blob: f8d7b71a156f9b6aeb9a8e582be593b31c5ebe3e [file] [log] [blame] [edit]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This implementation is heavily optimized to make reads and writes
// of small values (especially varints) as fast as possible. In
// particular, we optimize for the common case that a read or a write
// will not cross the end of the buffer, since we can avoid a lot
// of branching in this case.
#include "google/protobuf/io/coded_stream.h"
#include <limits.h>
#include <algorithm>
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/strings/cord.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "google/protobuf/io/zero_copy_stream_impl_lite.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
namespace io {
namespace {
static const int kMaxVarintBytes = 10;
static const int kMaxVarint32Bytes = 5;
// When reading / writing Cords, if we have fewer than this many bytes we
// won't bother trying to avoid coping the contents.
static const int kMaxCordBytesToCopy = 512;
inline bool NextNonEmpty(ZeroCopyInputStream* input, const void** data,
int* size) {
bool success;
do {
success = input->Next(data, size);
} while (success && *size == 0);
return success;
}
inline uint8_t* CopyCordToArray(const absl::Cord& cord, uint8_t* target) {
for (absl::string_view sv : cord.Chunks()) {
memcpy(target, sv.data(), sv.size());
target += sv.size();
}
return target;
}
} // namespace
// CodedInputStream ==================================================
CodedInputStream::~CodedInputStream() {
if (input_ != nullptr) {
BackUpInputToCurrentPosition();
}
}
// Static.
int CodedInputStream::default_recursion_limit_ = 100;
void CodedInputStream::BackUpInputToCurrentPosition() {
int backup_bytes = BufferSize() + buffer_size_after_limit_ + overflow_bytes_;
if (backup_bytes > 0) {
input_->BackUp(backup_bytes);
// total_bytes_read_ doesn't include overflow_bytes_.
total_bytes_read_ -= BufferSize() + buffer_size_after_limit_;
buffer_end_ = buffer_;
buffer_size_after_limit_ = 0;
overflow_bytes_ = 0;
}
}
inline void CodedInputStream::RecomputeBufferLimits() {
buffer_end_ += buffer_size_after_limit_;
int closest_limit = std::min(current_limit_, total_bytes_limit_);
if (closest_limit < total_bytes_read_) {
// The limit position is in the current buffer. We must adjust
// the buffer size accordingly.
buffer_size_after_limit_ = total_bytes_read_ - closest_limit;
buffer_end_ -= buffer_size_after_limit_;
} else {
buffer_size_after_limit_ = 0;
}
}
CodedInputStream::Limit CodedInputStream::PushLimit(int byte_limit) {
// Current position relative to the beginning of the stream.
int current_position = CurrentPosition();
Limit old_limit = current_limit_;
// security: byte_limit is possibly evil, so check for negative values
// and overflow. Also check that the new requested limit is before the
// previous limit; otherwise we continue to enforce the previous limit.
if (PROTOBUF_PREDICT_TRUE(byte_limit >= 0 &&
byte_limit <= INT_MAX - current_position &&
byte_limit < current_limit_ - current_position)) {
current_limit_ = current_position + byte_limit;
RecomputeBufferLimits();
}
return old_limit;
}
void CodedInputStream::PopLimit(Limit limit) {
// The limit passed in is actually the *old* limit, which we returned from
// PushLimit().
current_limit_ = limit;
RecomputeBufferLimits();
// We may no longer be at a legitimate message end. ReadTag() needs to be
// called again to find out.
legitimate_message_end_ = false;
}
std::pair<CodedInputStream::Limit, int>
CodedInputStream::IncrementRecursionDepthAndPushLimit(int byte_limit) {
return std::make_pair(PushLimit(byte_limit), --recursion_budget_);
}
CodedInputStream::Limit CodedInputStream::ReadLengthAndPushLimit() {
uint32_t length;
return PushLimit(ReadVarint32(&length) ? length : 0);
}
bool CodedInputStream::DecrementRecursionDepthAndPopLimit(Limit limit) {
bool result = ConsumedEntireMessage();
PopLimit(limit);
ABSL_DCHECK_LT(recursion_budget_, recursion_limit_);
++recursion_budget_;
return result;
}
bool CodedInputStream::CheckEntireMessageConsumedAndPopLimit(Limit limit) {
bool result = ConsumedEntireMessage();
PopLimit(limit);
return result;
}
int CodedInputStream::BytesUntilLimit() const {
if (current_limit_ == INT_MAX) return -1;
int current_position = CurrentPosition();
return current_limit_ - current_position;
}
void CodedInputStream::SetTotalBytesLimit(int total_bytes_limit) {
// Make sure the limit isn't already past, since this could confuse other
// code.
