1, arena1_message->unknown_fields().field_count());
EXPECT_EQ(1, arena2_message->unknown_fields().field_count());
EXPECT_EQ(84, arena1_message->unknown_fields().field(0).varint());
EXPECT_EQ(42, arena2_message->unknown_fields().field(0).varint());
}
TEST(ArenaTest, ReflectionSwapFields) {
Arena arena1;
Arena arena2;
TestAllTypes* arena1_message;
TestAllTypes* arena2_message;
// Case 1: messages on different arenas, only one message is set.
arena1_message = Arena::Create<TestAllTypes>(&arena1);
arena2_message = Arena::Create<TestAllTypes>(&arena2);
TestUtil::SetAllFields(arena1_message);
const Reflection* reflection = arena1_message->GetReflection();
std::vector<const FieldDescriptor*> fields;
reflection->ListFields(*arena1_message, &fields);
reflection->SwapFields(arena1_message, arena2_message, fields);
EXPECT_EQ(&arena1, arena1_message->GetArena());
EXPECT_EQ(&arena2, arena2_message->GetArena());
std::string output;
arena1_message->SerializeToString(&output);
EXPECT_EQ(0, output.size());
TestUtil::ExpectAllFieldsSet(*arena2_message);
reflection->SwapFields(arena1_message, arena2_message, fields);
arena2_message->SerializeToString(&output);
EXPECT_EQ(0, output.size());
TestUtil::ExpectAllFieldsSet(*arena1_message);
// Case 2: messages on different arenas, both messages are set.
arena1_message = Arena::Create<TestAllTypes>(&arena1);
arena2_message = Arena::Create<TestAllTypes>(&arena2);
TestUtil::SetAllFields(arena1_message);
TestUtil::SetAllFields(arena2_message);
reflection->SwapFields(arena1_message, arena2_message, fields);
EXPECT_EQ(&arena1, arena1_message->GetArena());
EXPECT_EQ(&arena2, arena2_message->GetArena());
TestUtil::ExpectAllFieldsSet(*arena1_message);
TestUtil::ExpectAllFieldsSet(*arena2_message);
// Case 3: messages on different arenas with different lifetimes.
arena1_message = Arena::Create<TestAllTypes>(&arena1);
{
Arena arena3;
TestAllTypes* arena3_message = Arena::Create<TestAllTypes>(&arena3);
TestUtil::SetAllFields(arena3_message);
reflection->SwapFields(arena1_message, arena3_message, fields);
}
TestUtil::ExpectAllFieldsSet(*arena1_message);
// Case 4: one message on arena, the other on heap.
arena1_message = Arena::Create<TestAllTypes>(&arena1);
TestAllTypes message;
TestUtil::SetAllFields(arena1_message);
reflection->SwapFields(arena1_message, &message, fields);
EXPECT_EQ(&arena1, arena1_message->GetArena());
EXPECT_EQ(nullptr, message.GetArena());
arena1_message->SerializeToString(&output);
EXPECT_EQ(0, output.size());
TestUtil::ExpectAllFieldsSet(message);
}
TEST(ArenaTest, SetAllocatedMessage) {
Arena arena;
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
TestAllTypes::NestedMessage* nested = new TestAllTypes::NestedMessage;
nested->set_bb(118);
arena_message->set_allocated_optional_nested_message(nested);
EXPECT_EQ(118, arena_message->optional_nested_message().bb());
}
TEST(ArenaTest, ReleaseMessage) {
Arena arena;
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
arena_message->mutable_optional_nested_message()->set_bb(118);
std::unique_ptr<TestAllTypes::NestedMessage> nested(
arena_message->release_optional_nested_message());
EXPECT_EQ(118, nested->bb());
TestAllTypes::NestedMessage* released_null =
arena_message->release_optional_nested_message();
EXPECT_EQ(nullptr, released_null);
}
TEST(ArenaTest, SetAllocatedString) {
Arena arena;
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
std::string* allocated_str = new std::string("hello");
arena_message->set_allocated_optional_string(allocated_str);
EXPECT_EQ("hello", arena_message->optional_string());
}
TEST(ArenaTest, ReleaseString) {
Arena arena;
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
arena_message->set_optional_string("hello");
std::unique_ptr<std::string> released_str(
arena_message->release_optional_string());
EXPECT_EQ("hello", *released_str);
// Test default value.
