| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| // Author: kenton@google.com (Kenton Varda) |
| // Based on original Protocol Buffers design by |
| // Sanjay Ghemawat, Jeff Dean, and others. |
| // |
| // This file contains the CodedInputStream and CodedOutputStream classes, |
| // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively, |
| // and allow you to read or write individual pieces of data in various |
| // formats. In particular, these implement the varint encoding for |
| // integers, a simple variable-length encoding in which smaller numbers |
| // take fewer bytes. |
| // |
| // Typically these classes will only be used internally by the protocol |
| // buffer library in order to encode and decode protocol buffers. Clients |
| // of the library only need to know about this class if they wish to write |
| // custom message parsing or serialization procedures. |
| // |
| // CodedOutputStream example: |
| // // Write some data to "myfile". First we write a 4-byte "magic number" |
| // // to identify the file type, then write a length-prefixed string. The |
| // // string is composed of a varint giving the length followed by the raw |
| // // bytes. |
| // int fd = open("myfile", O_CREAT | O_WRONLY); |
| // ZeroCopyOutputStream* raw_output = new FileOutputStream(fd); |
| // CodedOutputStream* coded_output = new CodedOutputStream(raw_output); |
| // |
| // int magic_number = 1234; |
| // char text[] = "Hello world!"; |
| // coded_output->WriteLittleEndian32(magic_number); |
| // coded_output->WriteVarint32(strlen(text)); |
| // coded_output->WriteRaw(text, strlen(text)); |
| // |
| // delete coded_output; |
| // delete raw_output; |
| // close(fd); |
| // |
| // CodedInputStream example: |
| // // Read a file created by the above code. |
| // int fd = open("myfile", O_RDONLY); |
| // ZeroCopyInputStream* raw_input = new FileInputStream(fd); |
| // CodedInputStream* coded_input = new CodedInputStream(raw_input); |
| // |
| // coded_input->ReadLittleEndian32(&magic_number); |
| // if (magic_number != 1234) { |
| // cerr << "File not in expected format." << endl; |
| // return; |
| // } |
| // |
| // uint32_t size; |
| // coded_input->ReadVarint32(&size); |
| // |
| // char* text = new char[size + 1]; |
| // coded_input->ReadRaw(buffer, size); |
| // text[size] = '\0'; |
| // |
| // delete coded_input; |
| // delete raw_input; |
| // close(fd); |
| // |
| // cout << "Text is: " << text << endl; |
| // delete [] text; |
| // |
| // For those who are interested, varint encoding is defined as follows: |
| // |
| // The encoding operates on unsigned integers of up to 64 bits in length. |
| // Each byte of the encoded value has the format: |
| // * bits 0-6: Seven bits of the number being encoded. |
| // * bit 7: Zero if this is the last byte in the encoding (in which |
| // case all remaining bits of the number are zero) or 1 if |
| // more bytes follow. |
| // The first byte contains the least-significant 7 bits of the number, the |
| // second byte (if present) contains the next-least-significant 7 bits, |
| // and so on. So, the binary number 1011000101011 would be encoded in two |
| // bytes as "10101011 00101100". |
| // |
| // In theory, varint could be used to encode integers of any length. |
| // However, for practicality we set a limit at 64 bits. The maximum encoded |
| // length of a number is thus 10 bytes. |
| |
| #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |
| #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |
| |
| #include <assert.h> |
| |
| #include <atomic> |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <limits> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| |
| #if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) |
| // If MSVC has "/RTCc" set, it will complain about truncating casts at |
| // runtime. This file contains some intentional truncating casts. |
| #pragma runtime_checks("c", off) |
| #endif |
| |
| #include "absl/log/absl_log.h" // Replace with vlog_is_on.h after Abseil LTS 20240722 |
| |
| #include "absl/log/absl_check.h" |
| #include "absl/numeric/bits.h" |
| #include "absl/strings/cord.h" |
| #include "absl/strings/string_view.h" |
| #include "google/protobuf/endian.h" |
| |
| // Must be included last. |
| #include "google/protobuf/port_def.inc" |
| |
| namespace google { |
| namespace protobuf { |
| |
| class DescriptorPool; |
| class MessageFactory; |
| class ZeroCopyCodedInputStream; |
| |
| namespace internal { |
| void MapTestForceDeterministic(); |
| class EpsCopyByteStream; |
| } // namespace internal |
| |
| namespace io { |
| |
| // Defined in this file. |
| class CodedInputStream; |
| class CodedOutputStream; |
| |
| // Defined in other files. |
| class ZeroCopyInputStream; // zero_copy_stream.h |
| class ZeroCopyOutputStream; // zero_copy_stream.h |
| |
| // Class which reads and decodes binary data which is composed of varint- |
| // encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream. |
| // Most users will not need to deal with CodedInputStream. |
| // |
| // Most methods of CodedInputStream that return a bool return false if an |
| // underlying I/O error occurs or if the data is malformed. Once such a |
| // failure occurs, the CodedInputStream is broken and is no longer useful. |
| // After a failure, callers also should assume writes to "out" args may have |
| // occurred, though nothing useful can be determined from those writes. |
| class PROTOBUF_EXPORT CodedInputStream { |
| public: |
| // Create a CodedInputStream that reads from the given ZeroCopyInputStream. |
| explicit CodedInputStream(ZeroCopyInputStream* input); |
| |
| // Create a CodedInputStream that reads from the given flat array. This is |
| // faster than using an ArrayInputStream. PushLimit(size) is implied by |
| // this constructor. |
| explicit CodedInputStream(const uint8_t* buffer, int size); |
| CodedInputStream(const CodedInputStream&) = delete; |
| CodedInputStream& operator=(const CodedInputStream&) = delete; |
| |
| // Destroy the CodedInputStream and position the underlying |
| // ZeroCopyInputStream at the first unread byte. If an error occurred while |
| // reading (causing a method to return false), then the exact position of |
| // the input stream may be anywhere between the last value that was read |
| // successfully and the stream's byte limit. |
| ~CodedInputStream(); |
| |
| // Return true if this CodedInputStream reads from a flat array instead of |
| // a ZeroCopyInputStream. |
| inline bool IsFlat() const; |
| |
| // Skips a number of bytes. Returns false if an underlying read error |
| // occurs. |
| inline bool Skip(int count); |
| |
| // Sets *data to point directly at the unread part of the CodedInputStream's |
| // underlying buffer, and *size to the size of that buffer, but does not |
| // advance the stream's current position. This will always either produce |
| // a non-empty buffer or return false. If the caller consumes any of |
| // this data, it should then call Skip() to skip over the consumed bytes. |
| // This may be useful for implementing external fast parsing routines for |