int current_position = CurrentPosition();
total_bytes_limit_ = std::max(current_position, total_bytes_limit);
RecomputeBufferLimits();
}
int CodedInputStream::BytesUntilTotalBytesLimit() const {
if (total_bytes_limit_ == INT_MAX) return -1;
return total_bytes_limit_ - CurrentPosition();
}
void CodedInputStream::PrintTotalBytesLimitError() {
ABSL_LOG(ERROR) << "A protocol message was rejected because it was too "
"big (more than "
<< total_bytes_limit_
<< " bytes). To increase the limit (or to disable these "
"warnings), see CodedInputStream::SetTotalBytesLimit() "
"in third_party/protobuf/io/coded_stream.h.";
}
bool CodedInputStream::SkipFallback(int count, int original_buffer_size) {
if (buffer_size_after_limit_ > 0) {
// We hit a limit inside this buffer. Advance to the limit and fail.
Advance(original_buffer_size);
return false;
}
count -= original_buffer_size;
buffer_ = nullptr;
buffer_end_ = buffer_;
// Make sure this skip doesn't try to skip past the current limit.
int closest_limit = std::min(current_limit_, total_bytes_limit_);
int bytes_until_limit = closest_limit - total_bytes_read_;
if (bytes_until_limit < count) {
// We hit the limit. Skip up to it then fail.
if (bytes_until_limit > 0) {
total_bytes_read_ = closest_limit;
input_->Skip(bytes_until_limit);
}
return false;
}
if (!input_->Skip(count)) {
total_bytes_read_ = input_->ByteCount();
return false;
}
total_bytes_read_ += count;
return true;
}
bool CodedInputStream::GetDirectBufferPointer(const void** data, int* size) {
if (BufferSize() == 0 && !Refresh()) return false;
*data = buffer_;
*size = BufferSize();
return true;
}
bool CodedInputStream::ReadRaw(void* buffer, int size) {
int current_buffer_size;
while ((current_buffer_size = BufferSize()) < size) {
// Reading past end of buffer. Copy what we have, then refresh.
memcpy(buffer, buffer_, current_buffer_size);
buffer = reinterpret_cast<uint8_t*>(buffer) + current_buffer_size;
size -= current_buffer_size;
Advance(current_buffer_size);
if (!Refresh()) return false;
}
memcpy(buffer, buffer_, size);
Advance(size);
return true;
}
bool CodedInputStream::ReadString(std::string* buffer, int size) {
if (size < 0) return false; // security: size is often user-supplied
if (BufferSize() >= size) {
absl::strings_internal::STLStringResizeUninitialized(buffer, size);
std::pair<char*, bool> z = as_string_data(buffer);
if (z.second) {
// Oddly enough, memcpy() requires its first two args to be non-NULL even
// if we copy 0 bytes. So, we have ensured that z.first is non-NULL here.
ABSL_DCHECK(z.first != NULL);
memcpy(z.first, buffer_, size);
Advance(size);
}
return true;
}
return ReadStringFallback(buffer, size);
}
bool CodedInputStream::ReadStringFallback(std::string* buffer, int size) {
if (!buffer->empty()) {
buffer->clear();
}
int closest_limit = std::min(current_limit_, total_bytes_limit_);
if (closest_limit != INT_MAX) {
int bytes_to_limit = closest_limit - CurrentPosition();
if (bytes_to_limit > 0 && size > 0 && size <= bytes_to_limit) {
buffer->reserve(size);
}
}
int current_buffer_size;
while ((current_buffer_size = BufferSize()) < size) {
// Some STL implementations "helpfully" crash on buffer->append(NULL, 0).
if (current_buffer_size != 0) {
// Note: string1.append(string2) is O(string2.size()) (as opposed to
// O(string1.size() + string2.size()), which would be bad).