}
TEST(ArenaTest, SwapBetweenArenasWithAllFieldsSet) {
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
{
Arena arena2;
TestAllTypes* arena2_message = Arena::Create<TestAllTypes>(&arena2);
TestUtil::SetAllFields(arena2_message);
arena2_message->Swap(arena1_message);
std::string output;
arena2_message->SerializeToString(&output);
EXPECT_EQ(0, output.size());
}
TestUtil::ExpectAllFieldsSet(*arena1_message);
}
TEST(ArenaTest, SwapBetweenArenaAndNonArenaWithAllFieldsSet) {
TestAllTypes non_arena_message;
TestUtil::SetAllFields(&non_arena_message);
{
Arena arena2;
TestAllTypes* arena2_message = Arena::Create<TestAllTypes>(&arena2);
TestUtil::SetAllFields(arena2_message);
arena2_message->Swap(&non_arena_message);
TestUtil::ExpectAllFieldsSet(*arena2_message);
TestUtil::ExpectAllFieldsSet(non_arena_message);
}
}
TEST(ArenaTest, UnsafeArenaSwap) {
Arena shared_arena;
TestAllTypes* message1 = Arena::Create<TestAllTypes>(&shared_arena);
TestAllTypes* message2 = Arena::Create<TestAllTypes>(&shared_arena);
TestUtil::SetAllFields(message1);
message1->UnsafeArenaSwap(message2);
TestUtil::ExpectAllFieldsSet(*message2);
}
TEST(ArenaTest, SwapBetweenArenasUsingReflection) {
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
{
Arena arena2;
TestAllTypes* arena2_message = Arena::Create<TestAllTypes>(&arena2);
TestUtil::SetAllFields(arena2_message);
const Reflection* r = arena2_message->GetReflection();
r->Swap(arena1_message, arena2_message);
std::string output;
arena2_message->SerializeToString(&output);
EXPECT_EQ(0, output.size());
}
TestUtil::ExpectAllFieldsSet(*arena1_message);
}
TEST(ArenaTest, SwapBetweenArenaAndNonArenaUsingReflection) {
TestAllTypes non_arena_message;
TestUtil::SetAllFields(&non_arena_message);
{
Arena arena2;
TestAllTypes* arena2_message = Arena::Create<TestAllTypes>(&arena2);
TestUtil::SetAllFields(arena2_message);
const Reflection* r = arena2_message->GetReflection();
r->Swap(&non_arena_message, arena2_message);
TestUtil::ExpectAllFieldsSet(*arena2_message);
TestUtil::ExpectAllFieldsSet(non_arena_message);
}
}
TEST(ArenaTest, ReleaseFromArenaMessageMakesCopy) {
TestAllTypes::NestedMessage* nested_msg = nullptr;
std::string* nested_string = nullptr;
{
Arena arena;
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
arena_message->mutable_optional_nested_message()->set_bb(42);
*arena_message->mutable_optional_string() = "Hello";
nested_msg = arena_message->release_optional_nested_message();
nested_string = arena_message->release_optional_string();
}
EXPECT_EQ(42, nested_msg->bb());
EXPECT_EQ("Hello", *nested_string);
delete nested_msg;
delete nested_string;
}
#if PROTOBUF_RTTI
TEST(ArenaTest, ReleaseFromArenaMessageUsingReflectionMakesCopy) {
TestAllTypes::NestedMessage* nested_msg = nullptr;
// Note: no string: reflection API only supports releasing submessages.
{
Arena arena;
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
arena_message->mutable_optional_nested_message()->set_bb(42);
const Reflection* r = arena_message->GetReflection();
const FieldDescriptor* f = arena_message->GetDescriptor()->FindFieldByName(
"optional_nested_message");
nested_msg = DownCastMessage<TestAllTypes::NestedMessage>(
r->ReleaseMessage(arena_message, f));
}
EXPECT_EQ(42, nested_msg->bb());
delete nested_msg;
}
#endif // PROTOBUF_RTTI
TEST(ArenaTest, SetAllocatedAcrossArenas) {
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
TestAllTypes::NestedMessage* heap_submessage =
new TestAllTypes::NestedMessage();
heap_submessage->set_bb(42);
arena1_message->set_allocated_optional_nested_message(heap_submessage);
// Should keep same object and add to arena's Own()-list.
EXPECT_EQ(heap_submessage, arena1_message->mutable_optional_nested_message());
{
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
#if GTEST_HAS_DEATH_TEST
EXPECT_DEBUG_DEATH(arena1_message->set_allocated_optional_nested_message(
arena2_submessage),
"submessage_arena");
#endif
EXPECT_NE(arena2_submessage,
arena1_message->mutable_optional_nested_message());
}
TestAllTypes::NestedMessage* arena1_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena1);
arena1_submessage->set_bb(42);
TestAllTypes* heap_message = new TestAllTypes;
#if GTEST_HAS_DEATH_TEST
EXPECT_DEBUG_DEATH(
heap_message->set_allocated_optional_nested_message(arena1_submessage),
"submessage_arena");
#endif
EXPECT_NE(arena1_submessage, heap_message->mutable_optional_nested_message());
delete heap_message;
}
TEST(ArenaTest, UnsafeArenaSetAllocatedAcrossArenas) {
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
{
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
arena1_message->unsafe_arena_set_allocated_optional_nested_message(
arena2_submessage);
EXPECT_EQ(arena2_submessage,
arena1_message->mutable_optional_nested_message());
EXPECT_EQ(arena2_submessage,
arena1_message->unsafe_arena_release_optional_nested_message());
}
TestAllTypes::NestedMessage* arena1_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena1);
arena1_submessage->set_bb(42);
TestAllTypes* heap_message = new TestAllTypes;
heap_message->unsafe_arena_set_allocated_optional_nested_message(
arena1_submessage);
EXPECT_EQ(arena1_submessage, heap_message->mutable_optional_nested_message());
EXPECT_EQ(arena1_submessage,
heap_message->unsafe_arena_release_optional_nested_message());
delete heap_message;
}
TEST(ArenaTest, SetAllocatedAcrossArenasWithReflection) {
// Same as above, with reflection.
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
const Reflection* r = arena1_message->GetReflection();
const Descriptor* d = arena1_message->GetDescriptor();
const FieldDescriptor* msg_field =
d->FindFieldByName("optional_nested_message");
TestAllTypes::NestedMessage* heap_submessage =
new TestAllTypes::NestedMessage();
heap_submessage->set_bb(42);
r->SetAllocatedMessage(arena1_message, heap_submessage, msg_field);
// Should keep same object and add to arena's Own()-list.