| // types of data not covered by the CodedInputStream interface. |
| bool GetDirectBufferPointer(const void** data, int* size); |
| |
| // Like GetDirectBufferPointer, but this method is inlined, and does not |
| // attempt to Refresh() if the buffer is currently empty. |
| PROTOBUF_ALWAYS_INLINE |
| void GetDirectBufferPointerInline(const void** data, int* size); |
| |
| // Read raw bytes, copying them into the given buffer. |
| bool ReadRaw(void* buffer, int size); |
| |
| // Like ReadRaw, but reads into a string. |
| bool ReadString(std::string* buffer, int size); |
| |
| // Like ReadString(), but reads to a Cord. |
| bool ReadCord(absl::Cord* output, int size); |
| |
| |
| // Read a 16-bit little-endian integer. |
| bool ReadLittleEndian16(uint16_t* value); |
| // Read a 32-bit little-endian integer. |
| bool ReadLittleEndian32(uint32_t* value); |
| // Read a 64-bit little-endian integer. |
| bool ReadLittleEndian64(uint64_t* value); |
| |
| // These methods read from an externally provided buffer. The caller is |
| // responsible for ensuring that the buffer has sufficient space. |
| // Read a 16-bit little-endian integer. |
| static const uint8_t* ReadLittleEndian16FromArray(const uint8_t* buffer, |
| uint16_t* value); |
| // Read a 32-bit little-endian integer. |
| static const uint8_t* ReadLittleEndian32FromArray(const uint8_t* buffer, |
| uint32_t* value); |
| // Read a 64-bit little-endian integer. |
| static const uint8_t* ReadLittleEndian64FromArray(const uint8_t* buffer, |
| uint64_t* value); |
| |
| // Read an unsigned integer with Varint encoding, truncating to 32 bits. |
| // Reading a 32-bit value is equivalent to reading a 64-bit one and casting |
| // it to uint32_t, but may be more efficient. |
| bool ReadVarint32(uint32_t* value); |
| // Read an unsigned integer with Varint encoding. |
| bool ReadVarint64(uint64_t* value); |
| |
| // Reads a varint off the wire into an "int". This should be used for reading |
| // sizes off the wire (sizes of strings, submessages, bytes fields, etc). |
| // |
| // The value from the wire is interpreted as unsigned. If its value exceeds |
| // the representable value of an integer on this platform, instead of |
| // truncating we return false. Truncating (as performed by ReadVarint32() |
| // above) is an acceptable approach for fields representing an integer, but |
| // when we are parsing a size from the wire, truncating the value would result |
| // in us misparsing the payload. |
| bool ReadVarintSizeAsInt(int* value); |
| |
| // Read a tag. This calls ReadVarint32() and returns the result, or returns |
| // zero (which is not a valid tag) if ReadVarint32() fails. Also, ReadTag |
| // (but not ReadTagNoLastTag) updates the last tag value, which can be checked |
| // with LastTagWas(). |
| // |
| // Always inline because this is only called in one place per parse loop |
| // but it is called for every iteration of said loop, so it should be fast. |
| // GCC doesn't want to inline this by default. |
| PROTOBUF_ALWAYS_INLINE uint32_t ReadTag() { |
| return last_tag_ = ReadTagNoLastTag(); |
| } |
| |
| PROTOBUF_ALWAYS_INLINE uint32_t ReadTagNoLastTag(); |
| |
| // This usually a faster alternative to ReadTag() when cutoff is a manifest |
| // constant. It does particularly well for cutoff >= 127. The first part |
| // of the return value is the tag that was read, though it can also be 0 in |
| // the cases where ReadTag() would return 0. If the second part is true |
| // then the tag is known to be in [0, cutoff]. If not, the tag either is |
| // above cutoff or is 0. (There's intentional wiggle room when tag is 0, |
| // because that can arise in several ways, and for best performance we want |
| // to avoid an extra "is tag == 0?" check here.) |
| PROTOBUF_ALWAYS_INLINE |
| std::pair<uint32_t, bool> ReadTagWithCutoff(uint32_t cutoff) { |
| std::pair<uint32_t, bool> result = ReadTagWithCutoffNoLastTag(cutoff); |
| last_tag_ = result.first; |
| return result; |
| } |
| |
| PROTOBUF_ALWAYS_INLINE |
| std::pair<uint32_t, bool> ReadTagWithCutoffNoLastTag(uint32_t cutoff); |
| |
| // Usually returns true if calling ReadVarint32() now would produce the given |
| // value. Will always return false if ReadVarint32() would not return the |
| // given value. If ExpectTag() returns true, it also advances past |
| // the varint. For best performance, use a compile-time constant as the |
| // parameter. |
| // Always inline because this collapses to a small number of instructions |
| // when given a constant parameter, but GCC doesn't want to inline by default. |
| PROTOBUF_ALWAYS_INLINE bool ExpectTag(uint32_t expected); |
| |
| // Like above, except this reads from the specified buffer. The caller is |
| // responsible for ensuring that the buffer is large enough to read a varint |
| // of the expected size. For best performance, use a compile-time constant as |
| // the expected tag parameter. |
| // |
| // Returns a pointer beyond the expected tag if it was found, or NULL if it |
| // was not. |
| PROTOBUF_ALWAYS_INLINE |
| static const uint8_t* ExpectTagFromArray(const uint8_t* buffer, |
| uint32_t expected); |
| |
| // Usually returns true if no more bytes can be read. Always returns false |
| // if more bytes can be read. If ExpectAtEnd() returns true, a subsequent |
| // call to LastTagWas() will act as if ReadTag() had been called and returned |
| // zero, and ConsumedEntireMessage() will return true. |
| bool ExpectAtEnd(); |
| |
| // If the last call to ReadTag() or ReadTagWithCutoff() returned the given |
| // value, returns true. Otherwise, returns false. |
| // ReadTagNoLastTag/ReadTagWithCutoffNoLastTag do not preserve the last |
| // returned value. |
| // |
| // This is needed because parsers for some types of embedded messages |
| // (with field type TYPE_GROUP) don't actually know that they've reached the |
| // end of a message until they see an ENDGROUP tag, which was actually part |
| // of the enclosing message. The enclosing message would like to check that |
| // tag to make sure it had the right number, so it calls LastTagWas() on |
| // return from the embedded parser to check. |
| bool LastTagWas(uint32_t expected); |
| void SetLastTag(uint32_t tag) { last_tag_ = tag; } |
| |
| // When parsing message (but NOT a group), this method must be called |
| // immediately after MergeFromCodedStream() returns (if it returns true) |
| // to further verify that the message ended in a legitimate way. For |
| // example, this verifies that parsing did not end on an end-group tag. |
| // It also checks for some cases where, due to optimizations, |
| // MergeFromCodedStream() can incorrectly return true. |
| bool ConsumedEntireMessage(); |
| void SetConsumed() { legitimate_message_end_ = true; } |
| |
| // Limits ---------------------------------------------------------- |
| // Limits are used when parsing length-prefixed embedded messages. |
| // After the message's length is read, PushLimit() is used to prevent |
| // the CodedInputStream from reading beyond that length. Once the |
| // embedded message has been parsed, PopLimit() is called to undo the |
| // limit. |
| |