buffer->append(reinterpret_cast<const char*>(buffer_),
current_buffer_size);
}
size -= current_buffer_size;
Advance(current_buffer_size);
if (!Refresh()) return false;
}
buffer->append(reinterpret_cast<const char*>(buffer_), size);
Advance(size);
return true;
}
bool CodedInputStream::ReadCord(absl::Cord* output, int size) {
ABSL_DCHECK_NE(output, nullptr);
// security: size is often user-supplied
if (size < 0) {
output->Clear();
return false; // security: size is often user-supplied
}
// Grab whatever is in the current output if `size` is relatively small,
// or if we are not sourcing data from an input stream.
if (input_ == nullptr || size < kMaxCordBytesToCopy) {
// Just copy the current buffer into the output rather than backing up.
absl::string_view buffer(reinterpret_cast<const char*>(buffer_),
static_cast<size_t>(std::min(size, BufferSize())));
*output = buffer;
Advance(static_cast<int>(buffer.size()));
size -= static_cast<int>(buffer.size());
if (size == 0) return true;
if (input_ == nullptr || buffer_size_after_limit_ + overflow_bytes_ > 0) {
// We hit a limit.
return false;
}
} else {
output->Clear();
BackUpInputToCurrentPosition();
}
// Make sure to not cross a limit set by PushLimit() or SetTotalBytesLimit().
const int closest_limit = std::min(current_limit_, total_bytes_limit_);
const int available = closest_limit - total_bytes_read_;
if (PROTOBUF_PREDICT_FALSE(size > available)) {
total_bytes_read_ = closest_limit;
input_->ReadCord(output, available);
return false;
}
total_bytes_read_ += size;
return input_->ReadCord(output, size);
}
bool CodedInputStream::ReadLittleEndian16Fallback(uint16_t* value) {
constexpr size_t kSize = sizeof(*value);
uint8_t bytes[kSize];
const uint8_t* ptr;
if (BufferSize() >= static_cast<int64_t>(kSize)) {
// Fast path: Enough bytes in the buffer to read directly.
ptr = buffer_;
Advance(kSize);
} else {
// Slow path: Had to read past the end of the buffer.
if (!ReadRaw(bytes, kSize)) return false;
ptr = bytes;
}
ReadLittleEndian16FromArray(ptr, value);
return true;
}
bool CodedInputStream::ReadLittleEndian32Fallback(uint32_t* value) {
constexpr size_t kSize = sizeof(*value);
uint8_t bytes[kSize];
const uint8_t* ptr;
if (BufferSize() >= static_cast<int64_t>(kSize)) {
// Fast path: Enough bytes in the buffer to read directly.
ptr = buffer_;
Advance(kSize);
} else {
// Slow path: Had to read past the end of the buffer.
if (!ReadRaw(bytes, kSize)) return false;
ptr = bytes;
}
ReadLittleEndian32FromArray(ptr, value);
return true;
}
bool CodedInputStream::ReadLittleEndian64Fallback(uint64_t* value) {
constexpr size_t kSize = sizeof(*value);
uint8_t bytes[kSize];
const uint8_t* ptr;
if (BufferSize() >= static_cast<int64_t>(kSize)) {
// Fast path: Enough bytes in the buffer to read directly.
ptr = buffer_;
Advance(kSize);
} else {
// Slow path: Had to read past the end of the buffer.
if (!ReadRaw(bytes, kSize)) return false;
ptr = bytes;
}
ReadLittleEndian64FromArray(ptr, value);
return true;
}
namespace {
// Decodes varint64 with known size, N, and returns next pointer. Knowing N at
// compile time, compiler can generate optimal code. For example, instead of
// subtracting 0x80 at each iteration, it subtracts properly shifted mask once.
template <size_t N>
const uint8_t* DecodeVarint64KnownSize(const uint8_t* buffer, uint64_t* value) {
ABSL_DCHECK_GT(N, 0);
uint64_t result = static_cast<uint64_t>(buffer[N - 1]) << (7 * (N - 1));
for (size_t i = 0, offset = 0; i < N - 1; i++, offset += 7) {
result += static_cast<uint64_t>(buffer[i] - 0x80) << offset;
}
*value = result;
return buffer + N;
}
// Read a varint from the given buffer, write it to *value, and return a pair.
// The first part of the pair is true iff the read was successful. The second
// part is buffer + (number of bytes read). This function is always inlined,
// so returning a pair is costless.