EXPECT_EQ(heap_submessage, arena1_message->mutable_optional_nested_message());
{
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
#if GTEST_HAS_DEATH_TEST
EXPECT_DEBUG_DEATH(
r->SetAllocatedMessage(arena1_message, arena2_submessage, msg_field),
"GetArena");
#endif
EXPECT_NE(arena2_submessage,
arena1_message->mutable_optional_nested_message());
}
TestAllTypes::NestedMessage* arena1_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena1);
arena1_submessage->set_bb(42);
TestAllTypes* heap_message = new TestAllTypes;
#if GTEST_HAS_DEATH_TEST
EXPECT_DEBUG_DEATH(
r->SetAllocatedMessage(heap_message, arena1_submessage, msg_field),
"GetArena");
#endif
EXPECT_NE(arena1_submessage, heap_message->mutable_optional_nested_message());
delete heap_message;
}
TEST(ArenaTest, UnsafeArenaSetAllocatedAcrossArenasWithReflection) {
// Same as above, with reflection.
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
const Reflection* r = arena1_message->GetReflection();
const Descriptor* d = arena1_message->GetDescriptor();
const FieldDescriptor* msg_field =
d->FindFieldByName("optional_nested_message");
{
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
r->UnsafeArenaSetAllocatedMessage(arena1_message, arena2_submessage,
msg_field);
EXPECT_EQ(arena2_submessage,
arena1_message->mutable_optional_nested_message());
EXPECT_EQ(arena2_submessage,
arena1_message->unsafe_arena_release_optional_nested_message());
}
TestAllTypes::NestedMessage* arena1_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena1);
arena1_submessage->set_bb(42);
TestAllTypes* heap_message = new TestAllTypes;
r->UnsafeArenaSetAllocatedMessage(heap_message, arena1_submessage, msg_field);
EXPECT_EQ(arena1_submessage, heap_message->mutable_optional_nested_message());
EXPECT_EQ(arena1_submessage,
heap_message->unsafe_arena_release_optional_nested_message());
delete heap_message;
}
TEST(ArenaTest, AddAllocatedWithReflection) {
Arena arena1;
ArenaMessage* arena1_message = Arena::Create<ArenaMessage>(&arena1);
const Reflection* r = arena1_message->GetReflection();
const Descriptor* d = arena1_message->GetDescriptor();
// Message with cc_enable_arenas = true;
const FieldDescriptor* fd = d->FindFieldByName("repeated_nested_message");
r->AddMessage(arena1_message, fd);
r->AddMessage(arena1_message, fd);
r->AddMessage(arena1_message, fd);
EXPECT_EQ(3, r->FieldSize(*arena1_message, fd));
}
TEST(ArenaTest, RepeatedPtrFieldAddClearedTest) {
{
RepeatedPtrField<TestAllTypes> repeated_field;
EXPECT_TRUE(repeated_field.empty());
EXPECT_EQ(0, repeated_field.size());
// Ownership is passed to repeated_field.
TestAllTypes* cleared = new TestAllTypes();
repeated_field.AddAllocated(cleared);
EXPECT_FALSE(repeated_field.empty());
EXPECT_EQ(1, repeated_field.size());
}
}
TEST(ArenaTest, AddAllocatedToRepeatedField) {
// Heap->arena case.
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
for (int i = 0; i < 10; i++) {
TestAllTypes::NestedMessage* heap_submessage =
new TestAllTypes::NestedMessage();
heap_submessage->set_bb(42);
arena1_message->mutable_repeated_nested_message()->AddAllocated(
heap_submessage);
// Should not copy object -- will use arena_->Own().
EXPECT_EQ(heap_submessage, &arena1_message->repeated_nested_message(i));
EXPECT_EQ(42, arena1_message->repeated_nested_message(i).bb());
}
// Arena1->Arena2 case.
arena1_message->Clear();
for (int i = 0; i < 10; i++) {
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
arena1_message->mutable_repeated_nested_message()->AddAllocated(
arena2_submessage);
ASSERT_THAT(arena1_message->repeated_nested_message(), testing::SizeIs(1));
EXPECT_EQ(
arena1_message->mutable_repeated_nested_message()->at(0).GetArena(),
&arena1);
arena1_message->clear_repeated_nested_message();
}
// Arena->heap case.
TestAllTypes* heap_message = new TestAllTypes;
for (int i = 0; i < 10; i++) {
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
heap_message->mutable_repeated_nested_message()->AddAllocated(
arena2_submessage);
ASSERT_THAT(heap_message->repeated_nested_message(), testing::SizeIs(1));
EXPECT_EQ(heap_message->mutable_repeated_nested_message()->at(0).GetArena(),
nullptr);
heap_message->clear_repeated_nested_message();
}
delete heap_message;
// Heap->arena case for strings (which are not arena-allocated).
arena1_message->Clear();
for (int i = 0; i < 10; i++) {
std::string* s = new std::string("Test");
arena1_message->mutable_repeated_string()->AddAllocated(s);
// Should not copy.
EXPECT_EQ(s, &arena1_message->repeated_string(i));
EXPECT_EQ("Test", arena1_message->repeated_string(i));
}
}
TEST(ArenaTest, UnsafeArenaAddAllocatedToRepeatedField) {
// Heap->arena case.
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
{
auto* heap_submessage = new TestAllTypes::NestedMessage;
arena1_message->mutable_repeated_nested_message()->UnsafeArenaAddAllocated(
heap_submessage);
// Should not copy object.
EXPECT_EQ(heap_submessage, &arena1_message->repeated_nested_message(0));
EXPECT_EQ(heap_submessage, arena1_message->mutable_repeated_nested_message()
->UnsafeArenaReleaseLast());
delete heap_submessage;
}
// Arena1->Arena2 case.
arena1_message->Clear();
{
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
arena1_message->mutable_repeated_nested_message()->UnsafeArenaAddAllocated(
arena2_submessage);
// Should own object.