| // Opaque type used with PushLimit() and PopLimit(). Do not modify |
| // values of this type yourself. The only reason that this isn't a |
| // struct with private internals is for efficiency. |
| typedef int Limit; |
| |
| // Places a limit on the number of bytes that the stream may read, |
| // starting from the current position. Once the stream hits this limit, |
| // it will act like the end of the input has been reached until PopLimit() |
| // is called. |
| // |
| // As the names imply, the stream conceptually has a stack of limits. The |
| // shortest limit on the stack is always enforced, even if it is not the |
| // top limit. |
| // |
| // The value returned by PushLimit() is opaque to the caller, and must |
| // be passed unchanged to the corresponding call to PopLimit(). |
| Limit PushLimit(int byte_limit); |
| |
| // Pops the last limit pushed by PushLimit(). The input must be the value |
| // returned by that call to PushLimit(). |
| void PopLimit(Limit limit); |
| |
| // Returns the number of bytes left until the nearest limit on the |
| // stack is hit, or -1 if no limits are in place. |
| int BytesUntilLimit() const; |
| |
| // Returns current position relative to the beginning of the input stream. |
| int CurrentPosition() const; |
| |
| // Total Bytes Limit ----------------------------------------------- |
| // To prevent malicious users from sending excessively large messages |
| // and causing memory exhaustion, CodedInputStream imposes a hard limit on |
| // the total number of bytes it will read. |
| |
| // Sets the maximum number of bytes that this CodedInputStream will read |
| // before refusing to continue. To prevent servers from allocating enormous |
| // amounts of memory to hold parsed messages, the maximum message length |
| // should be limited to the shortest length that will not harm usability. |
| // The default limit is INT_MAX (~2GB) and apps should set shorter limits |
| // if possible. An error will always be printed to stderr if the limit is |
| // reached. |
| // |
| // Note: setting a limit less than the current read position is interpreted |
| // as a limit on the current position. |
| // |
| // This is unrelated to PushLimit()/PopLimit(). |
| void SetTotalBytesLimit(int total_bytes_limit); |
| |
| // The Total Bytes Limit minus the Current Position, or -1 if the total bytes |
| // limit is INT_MAX. |
| int BytesUntilTotalBytesLimit() const; |
| |
| // Recursion Limit ------------------------------------------------- |
| // To prevent corrupt or malicious messages from causing stack overflows, |
| // we must keep track of the depth of recursion when parsing embedded |
| // messages and groups. CodedInputStream keeps track of this because it |
| // is the only object that is passed down the stack during parsing. |
| |
| // Sets the maximum recursion depth. The default is 100. |
| void SetRecursionLimit(int limit); |
| int RecursionBudget() { return recursion_budget_; } |
| |
| static int GetDefaultRecursionLimit() { return default_recursion_limit_; } |
| |
| // Increments the current recursion depth. Returns true if the depth is |
| // under the limit, false if it has gone over. |
| bool IncrementRecursionDepth(); |
| |
| // Decrements the recursion depth if possible. |
| void DecrementRecursionDepth(); |
| |
| // Decrements the recursion depth blindly. This is faster than |
| // DecrementRecursionDepth(). It should be used only if all previous |
| // increments to recursion depth were successful. |
| void UnsafeDecrementRecursionDepth(); |
| |
| // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_). |
| // Using this can reduce code size and complexity in some cases. The caller |
| // is expected to check that the second part of the result is non-negative (to |
| // bail out if the depth of recursion is too high) and, if all is well, to |
| // later pass the first part of the result to PopLimit() or similar. |
| std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit( |
| int byte_limit); |
| |
| // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0). |
| Limit ReadLengthAndPushLimit(); |
| |
| // Helper that is equivalent to: { |
| // bool result = ConsumedEntireMessage(); |
| // PopLimit(limit); |
| // UnsafeDecrementRecursionDepth(); |
| // return result; } |
| // Using this can reduce code size and complexity in some cases. |
| // Do not use unless the current recursion depth is greater than zero. |
| bool DecrementRecursionDepthAndPopLimit(Limit limit); |
| |
| // Helper that is equivalent to: { |
| // bool result = ConsumedEntireMessage(); |
| // PopLimit(limit); |
| // return result; } |
| // Using this can reduce code size and complexity in some cases. |
| bool CheckEntireMessageConsumedAndPopLimit(Limit limit); |
| |
| // Extension Registry ---------------------------------------------- |
| // ADVANCED USAGE: 99.9% of people can ignore this section. |
| // |
| // By default, when parsing extensions, the parser looks for extension |
| // definitions in the pool which owns the outer message's Descriptor. |
| // However, you may call SetExtensionRegistry() to provide an alternative |
| // pool instead. This makes it possible, for example, to parse a message |
| // using a generated class, but represent some extensions using |
| // DynamicMessage. |
| |
| // Set the pool used to look up extensions. Most users do not need to call |
| // this as the correct pool will be chosen automatically. |
| // |
| // WARNING: It is very easy to misuse this. Carefully read the requirements |
| // below. Do not use this unless you are sure you need it. Almost no one |
| // does. |
| // |
| // Let's say you are parsing a message into message object m, and you want |
| // to take advantage of SetExtensionRegistry(). You must follow these |
| // requirements: |
| // |
| // The given DescriptorPool must contain m->GetDescriptor(). It is not |
| // sufficient for it to simply contain a descriptor that has the same name |
| // and content -- it must be the *exact object*. In other words: |
| // assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) == |
| // m->GetDescriptor()); |
| // There are two ways to satisfy this requirement: |
| // 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless |
| // because this is the pool that would be used anyway if you didn't call |
| // SetExtensionRegistry() at all. |
| // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an |
| // "underlay". Read the documentation for DescriptorPool for more |
| // information about underlays. |
| // |
| // You must also provide a MessageFactory. This factory will be used to |
| // construct Message objects representing extensions. The factory's |
| // GetPrototype() MUST return non-NULL for any Descriptor which can be found |
| // through the provided pool. |
| // |
| // If the provided factory might return instances of protocol-compiler- |
| // generated (i.e. compiled-in) types, or if the outer message object m is |
| // a generated type, then the given factory MUST have this property: If |
| // GetPrototype() is given a Descriptor which resides in |
| // DescriptorPool::generated_pool(), the factory MUST return the same |