PROTOBUF_ALWAYS_INLINE
::std::pair<bool, const uint8_t*> ReadVarint32FromArray(uint32_t first_byte,
const uint8_t* buffer,
uint32_t* value);
inline ::std::pair<bool, const uint8_t*> ReadVarint32FromArray(
uint32_t first_byte, const uint8_t* buffer, uint32_t* value) {
// Fast path: We have enough bytes left in the buffer to guarantee that
// this read won't cross the end, so we can skip the checks.
ABSL_DCHECK_EQ(*buffer, first_byte);
ABSL_DCHECK_EQ(first_byte & 0x80, 0x80) << first_byte;
const uint8_t* ptr = buffer;
uint32_t b;
uint32_t result = first_byte - 0x80;
++ptr; // We just processed the first byte. Move on to the second.
b = *(ptr++);
result += b << 7;
if (!(b & 0x80)) goto done;
result -= 0x80 << 7;
b = *(ptr++);
result += b << 14;
if (!(b & 0x80)) goto done;
result -= 0x80 << 14;
b = *(ptr++);
result += b << 21;
if (!(b & 0x80)) goto done;
result -= 0x80 << 21;
b = *(ptr++);
result += b << 28;
if (!(b & 0x80)) goto done;
// "result -= 0x80 << 28" is irrelevant.
// If the input is larger than 32 bits, we still need to read it all
// and discard the high-order bits.
for (int i = 0; i < kMaxVarintBytes - kMaxVarint32Bytes; i++) {
b = *(ptr++);
if (!(b & 0x80)) goto done;
}
// We have overrun the maximum size of a varint (10 bytes). Assume
// the data is corrupt.
return std::make_pair(false, ptr);
done:
*value = result;
return std::make_pair(true, ptr);
}
PROTOBUF_ALWAYS_INLINE::std::pair<bool, const uint8_t*> ReadVarint64FromArray(
const uint8_t* buffer, uint64_t* value);
inline ::std::pair<bool, const uint8_t*> ReadVarint64FromArray(
const uint8_t* buffer, uint64_t* value) {
// Assumes varint64 is at least 2 bytes.
ABSL_DCHECK_GE(buffer[0], 128);
const uint8_t* next;
if (buffer[1] < 128) {
next = DecodeVarint64KnownSize<2>(buffer, value);
} else if (buffer[2] < 128) {
next = DecodeVarint64KnownSize<3>(buffer, value);
} else if (buffer[3] < 128) {
next = DecodeVarint64KnownSize<4>(buffer, value);
} else if (buffer[4] < 128) {
next = DecodeVarint64KnownSize<5>(buffer, value);
} else if (buffer[5] < 128) {
next = DecodeVarint64KnownSize<6>(buffer, value);
} else if (buffer[6] < 128) {
next = DecodeVarint64KnownSize<7>(buffer, value);
} else if (buffer[7] < 128) {
next = DecodeVarint64KnownSize<8>(buffer, value);
} else if (buffer[8] < 128) {
next = DecodeVarint64KnownSize<9>(buffer, value);
} else if (buffer[9] < 128) {
next = DecodeVarint64KnownSize<10>(buffer, value);
} else {
// We have overrun the maximum size of a varint (10 bytes). Assume
// the data is corrupt.
return std::make_pair(false, buffer + 11);
}
return std::make_pair(true, next);
}
} // namespace
bool CodedInputStream::ReadVarint32Slow(uint32_t* value) {
// Directly invoke ReadVarint64Fallback, since we already tried to optimize
// for one-byte varints.
std::pair<uint64_t, bool> p = ReadVarint64Fallback();
*value = static_cast<uint32_t>(p.first);
return p.second;
}
int64_t CodedInputStream::ReadVarint32Fallback(uint32_t first_byte_or_zero) {
if (BufferSize() >= kMaxVarintBytes ||
// Optimization: We're also safe if the buffer is non-empty and it ends
// with a byte that would terminate a varint.