EXPECT_EQ(arena2_submessage, &arena1_message->repeated_nested_message(0));
EXPECT_EQ(arena2_submessage,
arena1_message->mutable_repeated_nested_message()
->UnsafeArenaReleaseLast());
}
// Arena->heap case.
TestAllTypes* heap_message = new TestAllTypes;
{
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
heap_message->mutable_repeated_nested_message()->UnsafeArenaAddAllocated(
arena2_submessage);
// Should own object.
EXPECT_EQ(arena2_submessage, &heap_message->repeated_nested_message(0));
EXPECT_EQ(arena2_submessage, heap_message->mutable_repeated_nested_message()
->UnsafeArenaReleaseLast());
}
delete heap_message;
// Heap->arena case for strings (which are not arena-allocated).
arena1_message->Clear();
{
std::string* s = new std::string("Test");
arena1_message->mutable_repeated_string()->UnsafeArenaAddAllocated(s);
// Should not copy.
EXPECT_EQ(s, &arena1_message->repeated_string(0));
EXPECT_EQ("Test", arena1_message->repeated_string(0));
delete arena1_message->mutable_repeated_string()->UnsafeArenaReleaseLast();
}
}
TEST(ArenaTest, AddAllocatedToRepeatedFieldViaReflection) {
// Heap->arena case.
Arena arena1;
TestAllTypes* arena1_message = Arena::Create<TestAllTypes>(&arena1);
const Reflection* r = arena1_message->GetReflection();
const Descriptor* d = arena1_message->GetDescriptor();
const FieldDescriptor* fd = d->FindFieldByName("repeated_nested_message");
for (int i = 0; i < 10; i++) {
TestAllTypes::NestedMessage* heap_submessage =
new TestAllTypes::NestedMessage;
heap_submessage->set_bb(42);
r->AddAllocatedMessage(arena1_message, fd, heap_submessage);
// Should not copy object -- will use arena_->Own().
EXPECT_EQ(heap_submessage, &arena1_message->repeated_nested_message(i));
EXPECT_EQ(42, arena1_message->repeated_nested_message(i).bb());
}
// Arena1->Arena2 case.
arena1_message->Clear();
for (int i = 0; i < 10; i++) {
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
r->AddAllocatedMessage(arena1_message, fd, arena2_submessage);
ASSERT_THAT(arena1_message->repeated_nested_message(), testing::SizeIs(1));
EXPECT_EQ(
arena1_message->mutable_repeated_nested_message()->at(0).GetArena(),
&arena1);
arena1_message->clear_repeated_nested_message();
}
// Arena->heap case.
TestAllTypes* heap_message = new TestAllTypes;
for (int i = 0; i < 10; i++) {
Arena arena2;
TestAllTypes::NestedMessage* arena2_submessage =
Arena::Create<TestAllTypes::NestedMessage>(&arena2);
arena2_submessage->set_bb(42);
r->AddAllocatedMessage(heap_message, fd, arena2_submessage);
ASSERT_THAT(heap_message->repeated_nested_message(), testing::SizeIs(1));
EXPECT_EQ(heap_message->mutable_repeated_nested_message()->at(0).GetArena(),
nullptr);
heap_message->clear_repeated_nested_message();
}
delete heap_message;
}
TEST(ArenaTest, ReleaseLastRepeatedField) {
// Release from arena-allocated repeated field and ensure that returned object
// is heap-allocated.
Arena arena;
TestAllTypes* arena_message = Arena::Create<TestAllTypes>(&arena);
for (int i = 0; i < 10; i++) {
TestAllTypes::NestedMessage* nested =
Arena::Create<TestAllTypes::NestedMessage>(&arena);
nested->set_bb(42);
arena_message->mutable_repeated_nested_message()->AddAllocated(nested);
}
for (int i = 0; i < 10; i++) {
const TestAllTypes::NestedMessage* orig_submessage =
&arena_message->repeated_nested_message(10 - 1 - i); // last element
TestAllTypes::NestedMessage* released =
arena_message->mutable_repeated_nested_message()->ReleaseLast();
EXPECT_NE(released, orig_submessage);
EXPECT_EQ(42, released->bb());
delete released;
}
// Test UnsafeArenaReleaseLast().
for (int i = 0; i < 10; i++) {
TestAllTypes::NestedMessage* nested =
Arena::Create<TestAllTypes::NestedMessage>(&arena);
nested->set_bb(42);
arena_message->mutable_repeated_nested_message()->AddAllocated(nested);
}
for (int i = 0; i < 10; i++) {
const TestAllTypes::NestedMessage* orig_submessage =
&arena_message->repeated_nested_message(10 - 1 - i); // last element
TestAllTypes::NestedMessage* released =
arena_message->mutable_repeated_nested_message()
->UnsafeArenaReleaseLast();
EXPECT_EQ(released, orig_submessage);
EXPECT_EQ(42, released->bb());
// no delete -- |released| is on the arena.