| // prototype which MessageFactory::generated_factory() would return. That |
| // is, given a descriptor for a generated type, the factory must return an |
| // instance of the generated class (NOT DynamicMessage). However, when |
| // given a descriptor for a type that is NOT in generated_pool, the factory |
| // is free to return any implementation. |
| // |
| // The reason for this requirement is that generated sub-objects may be |
| // accessed via the standard (non-reflection) extension accessor methods, |
| // and these methods will down-cast the object to the generated class type. |
| // If the object is not actually of that type, the results would be undefined. |
| // On the other hand, if an extension is not compiled in, then there is no |
| // way the code could end up accessing it via the standard accessors -- the |
| // only way to access the extension is via reflection. When using reflection, |
| // DynamicMessage and generated messages are indistinguishable, so it's fine |
| // if these objects are represented using DynamicMessage. |
| // |
| // Using DynamicMessageFactory on which you have called |
| // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the |
| // above requirement. |
| // |
| // If either pool or factory is NULL, both must be NULL. |
| // |
| // Note that this feature is ignored when parsing "lite" messages as they do |
| // not have descriptors. |
| void SetExtensionRegistry(const DescriptorPool* pool, |
| MessageFactory* factory); |
| |
| // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool |
| // has been provided. |
| const DescriptorPool* GetExtensionPool(); |
| |
| // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no |
| // factory has been provided. |
| MessageFactory* GetExtensionFactory(); |
| |
| private: |
| const uint8_t* buffer_; |
| const uint8_t* buffer_end_; // pointer to the end of the buffer. |
| ZeroCopyInputStream* input_; |
| int total_bytes_read_; // total bytes read from input_, including |
| // the current buffer |
| |
| // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here |
| // so that we can BackUp() on destruction. |
| int overflow_bytes_; |
| |
| // LastTagWas() stuff. |
| uint32_t last_tag_; // result of last ReadTag() or ReadTagWithCutoff(). |
| |
| // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly |
| // at EOF, or by ExpectAtEnd() when it returns true. This happens when we |
| // reach the end of a message and attempt to read another tag. |
| bool legitimate_message_end_; |
| |
| // See EnableAliasing(). |
| bool aliasing_enabled_; |
| |
| // If true, set eager parsing mode to override lazy fields. |
| bool force_eager_parsing_; |
| |
| // Limits |
| Limit current_limit_; // if position = -1, no limit is applied |
| |
| // For simplicity, if the current buffer crosses a limit (either a normal |
| // limit created by PushLimit() or the total bytes limit), buffer_size_ |
| // only tracks the number of bytes before that limit. This field |
| // contains the number of bytes after it. Note that this implies that if |
| // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've |
| // hit a limit. However, if both are zero, it doesn't necessarily mean |
| // we aren't at a limit -- the buffer may have ended exactly at the limit. |
| int buffer_size_after_limit_; |
| |
| // Maximum number of bytes to read, period. This is unrelated to |
| // current_limit_. Set using SetTotalBytesLimit(). |
| int total_bytes_limit_; |
| |
| // Current recursion budget, controlled by IncrementRecursionDepth() and |
| // similar. Starts at recursion_limit_ and goes down: if this reaches |
| // -1 we are over budget. |
| int recursion_budget_; |
| // Recursion depth limit, set by SetRecursionLimit(). |
| int recursion_limit_; |
| |
| // See SetExtensionRegistry(). |
| const DescriptorPool* extension_pool_; |
| MessageFactory* extension_factory_; |
| |
| // Private member functions. |
| |
| // Fallback when Skip() goes past the end of the current buffer. |
| bool SkipFallback(int count, int original_buffer_size); |
| |
| // Advance the buffer by a given number of bytes. |
| void Advance(int amount); |
| |
| // Back up input_ to the current buffer position. |
| void BackUpInputToCurrentPosition(); |
| |
| // Recomputes the value of buffer_size_after_limit_. Must be called after |
| // current_limit_ or total_bytes_limit_ changes. |
| void RecomputeBufferLimits(); |
| |
| // Writes an error message saying that we hit total_bytes_limit_. |
| void PrintTotalBytesLimitError(); |
| |
| // Called when the buffer runs out to request more data. Implies an |
| // Advance(BufferSize()). |
| bool Refresh(); |
| |
| // When parsing varints, we optimize for the common case of small values, and |
| // then optimize for the case when the varint fits within the current buffer |
| // piece. The Fallback method is used when we can't use the one-byte |
| // optimization. The Slow method is yet another fallback when the buffer is |
| // not large enough. Making the slow path out-of-line speeds up the common |
| // case by 10-15%. The slow path is fairly uncommon: it only triggers when a |
| // message crosses multiple buffers. Note: ReadVarint32Fallback() and |
| // ReadVarint64Fallback() are called frequently and generally not inlined, so |
| // they have been optimized to avoid "out" parameters. The former returns -1 |
| // if it fails and the uint32_t it read otherwise. The latter has a bool |
| // indicating success or failure as part of its return type. |
| int64_t ReadVarint32Fallback(uint32_t first_byte_or_zero); |
| int ReadVarintSizeAsIntFallback(); |
| std::pair<uint64_t, bool> ReadVarint64Fallback(); |
| bool ReadVarint32Slow(uint32_t* value); |
| bool ReadVarint64Slow(uint64_t* value); |
| int ReadVarintSizeAsIntSlow(); |
| bool ReadLittleEndian16Fallback(uint16_t* value); |
| bool ReadLittleEndian32Fallback(uint32_t* value); |
| bool ReadLittleEndian64Fallback(uint64_t* value); |
| |
| // Fallback/slow methods for reading tags. These do not update last_tag_, |
| // but will set legitimate_message_end_ if we are at the end of the input |
| // stream. |
| uint32_t ReadTagFallback(uint32_t first_byte_or_zero); |
| uint32_t ReadTagSlow(); |
| bool ReadStringFallback(std::string* buffer, int size); |
| |
| // Return the size of the buffer. |
| int BufferSize() const; |
| |
| static const int kDefaultTotalBytesLimit = INT_MAX; |
| |
| static int default_recursion_limit_; // 100 by default. |
| |
| friend class google::protobuf::ZeroCopyCodedInputStream; |
| friend class google::protobuf::internal::EpsCopyByteStream; |
| }; |
| |
| // EpsCopyOutputStream wraps a ZeroCopyOutputStream and exposes a new stream, |
| // which has the property you can write kSlopBytes (16 bytes) from the current |
| // position without bounds checks. The cursor into the stream is managed by |
| // the user of the class and is an explicit parameter in the methods. Careful |
| // use of this class, ie. keep ptr a local variable, eliminates the need to |
| // for the compiler to sync the ptr value between register and memory. |
| class PROTOBUF_EXPORT EpsCopyOutputStream { |
| public: |