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
ABSL_DCHECK_NE(first_byte_or_zero, 0)
<< "Caller should provide us with *buffer_ when buffer is non-empty";
uint32_t temp;
::std::pair<bool, const uint8_t*> p =
ReadVarint32FromArray(first_byte_or_zero, buffer_, &temp);
if (!p.first) return -1;
buffer_ = p.second;
return temp;
} else {
// Really slow case: we will incur the cost of an extra function call here,
// but moving this out of line reduces the size of this function, which
// improves the common case. In micro benchmarks, this is worth about 10-15%
uint32_t temp;
return ReadVarint32Slow(&temp) ? static_cast<int64_t>(temp) : -1;
}
}
int CodedInputStream::ReadVarintSizeAsIntSlow() {
// Directly invoke ReadVarint64Fallback, since we already tried to optimize
// for one-byte varints.
std::pair<uint64_t, bool> p = ReadVarint64Fallback();
if (!p.second || p.first > static_cast<uint64_t>(INT_MAX)) return -1;
return p.first;
}
int CodedInputStream::ReadVarintSizeAsIntFallback() {
if (BufferSize() >= kMaxVarintBytes ||
// Optimization: We're also safe if the buffer is non-empty and it ends
// with a byte that would terminate a varint.
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
uint64_t temp;
::std::pair<bool, const uint8_t*> p = ReadVarint64FromArray(buffer_, &temp);
if (!p.first || temp > static_cast<uint64_t>(INT_MAX)) return -1;
buffer_ = p.second;
return temp;
} else {
// Really slow case: we will incur the cost of an extra function call here,
// but moving this out of line reduces the size of this function, which
// improves the common case. In micro benchmarks, this is worth about 10-15%
return ReadVarintSizeAsIntSlow();
}
}
uint32_t CodedInputStream::ReadTagSlow() {
if (buffer_ == buffer_end_) {
// Call refresh.
if (!Refresh()) {
// Refresh failed. Make sure that it failed due to EOF, not because
// we hit total_bytes_limit_, which, unlike normal limits, is not a
// valid place to end a message.
int current_position = total_bytes_read_ - buffer_size_after_limit_;
if (current_position >= total_bytes_limit_) {
// Hit total_bytes_limit_. But if we also hit the normal limit,
// we're still OK.
legitimate_message_end_ = current_limit_ == total_bytes_limit_;
} else {
legitimate_message_end_ = true;
}
return 0;
}
}
// For the slow path, just do a 64-bit read. Try to optimize for one-byte tags
// again, since we have now refreshed the buffer.
uint64_t result = 0;
if (!ReadVarint64(&result)) return 0;
return static_cast<uint32_t>(result);
}
uint32_t CodedInputStream::ReadTagFallback(uint32_t first_byte_or_zero) {
const int buf_size = BufferSize();
if (buf_size >= kMaxVarintBytes ||
// Optimization: We're also safe if the buffer is non-empty and it ends
// with a byte that would terminate a varint.
(buf_size > 0 && !(buffer_end_[-1] & 0x80))) {
ABSL_DCHECK_EQ(first_byte_or_zero, buffer_[0]);
if (first_byte_or_zero == 0) {
++buffer_;
return 0;
}
uint32_t tag;
::std::pair<bool, const uint8_t*> p =
ReadVarint32FromArray(first_byte_or_zero, buffer_, &tag);
if (!p.first) {
return 0;
}
buffer_ = p.second;
return tag;
} else {
// We are commonly at a limit when attempting to read tags. Try to quickly
// detect this case without making another function call.
if ((buf_size == 0) &&
((buffer_size_after_limit_ > 0) ||
(total_bytes_read_ == current_limit_)) &&
// Make sure that the limit we hit is not total_bytes_limit_, since
// in that case we still need to call Refresh() so that it prints an
// error.
total_bytes_read_ - buffer_size_after_limit_ < total_bytes_limit_) {
// We hit a byte limit.
legitimate_message_end_ = true;
return 0;
}
return ReadTagSlow();
}
}
bool CodedInputStream::ReadVarint64Slow(uint64_t* value) {
// Slow path: This read might cross the end of the buffer, so we
// need to check and refresh the buffer if and when it does.
uint64_t result = 0;
int count = 0;
uint32_t b;
do {
if (count == kMaxVarintBytes) {
*value = 0;
return false;
}
while (buffer_ == buffer_end_) {
if (!Refresh()) {
*value = 0;
return false;
}
}
b = *buffer_;
result |= static_cast<uint64_t>(b & 0x7F) << (7 * count);
Advance(1);
++count;
} while (b & 0x80);
*value = result;
return true;
}
std::pair<uint64_t, bool> CodedInputStream::ReadVarint64Fallback() {
if (BufferSize() >= kMaxVarintBytes ||
// Optimization: We're also safe if the buffer is non-empty and it ends
// with a byte that would terminate a varint.