}
// Test string case as well. ReleaseLast() in this case must copy the
// string, even though it was originally heap-allocated and its pointer
// was simply appended to the repeated field's internal vector, because the
// string was placed on the arena's destructor list and cannot be removed
// from that list (so the arena permanently owns the original instance).
arena_message->Clear();
for (int i = 0; i < 10; i++) {
std::string* s = new std::string("Test");
arena_message->mutable_repeated_string()->AddAllocated(s);
}
for (int i = 0; i < 10; i++) {
const std::string* orig_element =
&arena_message->repeated_string(10 - 1 - i);
std::string* released =
arena_message->mutable_repeated_string()->ReleaseLast();
EXPECT_NE(released, orig_element);
EXPECT_EQ("Test", *released);
delete released;
}
}
TEST(ArenaTest, UnsafeArenaAddAllocated) {
Arena arena;
TestAllTypes* message = Arena::Create<TestAllTypes>(&arena);
for (int i = 0; i < 10; i++) {
std::string* arena_string = Arena::Create<std::string>(&arena);
message->mutable_repeated_string()->UnsafeArenaAddAllocated(arena_string);
EXPECT_EQ(arena_string, message->mutable_repeated_string(i));
}
}
TEST(ArenaTest, OneofMerge) {
Arena arena;
TestAllTypes* message0 = Arena::Create<TestAllTypes>(&arena);
TestAllTypes* message1 = Arena::Create<TestAllTypes>(&arena);
message0->set_oneof_string("x");
ASSERT_TRUE(message0->has_oneof_string());
message1->set_oneof_string("y");
ASSERT_TRUE(message1->has_oneof_string());
EXPECT_EQ("x", message0->oneof_string());
EXPECT_EQ("y", message1->oneof_string());
message0->MergeFrom(*message1);
EXPECT_EQ("y", message0->oneof_string());
EXPECT_EQ("y", message1->oneof_string());
}
TEST(ArenaTest, ArenaOneofReflection) {
Arena arena;
TestAllTypes* message = Arena::Create<TestAllTypes>(&arena);
const Descriptor* desc = message->GetDescriptor();
const Reflection* refl = message->GetReflection();
const FieldDescriptor* string_field = desc->FindFieldByName("oneof_string");
const FieldDescriptor* msg_field =
desc->FindFieldByName("oneof_nested_message");
const OneofDescriptor* oneof = desc->FindOneofByName("oneof_field");
refl->SetString(message, string_field, "Test value");
EXPECT_TRUE(refl->HasOneof(*message, oneof));
refl->ClearOneof(message, oneof);
EXPECT_FALSE(refl->HasOneof(*message, oneof));
Message* submsg = refl->MutableMessage(message, msg_field);
EXPECT_TRUE(refl->HasOneof(*message, oneof));
refl->ClearOneof(message, oneof);
EXPECT_FALSE(refl->HasOneof(*message, oneof));
refl->MutableMessage(message, msg_field);
EXPECT_TRUE(refl->HasOneof(*message, oneof));
submsg = refl->ReleaseMessage(message, msg_field);
EXPECT_FALSE(refl->HasOneof(*message, oneof));
EXPECT_TRUE(submsg->GetArena() == nullptr);
delete submsg;
}
void TestSwapRepeatedField(Arena* arena1, Arena* arena2) {
// Test "safe" (copying) semantics for direct Swap() on RepeatedPtrField
// between arenas.
RepeatedPtrField<TestAllTypes> field1(arena1);
RepeatedPtrField<TestAllTypes> field2(arena2);
for (int i = 0; i < 10; i++) {
TestAllTypes* t = Arena::Create<TestAllTypes>(arena1);
t->set_optional_string("field1");
t->set_optional_int32(i);
if (arena1 != nullptr) {
field1.UnsafeArenaAddAllocated(t);
} else {
field1.AddAllocated(t);
}
}
for (int i = 0; i < 5; i++) {
TestAllTypes* t = Arena::Create<TestAllTypes>(arena2);
t->set_optional_string("field2");
t->set_optional_int32(i);
if (arena2 != nullptr) {
field2.UnsafeArenaAddAllocated(t);
} else {
field2.AddAllocated(t);
}
}
field1.Swap(&field2);
EXPECT_EQ(5, field1.size());
EXPECT_EQ(10, field2.size());
EXPECT_TRUE(std::string("field1") == field2.Get(0).optional_string());
EXPECT_TRUE(std::string("field2") == field1.Get(0).optional_string());
// Ensure that fields retained their original order:
for (int i = 0; i < field1.size(); i++) {
EXPECT_EQ(i, field1.Get(i).optional_int32());
}
for (int i = 0; i < field2.size(); i++) {
EXPECT_EQ(i, field2.Get(i).optional_int32());
}
}
TEST(ArenaTest, SwapRepeatedField) {
Arena arena;
TestSwapRepeatedField(&arena, &arena);
}
TEST(ArenaTest, SwapRepeatedFieldWithDifferentArenas) {
Arena arena1;
Arena arena2;
TestSwapRepeatedField(&arena1, &arena2);
}
TEST(ArenaTest, SwapRepeatedFieldWithNoArenaOnRightHandSide) {
Arena arena;
TestSwapRepeatedField(&arena, nullptr);
}
TEST(ArenaTest, SwapRepeatedFieldWithNoArenaOnLeftHandSide) {
Arena arena;
TestSwapRepeatedField(nullptr, &arena);
}
TEST(ArenaTest, ExtensionsOnArena) {
Arena arena;
// Ensure no leaks.
TestAllExtensions* message_ext = Arena::Create<TestAllExtensions>(&arena);
message_ext->SetExtension(protobuf_unittest::optional_int32_extension, 42);
message_ext->SetExtension(protobuf_unittest::optional_string_extension,
std::string("test"));
message_ext
->MutableExtension(protobuf_unittest::optional_nested_message_extension)
->set_bb(42);
}
TEST(ArenaTest, RepeatedFieldOnArena) {
// Preallocate an initial arena block to avoid mallocs during hooked region.
std::vector<char> arena_block(1024 * 1024);
Arena arena(arena_block.data(), arena_block.size());
const size_t initial_allocated_size = arena.SpaceAllocated();
{
// Fill some repeated fields on the arena to test for leaks. Also that the
// newly allocated memory is approximately the size of the cleanups for the
// repeated messages.