| enum { kSlopBytes = 16 }; |
| |
| // Initialize from a stream. |
| EpsCopyOutputStream(ZeroCopyOutputStream* stream, bool deterministic, |
| uint8_t** pp) |
| : end_(buffer_), |
| stream_(stream), |
| is_serialization_deterministic_(deterministic) { |
| *pp = buffer_; |
| } |
| |
| // Only for array serialization. No overflow protection, end_ will be the |
| // pointed to the end of the array. When using this the total size is already |
| // known, so no need to maintain the slop region. |
| EpsCopyOutputStream(void* data, int size, bool deterministic) |
| : end_(static_cast<uint8_t*>(data) + size), |
| buffer_end_(nullptr), |
| stream_(nullptr), |
| is_serialization_deterministic_(deterministic) {} |
| |
| // Initialize from stream but with the first buffer already given (eager). |
| EpsCopyOutputStream(void* data, int size, ZeroCopyOutputStream* stream, |
| bool deterministic, uint8_t** pp) |
| : stream_(stream), is_serialization_deterministic_(deterministic) { |
| *pp = SetInitialBuffer(data, size); |
| } |
| |
| // Flush everything that's written into the underlying ZeroCopyOutputStream |
| // and trims the underlying stream to the location of ptr. |
| uint8_t* Trim(uint8_t* ptr); |
| |
| // After this it's guaranteed you can safely write kSlopBytes to ptr. This |
| // will never fail! The underlying stream can produce an error. Use HadError |
| // to check for errors. |
| PROTOBUF_NODISCARD uint8_t* EnsureSpace(uint8_t* ptr) { |
| if (PROTOBUF_PREDICT_FALSE(ptr >= end_)) { |
| return EnsureSpaceFallback(ptr); |
| } |
| return ptr; |
| } |
| |
| uint8_t* WriteRaw(const void* data, int size, uint8_t* ptr) { |
| if (PROTOBUF_PREDICT_FALSE(end_ - ptr < size)) { |
| return WriteRawFallback(data, size, ptr); |
| } |
| std::memcpy(ptr, data, static_cast<unsigned int>(size)); |
| return ptr + size; |
| } |
| // Writes the buffer specified by data, size to the stream. Possibly by |
| // aliasing the buffer (ie. not copying the data). The caller is responsible |
| // to make sure the buffer is alive for the duration of the |
| // ZeroCopyOutputStream. |
| #ifndef NDEBUG |
| PROTOBUF_NOINLINE |
| #endif |
| uint8_t* WriteRawMaybeAliased(const void* data, int size, uint8_t* ptr) { |
| if (aliasing_enabled_) { |
| return WriteAliasedRaw(data, size, ptr); |
| } else { |
| return WriteRaw(data, size, ptr); |
| } |
| } |
| |
| uint8_t* WriteCord(const absl::Cord& cord, uint8_t* ptr); |
| |
| #ifndef NDEBUG |
| PROTOBUF_NOINLINE |
| #endif |
| uint8_t* WriteStringMaybeAliased(uint32_t num, const std::string& s, |
| uint8_t* ptr) { |
| std::ptrdiff_t size = s.size(); |
| if (PROTOBUF_PREDICT_FALSE( |
| size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) { |
| return WriteStringMaybeAliasedOutline(num, s, ptr); |
| } |
| ptr = UnsafeVarint((num << 3) | 2, ptr); |
| *ptr++ = static_cast<uint8_t>(size); |
| std::memcpy(ptr, s.data(), size); |
| return ptr + size; |
| } |
| uint8_t* WriteBytesMaybeAliased(uint32_t num, const std::string& s, |
| uint8_t* ptr) { |
| return WriteStringMaybeAliased(num, s, ptr); |
| } |
| |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteString(uint32_t num, const T& s, |
| uint8_t* ptr) { |
| std::ptrdiff_t size = s.size(); |
| if (PROTOBUF_PREDICT_FALSE( |
| size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) { |
| return WriteStringOutline(num, s, ptr); |
| } |
| ptr = UnsafeVarint((num << 3) | 2, ptr); |
| *ptr++ = static_cast<uint8_t>(size); |
| std::memcpy(ptr, s.data(), size); |
| return ptr + size; |
| } |
| |
| uint8_t* WriteString(uint32_t num, const absl::Cord& s, uint8_t* ptr) { |
| ptr = EnsureSpace(ptr); |
| ptr = WriteTag(num, 2, ptr); |
| return WriteCordOutline(s, ptr); |
| } |
| |
| template <typename T> |
| #ifndef NDEBUG |
| PROTOBUF_NOINLINE |
| #endif |
| uint8_t* WriteBytes(uint32_t num, const T& s, uint8_t* ptr) { |
| return WriteString(num, s, ptr); |
| } |
| |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteInt32Packed(int num, const T& r, |
| int size, uint8_t* ptr) { |
| return WriteVarintPacked(num, r, size, ptr, Encode64); |
| } |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteUInt32Packed(int num, const T& r, |
| int size, uint8_t* ptr) { |
| return WriteVarintPacked(num, r, size, ptr, Encode32); |
| } |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteSInt32Packed(int num, const T& r, |
| int size, uint8_t* ptr) { |
| return WriteVarintPacked(num, r, size, ptr, ZigZagEncode32); |
| } |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteInt64Packed(int num, const T& r, |
| int size, uint8_t* ptr) { |
| return WriteVarintPacked(num, r, size, ptr, Encode64); |
| } |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteUInt64Packed(int num, const T& r, |
| int size, uint8_t* ptr) { |
| return WriteVarintPacked(num, r, size, ptr, Encode64); |
| } |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteSInt64Packed(int num, const T& r, |
| int size, uint8_t* ptr) { |
| return WriteVarintPacked(num, r, size, ptr, ZigZagEncode64); |
| } |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteEnumPacked(int num, const T& r, int size, |
| uint8_t* ptr) { |
| return WriteVarintPacked(num, r, size, ptr, Encode64); |
| } |
| |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteFixedPacked(int num, const T& r, |
| uint8_t* ptr) { |
| ptr = EnsureSpace(ptr); |
| constexpr auto element_size = sizeof(typename T::value_type); |
| auto size = r.size() * element_size; |
| ptr = WriteLengthDelim(num, size, ptr); |
| return WriteRawLittleEndian<element_size>(r.data(), static_cast<int>(size), |
| ptr); |
| } |
| |
| // Returns true if there was an underlying I/O error since this object was |
| // created. |
| bool HadError() const { return had_error_; } |
| |
| // Instructs the EpsCopyOutputStream to allow the underlying |
| // ZeroCopyOutputStream to hold pointers to the original structure instead of |
| // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the |
| // underlying stream does not support aliasing, then enabling it has no |
| // affect. For now, this only affects the behavior of |
| // WriteRawMaybeAliased(). |
| // |
| // NOTE: It is caller's responsibility to ensure that the chunk of memory |
| // remains live until all of the data has been consumed from the stream. |
| void EnableAliasing(bool enabled); |
| |
| // See documentation on CodedOutputStream::SetSerializationDeterministic. |
| void SetSerializationDeterministic(bool value) { |
| is_serialization_deterministic_ = value; |
| } |
| |
| // See documentation on CodedOutputStream::IsSerializationDeterministic. |
| bool IsSerializationDeterministic() const { |
| return is_serialization_deterministic_; |
| } |
| |
| // The number of bytes written to the stream at position ptr, relative to the |
| // stream's overall position. |
| int64_t ByteCount(uint8_t* ptr) const; |
| |
| |
| private: |
| uint8_t* end_; |
| uint8_t* buffer_end_ = buffer_; |
| uint8_t buffer_[2 * kSlopBytes]; |
| ZeroCopyOutputStream* stream_; |
| bool had_error_ = false; |
| bool aliasing_enabled_ = false; // See EnableAliasing(). |
| bool is_serialization_deterministic_; |
| bool skip_check_consistency = false; |