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
uint64_t temp;
::std::pair<bool, const uint8_t*> p = ReadVarint64FromArray(buffer_, &temp);
if (!p.first) {
return std::make_pair(0, false);
}
buffer_ = p.second;
return std::make_pair(temp, true);
} else {
uint64_t temp;
bool success = ReadVarint64Slow(&temp);
return std::make_pair(temp, success);
}
}
bool CodedInputStream::Refresh() {
ABSL_DCHECK_EQ(0, BufferSize());
if (buffer_size_after_limit_ > 0 || overflow_bytes_ > 0 ||
total_bytes_read_ == current_limit_) {
// We've hit a limit. Stop.
int current_position = total_bytes_read_ - buffer_size_after_limit_;
if (current_position >= total_bytes_limit_ &&
total_bytes_limit_ != current_limit_) {
// Hit total_bytes_limit_.
PrintTotalBytesLimitError();
}
return false;
}
const void* void_buffer;
int buffer_size;
if (NextNonEmpty(input_, &void_buffer, &buffer_size)) {
buffer_ = reinterpret_cast<const uint8_t*>(void_buffer);
buffer_end_ = buffer_ + buffer_size;
ABSL_CHECK_GE(buffer_size, 0);
if (total_bytes_read_ <= INT_MAX - buffer_size) {
total_bytes_read_ += buffer_size;
} else {
// Overflow. Reset buffer_end_ to not include the bytes beyond INT_MAX.
// We can't get that far anyway, because total_bytes_limit_ is guaranteed
// to be less than it. We need to keep track of the number of bytes
// we discarded, though, so that we can call input_->BackUp() to back
// up over them on destruction.
// The following line is equivalent to:
// overflow_bytes_ = total_bytes_read_ + buffer_size - INT_MAX;
// except that it avoids overflows. Signed integer overflow has
// undefined results according to the C standard.
overflow_bytes_ = total_bytes_read_ - (INT_MAX - buffer_size);
buffer_end_ -= overflow_bytes_;
total_bytes_read_ = INT_MAX;
}
RecomputeBufferLimits();
return true;
} else {
buffer_ = NULL;
buffer_end_ = NULL;
return false;
}
}
// CodedOutputStream =================================================
void EpsCopyOutputStream::EnableAliasing(bool enabled) {
aliasing_enabled_ = enabled && stream_->AllowsAliasing();
}
int64_t EpsCopyOutputStream::ByteCount(uint8_t* ptr) const {
// Calculate the current offset relative to the end of the stream buffer.
int delta = (end_ - ptr) + (buffer_end_ ? 0 : kSlopBytes);
return stream_->ByteCount() - delta;
}
// Flushes what's written out to the underlying ZeroCopyOutputStream buffers.
// Returns the size remaining in the buffer and sets buffer_end_ to the start
// of the remaining buffer, ie. [buffer_end_, buffer_end_ + return value)
int EpsCopyOutputStream::Flush(uint8_t* ptr) {
while (buffer_end_ && ptr > end_) {
int overrun = ptr - end_;
ABSL_DCHECK(!had_error_);
ABSL_DCHECK(overrun <= kSlopBytes); // NOLINT
ptr = Next() + overrun;
if (had_error_) return 0;
}
int s;
if (buffer_end_) {
std::memcpy(buffer_end_, buffer_, ptr - buffer_);
buffer_end_ += ptr - buffer_;
s = end_ - ptr;
} else {
// The stream is writing directly in the ZeroCopyOutputStream buffer.