RepeatedField<int32_t> repeated_int32(&arena);
RepeatedPtrField<TestAllTypes> repeated_message(&arena);
for (int i = 0; i < 100; i++) {
repeated_int32.Add(42);
repeated_message.Add()->set_optional_int32(42);
EXPECT_EQ(&arena, repeated_message.Get(0).GetArena());
const TestAllTypes* msg_in_repeated_field = &repeated_message.Get(0);
TestAllTypes* msg = repeated_message.UnsafeArenaReleaseLast();
EXPECT_EQ(msg_in_repeated_field, msg);
}
// UnsafeArenaExtractSubrange (i) should not leak and (ii) should return
// on-arena pointers.
for (int i = 0; i < 10; i++) {
repeated_message.Add()->set_optional_int32(42);
}
TestAllTypes* extracted_messages[5];
repeated_message.UnsafeArenaExtractSubrange(0, 5, extracted_messages);
EXPECT_EQ(&arena, repeated_message.Get(0).GetArena());
EXPECT_EQ(5, repeated_message.size());
// Upper bound of the size of the cleanups of new repeated messages.
const size_t upperbound_cleanup_size =
2 * 110 * sizeof(internal::cleanup::CleanupNode);
EXPECT_GT(initial_allocated_size + upperbound_cleanup_size,
arena.SpaceAllocated());
}
// Now test ExtractSubrange's copying semantics.
{
RepeatedPtrField<TestAllTypes> repeated_message(&arena);
for (int i = 0; i < 100; i++) {
repeated_message.Add()->set_optional_int32(42);
}
TestAllTypes* extracted_messages[5];
// ExtractSubrange should copy to the heap.
repeated_message.ExtractSubrange(0, 5, extracted_messages);
EXPECT_EQ(nullptr, extracted_messages[0]->GetArena());
// We need to free the heap-allocated messages to prevent a leak.
for (int i = 0; i < 5; i++) {
delete extracted_messages[i];
extracted_messages[i] = nullptr;
}
}
// Now check that we can create RepeatedFields/RepeatedPtrFields themselves on
// the arena. They have the necessary type traits so that they can behave like
// messages in this way. This is useful for higher-level generic templated
// code that may allocate messages or repeated fields of messages on an arena.
{
RepeatedPtrField<TestAllTypes>* repeated_ptr_on_arena =
Arena::Create<RepeatedPtrField<TestAllTypes>>(&arena);
for (int i = 0; i < 10; i++) {
// Add some elements and let the leak-checker ensure that everything is
// freed.
repeated_ptr_on_arena->Add();
}
RepeatedField<int>* repeated_int_on_arena =
Arena::Create<RepeatedField<int>>(&arena);
for (int i = 0; i < 100; i++) {
repeated_int_on_arena->Add(i);
}
}
arena.Reset();
}
#if PROTOBUF_RTTI
TEST(ArenaTest, MutableMessageReflection) {
Arena arena;
TestAllTypes* message = Arena::Create<TestAllTypes>(&arena);
const Reflection* r = message->GetReflection();
const Descriptor* d = message->GetDescriptor();
const FieldDescriptor* field = d->FindFieldByName("optional_nested_message");
TestAllTypes::NestedMessage* submessage =
DownCastMessage<TestAllTypes::NestedMessage>(
r->MutableMessage(message, field));
TestAllTypes::NestedMessage* submessage_expected =
message->mutable_optional_nested_message();
EXPECT_EQ(submessage_expected, submessage);
EXPECT_EQ(&arena, submessage->GetArena());
const FieldDescriptor* oneof_field =
d->FindFieldByName("oneof_nested_message");
submessage = DownCastMessage<TestAllTypes::NestedMessage>(
r->MutableMessage(message, oneof_field));
submessage_expected = message->mutable_oneof_nested_message();
EXPECT_EQ(submessage_expected, submessage);
EXPECT_EQ(&arena, submessage->GetArena());
}
#endif // PROTOBUF_RTTI
TEST(ArenaTest, ClearOneofMessageOnArena) {
if (!internal::DebugHardenClearOneofMessageOnArena()) {
GTEST_SKIP() << "arena allocated oneof message fields are not hardened.";
}
Arena arena;
auto* message = Arena::Create<unittest::TestOneof2>(&arena);
// Intentionally nested to force poisoning recursively to catch the access.
auto* child =
message->mutable_foo_message()->mutable_child()->mutable_child();
child->set_moo_int(100);
message->clear_foo_message();
if (internal::HasMemoryPoisoning()) {
#if GTEST_HAS_DEATH_TEST
EXPECT_DEATH(EXPECT_EQ(child->moo_int(), 0), "use-after-poison");
#endif // !GTEST_HAS_DEATH_TEST
} else {
EXPECT_NE(child->moo_int(), 100);
}
}
TEST(ArenaTest, CopyValuesWithinOneof) {
if (!internal::DebugHardenClearOneofMessageOnArena()) {
GTEST_SKIP() << "arena allocated oneof message fields are not hardened.";
}
Arena arena;
auto* message = Arena::Create<unittest::TestOneof>(&arena);
auto* foo = message->mutable_foogroup();
foo->set_a(100);
foo->set_b("hello world");
message->set_foo_string(message->foogroup().b());
// As a debug hardening measure, `set_foo_string` would clear `foo` in
// (!NDEBUG && !ASAN) and the copy wouldn't work.