| |
| uint8_t* EnsureSpaceFallback(uint8_t* ptr); |
| inline uint8_t* Next(); |
| int Flush(uint8_t* ptr); |
| std::ptrdiff_t GetSize(uint8_t* ptr) const { |
| ABSL_DCHECK(ptr <= end_ + kSlopBytes); // NOLINT |
| return end_ + kSlopBytes - ptr; |
| } |
| |
| uint8_t* Error() { |
| had_error_ = true; |
| // We use the patch buffer to always guarantee space to write to. |
| end_ = buffer_ + kSlopBytes; |
| return buffer_; |
| } |
| |
| static constexpr int TagSize(uint32_t tag) { |
| return (tag < (1 << 7)) ? 1 |
| : (tag < (1 << 14)) ? 2 |
| : (tag < (1 << 21)) ? 3 |
| : (tag < (1 << 28)) ? 4 |
| : 5; |
| } |
| |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteTag(uint32_t num, uint32_t wt, |
| uint8_t* ptr) { |
| ABSL_DCHECK(ptr < end_); // NOLINT |
| return UnsafeVarint((num << 3) | wt, ptr); |
| } |
| |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteLengthDelim(int num, uint32_t size, |
| uint8_t* ptr) { |
| ptr = WriteTag(num, 2, ptr); |
| return UnsafeWriteSize(size, ptr); |
| } |
| |
| uint8_t* WriteRawFallback(const void* data, int size, uint8_t* ptr); |
| |
| uint8_t* WriteAliasedRaw(const void* data, int size, uint8_t* ptr); |
| |
| uint8_t* WriteStringMaybeAliasedOutline(uint32_t num, const std::string& s, |
| uint8_t* ptr); |
| uint8_t* WriteStringOutline(uint32_t num, const std::string& s, uint8_t* ptr); |
| uint8_t* WriteStringOutline(uint32_t num, absl::string_view s, uint8_t* ptr); |
| uint8_t* WriteCordOutline(const absl::Cord& c, uint8_t* ptr); |
| |
| template <typename T, typename E> |
| PROTOBUF_ALWAYS_INLINE uint8_t* WriteVarintPacked(int num, const T& r, |
| int size, uint8_t* ptr, |
| const E& encode) { |
| ptr = EnsureSpace(ptr); |
| ptr = WriteLengthDelim(num, size, ptr); |
| auto it = r.data(); |
| auto end = it + r.size(); |
| do { |
| ptr = EnsureSpace(ptr); |
| ptr = UnsafeVarint(encode(*it++), ptr); |
| } while (it < end); |
| return ptr; |
| } |
| |
| static uint32_t Encode32(uint32_t v) { return v; } |
| static uint64_t Encode64(uint64_t v) { return v; } |
| static uint32_t ZigZagEncode32(int32_t v) { |
| return (static_cast<uint32_t>(v) << 1) ^ static_cast<uint32_t>(v >> 31); |
| } |
| static uint64_t ZigZagEncode64(int64_t v) { |
| return (static_cast<uint64_t>(v) << 1) ^ static_cast<uint64_t>(v >> 63); |
| } |
| |
| template <typename T> |
| PROTOBUF_ALWAYS_INLINE static uint8_t* UnsafeVarint(T value, uint8_t* ptr) { |
| static_assert(std::is_unsigned<T>::value, |
| "Varint serialization must be unsigned"); |
| while (PROTOBUF_PREDICT_FALSE(value >= 0x80)) { |
| *ptr = static_cast<uint8_t>(value | 0x80); |
| value >>= 7; |
| ++ptr; |
| } |
| *ptr++ = static_cast<uint8_t>(value); |
| return ptr; |
| } |
| |
| PROTOBUF_ALWAYS_INLINE static uint8_t* UnsafeWriteSize(uint32_t value, |
| uint8_t* ptr) { |
| while (PROTOBUF_PREDICT_FALSE(value >= 0x80)) { |
| *ptr = static_cast<uint8_t>(value | 0x80); |
| value >>= 7; |
| ++ptr; |
| } |
| *ptr++ = static_cast<uint8_t>(value); |
| return ptr; |
| } |
| |
| template <int S> |
| uint8_t* WriteRawLittleEndian(const void* data, int size, uint8_t* ptr); |
| #if !defined(ABSL_IS_LITTLE_ENDIAN) || \ |
| defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| uint8_t* WriteRawLittleEndian32(const void* data, int size, uint8_t* ptr); |
| uint8_t* WriteRawLittleEndian64(const void* data, int size, uint8_t* ptr); |
| #endif |
| |
| // These methods are for CodedOutputStream. Ideally they should be private |
| // but to match current behavior of CodedOutputStream as close as possible |
| // we allow it some functionality. |
| public: |
| uint8_t* SetInitialBuffer(void* data, int size) { |
| auto ptr = static_cast<uint8_t*>(data); |
| if (size > kSlopBytes) { |
| end_ = ptr + size - kSlopBytes; |
| buffer_end_ = nullptr; |
| return ptr; |
| } else { |
| end_ = buffer_ + size; |
| buffer_end_ = ptr; |
| return buffer_; |
| } |
| } |
| |
| private: |
| // Needed by CodedOutputStream HadError. HadError needs to flush the patch |
| // buffers to ensure there is no error as of yet. |
| uint8_t* FlushAndResetBuffer(uint8_t*); |
| |
| // The following functions mimic the old CodedOutputStream behavior as close |
| // as possible. They flush the current state to the stream, behave as |
| // the old CodedOutputStream and then return to normal operation. |
| bool Skip(int count, uint8_t** pp); |
| bool GetDirectBufferPointer(void** data, int* size, uint8_t** pp); |
| uint8_t* GetDirectBufferForNBytesAndAdvance(int size, uint8_t** pp); |
| |
| friend class CodedOutputStream; |
| }; |
| |
| template <> |
| inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<1>(const void* data, |
| int size, |
| uint8_t* ptr) { |
| return WriteRaw(data, size, ptr); |
| } |
| template <> |
| inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<4>(const void* data, |
| int size, |
| uint8_t* ptr) { |
| #if defined(ABSL_IS_LITTLE_ENDIAN) && \ |
| !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| return WriteRaw(data, size, ptr); |
| #else |
| return WriteRawLittleEndian32(data, size, ptr); |
| #endif |
| } |
| template <> |
| inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<8>(const void* data, |
| int size, |
| uint8_t* ptr) { |
| #if defined(ABSL_IS_LITTLE_ENDIAN) && \ |
| !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| return WriteRaw(data, size, ptr); |
| #else |
| return WriteRawLittleEndian64(data, size, ptr); |
| #endif |
| } |
| |
| // Class which encodes and writes binary data which is composed of varint- |
| // encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream. |
| // Most users will not need to deal with CodedOutputStream. |
| // |
| // Most methods of CodedOutputStream which return a bool return false if an |
| // underlying I/O error occurs. Once such a failure occurs, the |
| // CodedOutputStream is broken and is no longer useful. The Write* methods do |
| // not return the stream status, but will invalidate the stream if an error |
| // occurs. The client can probe HadError() to determine the status. |
| // |
| // Note that every method of CodedOutputStream which writes some data has |
| // a corresponding static "ToArray" version. These versions write directly |
| // to the provided buffer, returning a pointer past the last written byte. |
| // They require that the buffer has sufficient capacity for the encoded data. |
| // This allows an optimization where we check if an output stream has enough |
| // space for an entire message before we start writing and, if there is, we |
| // call only the ToArray methods to avoid doing bound checks for each |
| // individual value. |
| // i.e., in the example above: |
| // |
| // CodedOutputStream* coded_output = new CodedOutputStream(raw_output); |
| // int magic_number = 1234; |
| // char text[] = "Hello world!"; |
| // |
| // int coded_size = sizeof(magic_number) + |
| // CodedOutputStream::VarintSize32(strlen(text)) + |
| // strlen(text); |
| // |
| // uint8_t* buffer = |
| // coded_output->GetDirectBufferForNBytesAndAdvance(coded_size); |
| // if (buffer != nullptr) { |
| // // The output stream has enough space in the buffer: write directly to |
| // // the array. |
| // buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number, |
| // buffer); |
| // buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer); |
| // buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer); |
| // } else { |
| // // Make bound-checked writes, which will ask the underlying stream for |
| // // more space as needed. |
| // coded_output->WriteLittleEndian32(magic_number); |
| // coded_output->WriteVarint32(strlen(text)); |
| // coded_output->WriteRaw(text, strlen(text)); |
| // } |
| // |
| // delete coded_output; |
| class PROTOBUF_EXPORT CodedOutputStream { |
| public: |
| // Creates a CodedOutputStream that writes to the given `stream`. |
| // The provided stream must publicly derive from `ZeroCopyOutputStream`. |
| template <class Stream, class = typename std::enable_if<std::is_base_of< |
| ZeroCopyOutputStream, Stream>::value>::type> |
| explicit CodedOutputStream(Stream* stream); |
| |
| // Creates a CodedOutputStream that writes to the given `stream`, and does |
| // an 'eager initialization' of the internal state if `eager_init` is true. |
| // The provided stream must publicly derive from `ZeroCopyOutputStream`. |
| template <class Stream, class = typename std::enable_if<std::is_base_of< |
| ZeroCopyOutputStream, Stream>::value>::type> |
| CodedOutputStream(Stream* stream, bool eager_init); |
| CodedOutputStream(const CodedOutputStream&) = delete; |
| CodedOutputStream& operator=(const CodedOutputStream&) = delete; |
| |
| // Destroy the CodedOutputStream and position the underlying |
| // ZeroCopyOutputStream immediately after the last byte written. |
| ~CodedOutputStream(); |
| |
| // Returns true if there was an underlying I/O error since this object was |
| // created. On should call Trim before this function in order to catch all |
| // errors. |
| bool HadError() { |
| cur_ = impl_.FlushAndResetBuffer(cur_); |
| ABSL_DCHECK(cur_); |
| return impl_.HadError(); |
| } |
| |
| // Trims any unused space in the underlying buffer so that its size matches |
| // the number of bytes written by this stream. The underlying buffer will |
| // automatically be trimmed when this stream is destroyed; this call is only |
| // necessary if the underlying buffer is accessed *before* the stream is |
| // destroyed. |
| void Trim() { cur_ = impl_.Trim(cur_); } |
| |
| // Skips a number of bytes, leaving the bytes unmodified in the underlying |
| // buffer. Returns false if an underlying write error occurs. This is |
| // mainly useful with GetDirectBufferPointer(). |
| // Note of caution, the skipped bytes may contain uninitialized data. The |
| // caller must make sure that the skipped bytes are properly initialized, |
| // otherwise you might leak bytes from your heap. |
| bool Skip(int count) { return impl_.Skip(count, &cur_); } |
| |
| // Sets *data to point directly at the unwritten part of the |
| // CodedOutputStream's underlying buffer, and *size to the size of that |
| // buffer, but does not advance the stream's current position. This will |
| // always either produce a non-empty buffer or return false. If the caller |
| // writes any data to this buffer, it should then call Skip() to skip over |
| // the consumed bytes. This may be useful for implementing external fast |
| // serialization routines for types of data not covered by the |
| // CodedOutputStream interface. |
| bool GetDirectBufferPointer(void** data, int* size) { |
| return impl_.GetDirectBufferPointer(data, size, &cur_); |
| } |
| |
| // If there are at least "size" bytes available in the current buffer, |
| // returns a pointer directly into the buffer and advances over these bytes. |
| // The caller may then write directly into this buffer (e.g. using the |
| // *ToArray static methods) rather than go through CodedOutputStream. If |
| // there are not enough bytes available, returns NULL. The return pointer is |
| // invalidated as soon as any other non-const method of CodedOutputStream |
| // is called. |
| inline uint8_t* GetDirectBufferForNBytesAndAdvance(int size) { |
| return impl_.GetDirectBufferForNBytesAndAdvance(size, &cur_); |
| } |
| |
| // Write raw bytes, copying them from the given buffer. |
| void WriteRaw(const void* buffer, int size) { |
| cur_ = impl_.WriteRaw(buffer, size, cur_); |
| } |
| // Like WriteRaw() but will try to write aliased data if aliasing is |
| // turned on. |
| void WriteRawMaybeAliased(const void* data, int size); |
| // Like WriteRaw() but writing directly to the target array. |
| // This is _not_ inlined, as the compiler often optimizes memcpy into inline |
| // copy loops. Since this gets called by every field with string or bytes |
| // type, inlining may lead to a significant amount of code bloat, with only a |
| // minor performance gain. |
| static uint8_t* WriteRawToArray(const void* buffer, int size, |
| uint8_t* target); |
| |
| // Equivalent to WriteRaw(str.data(), str.size()). |
| void WriteString(const std::string& str); |
| // Like WriteString() but writing directly to the target array. |
| static uint8_t* WriteStringToArray(const std::string& str, uint8_t* target); |
| // Write the varint-encoded size of str followed by str. |
| static uint8_t* WriteStringWithSizeToArray(const std::string& str, |
| uint8_t* target); |
| |
| // Like WriteString() but writes a Cord. |
| void WriteCord(const absl::Cord& cord) { cur_ = impl_.WriteCord(cord, cur_); } |
| |
| // Like WriteCord() but writing directly to the target array. |
| static uint8_t* WriteCordToArray(const absl::Cord& cord, uint8_t* target); |
| |
| |
| // Write a 16-bit little-endian integer. |
| void WriteLittleEndian16(uint16_t value) { |
| cur_ = impl_.EnsureSpace(cur_); |
| SetCur(WriteLittleEndian16ToArray(value, Cur())); |
| } |
| // Like WriteLittleEndian16() but writing directly to the target array. |
| static uint8_t* WriteLittleEndian16ToArray(uint16_t value, uint8_t* target); |
| // Write a 32-bit little-endian integer. |
| void WriteLittleEndian32(uint32_t value) { |
| cur_ = impl_.EnsureSpace(cur_); |
| SetCur(WriteLittleEndian32ToArray(value, Cur())); |
| } |
| // Like WriteLittleEndian32() but writing directly to the target array. |
| static uint8_t* WriteLittleEndian32ToArray(uint32_t value, uint8_t* target); |
| // Write a 64-bit little-endian integer. |
| void WriteLittleEndian64(uint64_t value) { |
| cur_ = impl_.EnsureSpace(cur_); |
| SetCur(WriteLittleEndian64ToArray(value, Cur())); |
| } |
| // Like WriteLittleEndian64() but writing directly to the target array. |
| static uint8_t* WriteLittleEndian64ToArray(uint64_t value, uint8_t* target); |
| |
| // Write an unsigned integer with Varint encoding. Writing a 32-bit value |
| // is equivalent to casting it to uint64_t and writing it as a 64-bit value, |
| // but may be more efficient. |
| void WriteVarint32(uint32_t value); |
| // Like WriteVarint32() but writing directly to the target array. |
| static uint8_t* WriteVarint32ToArray(uint32_t value, uint8_t* target); |
| // Like WriteVarint32ToArray() |
| [[deprecated("Please use WriteVarint32ToArray() instead")]] static uint8_t* |
| WriteVarint32ToArrayOutOfLine(uint32_t value, uint8_t* target) { |