s = end_ + kSlopBytes - ptr;
buffer_end_ = ptr;
}
ABSL_DCHECK(s >= 0); // NOLINT
return s;
}
uint8_t* EpsCopyOutputStream::Trim(uint8_t* ptr) {
if (had_error_) return ptr;
int s = Flush(ptr);
stream_->BackUp(s);
// Reset to initial state (expecting new buffer)
buffer_end_ = end_ = buffer_;
return buffer_;
}
uint8_t* EpsCopyOutputStream::FlushAndResetBuffer(uint8_t* ptr) {
if (had_error_) return buffer_;
int s = Flush(ptr);
if (had_error_) return buffer_;
return SetInitialBuffer(buffer_end_, s);
}
bool EpsCopyOutputStream::Skip(int count, uint8_t** pp) {
if (count < 0) return false;
if (had_error_) {
*pp = buffer_;
return false;
}
int size = Flush(*pp);
if (had_error_) {
*pp = buffer_;
return false;
}
void* data = buffer_end_;
while (count > size) {
count -= size;
if (!stream_->Next(&data, &size)) {
*pp = Error();
return false;
}
}
*pp = SetInitialBuffer(static_cast<uint8_t*>(data) + count, size - count);
return true;
}
bool EpsCopyOutputStream::GetDirectBufferPointer(void** data, int* size,
uint8_t** pp) {
if (had_error_) {
*pp = buffer_;
return false;
}
*size = Flush(*pp);
if (had_error_) {
*pp = buffer_;
return false;
}
*data = buffer_end_;
while (*size == 0) {
if (!stream_->Next(data, size)) {
*pp = Error();
return false;
}
}
*pp = SetInitialBuffer(*data, *size);
return true;
}
uint8_t* EpsCopyOutputStream::GetDirectBufferForNBytesAndAdvance(int size,
uint8_t** pp) {
if (had_error_) {
*pp = buffer_;
return nullptr;
}
int s = Flush(*pp);
if (had_error_) {
*pp = buffer_;
return nullptr;
}
if (s >= size) {
auto res = buffer_end_;
*pp = SetInitialBuffer(buffer_end_ + size, s - size);
return res;
} else {
*pp = SetInitialBuffer(buffer_end_, s);
return nullptr;
}
}
uint8_t* EpsCopyOutputStream::Next() {
ABSL_DCHECK(!had_error_); // NOLINT
if (PROTOBUF_PREDICT_FALSE(stream_ == nullptr)) return Error();
if (buffer_end_) {
// We're in the patch buffer and need to fill up the previous buffer.
std::memcpy(buffer_end_, buffer_, end_ - buffer_);
uint8_t* ptr;
int size;
do {
void* data;
if (PROTOBUF_PREDICT_FALSE(!stream_->Next(&data, &size))) {
// Stream has an error, we use the patch buffer to continue to be
// able to write.
return Error();
}
ptr = static_cast<uint8_t*>(data);
} while (size == 0);
if (PROTOBUF_PREDICT_TRUE(size > kSlopBytes)) {
std::memcpy(ptr, end_, kSlopBytes);
end_ = ptr + size - kSlopBytes;
buffer_end_ = nullptr;
return ptr;
} else {
ABSL_DCHECK(size > 0); // NOLINT
// Buffer to small
std::memmove(buffer_, end_, kSlopBytes);
buffer_end_ = ptr;
end_ = buffer_ + size;
return buffer_;
}
} else {
std::memcpy(buffer_, end_, kSlopBytes);
buffer_end_ = end_;
end_ = buffer_ + kSlopBytes;
return buffer_;
}
}
uint8_t* EpsCopyOutputStream::EnsureSpaceFallback(uint8_t* ptr) {
do {
if (PROTOBUF_PREDICT_FALSE(had_error_)) return buffer_;
int overrun = ptr - end_;
ABSL_DCHECK(overrun >= 0); // NOLINT
ABSL_DCHECK(overrun <= kSlopBytes); // NOLINT
ptr = Next() + overrun;
} while (ptr >= end_);
ABSL_DCHECK(ptr < end_); // NOLINT
return ptr;
}
uint8_t* EpsCopyOutputStream::WriteRawFallback(const void* data, int size,
uint8_t* ptr) {
int s = GetSize(ptr);
while (s < size) {
std::memcpy(ptr, data, s);
size -= s;
data = static_cast<const uint8_t*>(data) + s;
ptr = EnsureSpaceFallback(ptr + s);
s = GetSize(ptr);
}
std::memcpy(ptr, data, size);
return ptr + size;
}
uint8_t* EpsCopyOutputStream::WriteAliasedRaw(const void* data, int size,
uint8_t* ptr) {
if (size < GetSize(ptr)
) {
return WriteRaw(data, size, ptr);