EXPECT_TRUE(message->foo_string().empty()) << message->foo_string();
}
void FillArenaAwareFields(TestAllTypes* message) {
std::string test_string = "hello world";
message->set_optional_int32(42);
message->set_optional_string(test_string);
message->set_optional_bytes(test_string);
message->mutable_optional_nested_message()->set_bb(42);
message->set_oneof_uint32(42);
message->mutable_oneof_nested_message()->set_bb(42);
message->set_oneof_string(test_string);
message->set_oneof_bytes(test_string);
message->add_repeated_int32(42);
// No repeated string: not yet arena-aware.
message->add_repeated_nested_message()->set_bb(42);
message->mutable_optional_lazy_message()->set_bb(42);
}
// Test: no allocations occur on heap while touching all supported field types.
TEST(ArenaTest, NoHeapAllocationsTest) {
if (internal::DebugHardenClearOneofMessageOnArena()) {
GTEST_SKIP() << "debug hardening may cause heap allocation.";
}
// Allocate a large initial block to avoid mallocs during hooked test.
std::vector<char> arena_block(128 * 1024);
ArenaOptions options;
options.initial_block = &arena_block[0];
options.initial_block_size = arena_block.size();
Arena arena(options);
{
// We need to call Arena::Create before NoHeapChecker because the ArenaDtor
// allocates a new cleanup chunk.
TestAllTypes* message = Arena::Create<TestAllTypes>(&arena);
FillArenaAwareFields(message);
}
arena.Reset();
}
#if PROTOBUF_RTTI
// Test construction on an arena via generic MessageLite interface. We should be
// able to successfully deserialize on the arena without incurring heap
// allocations, i.e., everything should still be arena-allocation-aware.
TEST(ArenaTest, MessageLiteOnArena) {
std::vector<char> arena_block(128 * 1024);
ArenaOptions options;
options.initial_block = &arena_block[0];
options.initial_block_size = arena_block.size();
Arena arena(options);
const MessageLite* prototype = &TestAllTypes::default_instance();
TestAllTypes initial_message;
FillArenaAwareFields(&initial_message);
std::string serialized;
initial_message.SerializeToString(&serialized);
{
MessageLite* generic_message = prototype->New(&arena);
EXPECT_TRUE(generic_message != nullptr);
EXPECT_EQ(&arena, generic_message->GetArena());
EXPECT_TRUE(generic_message->ParseFromString(serialized));
TestAllTypes* deserialized = static_cast<TestAllTypes*>(generic_message);
EXPECT_EQ(42, deserialized->optional_int32());
}
arena.Reset();
}
#endif // PROTOBUF_RTTI
// Align n to next multiple of 8
uint64_t Align8(uint64_t n) { return (n + 7) & -8; }
TEST(ArenaTest, SpaceAllocated_and_Used) {
Arena arena_1;
EXPECT_EQ(0, arena_1.SpaceAllocated());
EXPECT_EQ(0, arena_1.SpaceUsed());
EXPECT_EQ(0, arena_1.Reset());
Arena::CreateArray<char>(&arena_1, 320);
// Arena will allocate slightly more than 320 for the block headers.
EXPECT_LE(320, arena_1.SpaceAllocated());
EXPECT_EQ(Align8(320), arena_1.SpaceUsed());
EXPECT_LE(320, arena_1.Reset());
// Test with initial block.
std::vector<char> arena_block(1024);
ArenaOptions options;
options.start_block_size = 256;
options.max_block_size = 8192;
options.initial_block = &arena_block[0];
options.initial_block_size = arena_block.size();
Arena arena_2(options);
EXPECT_EQ(1024, arena_2.SpaceAllocated());
EXPECT_EQ(0, arena_2.SpaceUsed());
EXPECT_EQ(1024, arena_2.Reset());
Arena::CreateArray<char>(&arena_2, 55);
EXPECT_EQ(1024, arena_2.SpaceAllocated());
EXPECT_EQ(Align8(55), arena_2.SpaceUsed());
EXPECT_EQ(1024, arena_2.Reset());
}
namespace {
void VerifyArenaOverhead(Arena& arena, size_t overhead) {
EXPECT_EQ(0, arena.SpaceAllocated());
// Allocate a tiny block and record the allocation size.
constexpr size_t kTinySize = 8;
Arena::CreateArray<char>(&arena, kTinySize);
uint64_t space_allocated = arena.SpaceAllocated();
// Next allocation expects to fill up the block but no new block.
uint64_t next_size = space_allocated - overhead - kTinySize;
Arena::CreateArray<char>(&arena, next_size);
EXPECT_EQ(space_allocated, arena.SpaceAllocated());
}
} // namespace
TEST(ArenaTest, FirstArenaOverhead) {
Arena arena;
VerifyArenaOverhead(arena, internal::SerialArena::kBlockHeaderSize);
}
TEST(ArenaTest, StartingBlockSize) {
Arena default_arena;
EXPECT_EQ(0, default_arena.SpaceAllocated());
// Allocate something to get starting block size.
Arena::CreateArray<char>(&default_arena, 1);
ArenaOptions options;
// First block size should be the default starting block size.
EXPECT_EQ(default_arena.SpaceAllocated(), options.start_block_size);
// Use a custom starting block size.
options.start_block_size *= 2;
Arena custom_arena(options);
Arena::CreateArray<char>(&custom_arena, 1);
EXPECT_EQ(custom_arena.SpaceAllocated(), options.start_block_size);
}
TEST(ArenaTest, BlockSizeDoubling) {
Arena arena;
EXPECT_EQ(0, arena.SpaceUsed());
EXPECT_EQ(0, arena.SpaceAllocated());
// Allocate something to get initial block size.
Arena::CreateArray<char>(&arena, 1);
auto first_block_size = arena.SpaceAllocated();
// Keep allocating until space used increases.
while (arena.SpaceAllocated() == first_block_size) {
Arena::CreateArray<char>(&arena, 1);
}
ASSERT_GT(arena.SpaceAllocated(), first_block_size);
auto second_block_size = (arena.SpaceAllocated() - first_block_size);
EXPECT_GE(second_block_size, 2*first_block_size);
}
TEST(ArenaTest, Alignment) {
Arena arena;
for (int i = 0; i < 200; i++) {
void* p = Arena::CreateArray<char>(&arena, i);
ABSL_CHECK_EQ(reinterpret_cast<uintptr_t>(p) % 8, 0u) << i << ": " << p;
}
}
TEST(ArenaTest, BlockSizeSmallerThanAllocation) {
for (size_t i = 0; i <= 8; ++i) {
ArenaOptions opt;
opt.start_block_size = opt.max_block_size = i;
Arena arena(opt);
*Arena::Create<int64_t>(&arena) = 42;
EXPECT_GE(arena.SpaceAllocated(), 8);
EXPECT_EQ(8, arena.SpaceUsed());
*Arena::Create<int64_t>(&arena) = 42;
EXPECT_GE(arena.SpaceAllocated(), 16);
EXPECT_EQ(16, arena.SpaceUsed());
}
}
TEST(ArenaTest, GetArenaShouldReturnTheArenaForArenaAllocatedMessages) {
Arena arena;
ArenaMessage* message = Arena::Create<ArenaMessage>(&arena);
const ArenaMessage* const_pointer_to_message = message;
EXPECT_EQ(&arena, message->GetArena());
EXPECT_EQ(&arena, const_pointer_to_message->GetArena());
// Test that the Message* / MessageLite* specialization SFINAE works.
const Message* const_pointer_to_message_type = message;
EXPECT_EQ(&arena, const_pointer_to_message_type->GetArena());
const MessageLite* const_pointer_to_message_lite_type = message;
EXPECT_EQ(&arena, const_pointer_to_message_lite_type->GetArena());
}
TEST(ArenaTest, GetArenaShouldReturnNullForNonArenaAllocatedMessages) {
ArenaMessage message;
const ArenaMessage* const_pointer_to_message = &message;
EXPECT_EQ(nullptr, message.GetArena());
EXPECT_EQ(nullptr, const_pointer_to_message->GetArena());
}
TEST(ArenaTest, AddCleanup) {
Arena arena;
for (int i = 0; i < 100; i++) {
arena.Own(new int);
}
}
struct DestroyOrderRecorder {
std::vector<int>* destroy_order;
int i;
DestroyOrderRecorder(std::vector<int>* destroy_order, int i)
: destroy_order(destroy_order), i(i) {}
~DestroyOrderRecorder() { destroy_order->push_back(i); }
};
// TODO: we do not guarantee this behavior, but some users rely on
// it. We need to decide whether we want to guarantee this. In the meantime,
// user code should avoid adding new dependencies on this.
// Tests that when using an Arena from a single thread, objects are destroyed in
// reverse order from construction.
TEST(ArenaTest, CleanupDestructionOrder) {
std::vector<int> destroy_order;
{
Arena arena;
for (int i = 0; i < 3; i++) {
Arena::Create<DestroyOrderRecorder>(&arena, &destroy_order, i);
}
}
EXPECT_THAT(destroy_order, testing::ElementsAre(2, 1, 0));
}
TEST(ArenaTest, SpaceReuseForArraysSizeChecks) {
// Limit to 1<<20 to avoid using too much memory on the test.
for (int i = 0; i < 20; ++i) {
SCOPED_TRACE(i);
Arena arena;
std::vector<void*> pointers;
const size_t size = 16 << i;
for (int j = 0; j < 10; ++j) {
pointers.push_back(Arena::CreateArray<char>(&arena, size));
}
for (void* p : pointers) {
internal::ArenaTestPeer::ReturnArrayMemory(&arena, p, size);
}
std::vector<void*> second_pointers;
for (int j = 9; j != 0; --j) {
second_pointers.push_back(Arena::CreateArray<char>(&arena, size));
}
// The arena will give us back the pointers we returned, except the first
// one. That one becomes part of the freelist data structure.
ASSERT_THAT(second_pointers,
testing::UnorderedElementsAreArray(
std::vector<void*>(pointers.begin() + 1, pointers.end())));
}
}
TEST(ArenaTest, SpaceReusePoisonsAndUnpoisonsMemory) {
if constexpr (!internal::HasMemoryPoisoning()) {
GTEST_SKIP() << "Memory poisoning not enabled.";
}
char buf[1024]{};
constexpr int kSize = 32;
{
Arena arena(buf, sizeof(buf));
std::vector<void*> pointers;
for (int i = 0; i < 100; ++i) {
void* p = Arena::CreateArray<char>(&arena, kSize);
// Simulate other ASan client managing shadow memory.
internal::PoisonMemoryRegion(p, kSize);
internal::UnpoisonMemoryRegion(p, kSize - 4);
pointers.push_back(p);
}
for (void* p : pointers) {
internal::ArenaTestPeer::ReturnArrayMemory(&arena, p, kSize);
// The first one is not poisoned because it becomes the freelist.
if (p != pointers[0]) {
EXPECT_TRUE(internal::IsMemoryPoisoned(p));
}
}
bool found_poison = false;
for (char& c : buf) {
if (internal::IsMemoryPoisoned(&c)) {
found_poison = true;
break;
}
}
EXPECT_TRUE(found_poison);
}
// Should not be poisoned after destruction.
for (char& c : buf) {
ASSERT_FALSE(internal::IsMemoryPoisoned(&c));
}
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"