} else {
ptr = Trim(ptr);
if (stream_->WriteAliasedRaw(data, size)) return ptr;
return Error();
}
}
#ifndef ABSL_IS_LITTLE_ENDIAN
uint8_t* EpsCopyOutputStream::WriteRawLittleEndian32(const void* data, int size,
uint8_t* ptr) {
auto p = static_cast<const uint8_t*>(data);
auto end = p + size;
while (end - p >= kSlopBytes) {
ptr = EnsureSpace(ptr);
uint32_t buffer[4];
static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes");
std::memcpy(buffer, p, kSlopBytes);
p += kSlopBytes;
for (auto x : buffer)
ptr = CodedOutputStream::WriteLittleEndian32ToArray(x, ptr);
}
while (p < end) {
ptr = EnsureSpace(ptr);
uint32_t buffer;
std::memcpy(&buffer, p, 4);
p += 4;
ptr = CodedOutputStream::WriteLittleEndian32ToArray(buffer, ptr);
}
return ptr;
}
uint8_t* EpsCopyOutputStream::WriteRawLittleEndian64(const void* data, int size,
uint8_t* ptr) {
auto p = static_cast<const uint8_t*>(data);
auto end = p + size;
while (end - p >= kSlopBytes) {
ptr = EnsureSpace(ptr);
uint64_t buffer[2];
static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes");
std::memcpy(buffer, p, kSlopBytes);
p += kSlopBytes;
for (auto x : buffer)
ptr = CodedOutputStream::WriteLittleEndian64ToArray(x, ptr);
}
while (p < end) {
ptr = EnsureSpace(ptr);
uint64_t buffer;
std::memcpy(&buffer, p, 8);
p += 8;
ptr = CodedOutputStream::WriteLittleEndian64ToArray(buffer, ptr);
}
return ptr;
}
#endif
uint8_t* EpsCopyOutputStream::WriteCord(const absl::Cord& cord, uint8_t* ptr) {
int s = GetSize(ptr);
if (stream_ == nullptr) {
if (static_cast<int64_t>(cord.size()) <= s) {
// Just copy it to the current buffer.
return CopyCordToArray(cord, ptr);
} else {
return Error();
}
} else if (static_cast<int64_t>(cord.size()) <= s &&
static_cast<int64_t>(cord.size()) < kMaxCordBytesToCopy) {
// Just copy it to the current buffer.
return CopyCordToArray(cord, ptr);
} else {
// Back up to the position where the Cord should start.
ptr = Trim(ptr);
if (!stream_->WriteCord(cord)) return Error();
return ptr;
}
}
uint8_t* EpsCopyOutputStream::WriteStringMaybeAliasedOutline(uint32_t num,
const std::string& s,
uint8_t* ptr) {
ptr = EnsureSpace(ptr);
uint32_t size = s.size();
ptr = WriteLengthDelim(num, size, ptr);
return WriteRawMaybeAliased(s.data(), size, ptr);
}
uint8_t* EpsCopyOutputStream::WriteStringOutline(uint32_t num, const std::string& s,
uint8_t* ptr) {
ptr = EnsureSpace(ptr);
uint32_t size = s.size();
ptr = WriteLengthDelim(num, size, ptr);
return WriteRaw(s.data(), size, ptr);
}
uint8_t* EpsCopyOutputStream::WriteStringOutline(uint32_t num, absl::string_view s,
uint8_t* ptr) {
ptr = EnsureSpace(ptr);
uint32_t size = s.size();
ptr = WriteLengthDelim(num, size, ptr);
return WriteRaw(s.data(), size, ptr);
}
uint8_t* EpsCopyOutputStream::WriteCordOutline(const absl::Cord& c, uint8_t* ptr) {
uint32_t size = c.size();
ptr = UnsafeWriteSize(size, ptr);
return WriteCord(c, ptr);
}
std::atomic<bool> CodedOutputStream::default_serialization_deterministic_{
false};
CodedOutputStream::~CodedOutputStream() { Trim(); }
uint8_t* CodedOutputStream::WriteCordToArray(const absl::Cord& cord,
uint8_t* target) {
return CopyCordToArray(cord, target);
}
uint8_t* CodedOutputStream::WriteStringWithSizeToArray(const std::string& str,
uint8_t* target) {
ABSL_DCHECK_LE(str.size(), std::numeric_limits<uint32_t>::max());
target = WriteVarint32ToArray(str.size(), target);
return WriteStringToArray(str, target);
}
} // namespace io
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"