| return WriteVarint32ToArray(value, target); |
| } |
| // Write an unsigned integer with Varint encoding. |
| void WriteVarint64(uint64_t value); |
| // Like WriteVarint64() but writing directly to the target array. |
| static uint8_t* WriteVarint64ToArray(uint64_t value, uint8_t* target); |
| |
| // Equivalent to WriteVarint32() except when the value is negative, |
| // in which case it must be sign-extended to a full 10 bytes. |
| void WriteVarint32SignExtended(int32_t value); |
| // Like WriteVarint32SignExtended() but writing directly to the target array. |
| static uint8_t* WriteVarint32SignExtendedToArray(int32_t value, |
| uint8_t* target); |
| |
| // This is identical to WriteVarint32(), but optimized for writing tags. |
| // In particular, if the input is a compile-time constant, this method |
| // compiles down to a couple instructions. |
| // Always inline because otherwise the aforementioned optimization can't work, |
| // but GCC by default doesn't want to inline this. |
| void WriteTag(uint32_t value); |
| // Like WriteTag() but writing directly to the target array. |
| PROTOBUF_ALWAYS_INLINE |
| static uint8_t* WriteTagToArray(uint32_t value, uint8_t* target); |
| |
| // Returns the number of bytes needed to encode the given value as a varint. |
| static size_t VarintSize32(uint32_t value); |
| // Returns the number of bytes needed to encode the given value as a varint. |
| static size_t VarintSize64(uint64_t value); |
| |
| // If negative, 10 bytes. Otherwise, same as VarintSize32(). |
| static size_t VarintSize32SignExtended(int32_t value); |
| |
| // Same as above, plus one. The additional one comes at no compute cost. |
| static size_t VarintSize32PlusOne(uint32_t value); |
| static size_t VarintSize64PlusOne(uint64_t value); |
| static size_t VarintSize32SignExtendedPlusOne(int32_t value); |
| |
| // Compile-time equivalent of VarintSize32(). |
| template <uint32_t Value> |
| struct StaticVarintSize32 { |
| static const size_t value = (Value < (1 << 7)) ? 1 |
| : (Value < (1 << 14)) ? 2 |
| : (Value < (1 << 21)) ? 3 |
| : (Value < (1 << 28)) ? 4 |
| : 5; |
| }; |
| |
| // Returns the total number of bytes written since this object was created. |
| int ByteCount() const { |
| return static_cast<int>(impl_.ByteCount(cur_) - start_count_); |
| } |
| |
| // Instructs the CodedOutputStream to allow the underlying |
| // ZeroCopyOutputStream to hold pointers to the original structure instead of |
| // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the |
| // underlying stream does not support aliasing, then enabling it has no |
| // affect. For now, this only affects the behavior of |
| // WriteRawMaybeAliased(). |
| // |
| // NOTE: It is caller's responsibility to ensure that the chunk of memory |
| // remains live until all of the data has been consumed from the stream. |
| void EnableAliasing(bool enabled) { impl_.EnableAliasing(enabled); } |
| |
| // Indicate to the serializer whether the user wants deterministic |
| // serialization. The default when this is not called comes from the global |
| // default, controlled by SetDefaultSerializationDeterministic. |
| // |
| // What deterministic serialization means is entirely up to the driver of the |
| // serialization process (i.e. the caller of methods like WriteVarint32). In |
| // the case of serializing a proto buffer message using one of the methods of |
| // MessageLite, this means that for a given binary equal messages will always |
| // be serialized to the same bytes. This implies: |
| // |
| // * Repeated serialization of a message will return the same bytes. |
| // |
| // * Different processes running the same binary (including on different |
| // machines) will serialize equal messages to the same bytes. |
| // |
| // Note that this is *not* canonical across languages. It is also unstable |
| // across different builds with intervening message definition changes, due to |
| // unknown fields. Users who need canonical serialization (e.g. persistent |
| // storage in a canonical form, fingerprinting) should define their own |
| // canonicalization specification and implement the serializer using |
| // reflection APIs rather than relying on this API. |
| void SetSerializationDeterministic(bool value) { |
| impl_.SetSerializationDeterministic(value); |
| } |
| |
| // Return whether the user wants deterministic serialization. See above. |
| bool IsSerializationDeterministic() const { |
| return impl_.IsSerializationDeterministic(); |
| } |
| |
| static bool IsDefaultSerializationDeterministic() { |
| return default_serialization_deterministic_.load( |
| std::memory_order_relaxed) != 0; |
| } |
| |
| template <typename Func> |
| void Serialize(const Func& func); |
| |
| uint8_t* Cur() const { return cur_; } |
| void SetCur(uint8_t* ptr) { cur_ = ptr; } |
| EpsCopyOutputStream* EpsCopy() { return &impl_; } |
| |
| private: |
| template <class Stream> |
| void InitEagerly(Stream* stream); |
| |
| EpsCopyOutputStream impl_; |
| uint8_t* cur_; |
| int64_t start_count_; |
| static std::atomic<bool> default_serialization_deterministic_; |
| |
| // See above. Other projects may use "friend" to allow them to call this. |
| // After SetDefaultSerializationDeterministic() completes, all protocol |
| // buffer serializations will be deterministic by default. Thread safe. |
| // However, the meaning of "after" is subtle here: to be safe, each thread |
| // that wants deterministic serialization by default needs to call |
| // SetDefaultSerializationDeterministic() or ensure on its own that another |
| // thread has done so. |
| friend void google::protobuf::internal::MapTestForceDeterministic(); |
| static void SetDefaultSerializationDeterministic() { |
| default_serialization_deterministic_.store(true, std::memory_order_relaxed); |
| } |
| }; |
| |
| // inline methods ==================================================== |
| // The vast majority of varints are only one byte. These inline |
| // methods optimize for that case. |
| |
| inline bool CodedInputStream::ReadVarint32(uint32_t* value) { |
| uint32_t v = 0; |
| if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) { |
| v = *buffer_; |
| if (v < 0x80) { |
| *value = v; |
| Advance(1); |
| return true; |
| } |
| } |
| int64_t result = ReadVarint32Fallback(v); |
| *value = static_cast<uint32_t>(result); |
| return result >= 0; |
| } |
| |
| inline bool CodedInputStream::ReadVarint64(uint64_t* value) { |
| if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) { |
| *value = *buffer_; |
| Advance(1); |
| return true; |
| } |
| std::pair<uint64_t, bool> p = ReadVarint64Fallback(); |
| *value = p.first; |
| return p.second; |
| } |
| |
| inline bool CodedInputStream::ReadVarintSizeAsInt(int* value) { |
| if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) { |
| int v = *buffer_; |
| if (v < 0x80) { |
| *value = v; |
| Advance(1); |
| return true; |
| } |
| } |
| *value = ReadVarintSizeAsIntFallback(); |
| return *value >= 0; |
| } |
| |
| // static |
| inline const uint8_t* CodedInputStream::ReadLittleEndian16FromArray( |
| const uint8_t* buffer, uint16_t* value) { |
| memcpy(value, buffer, sizeof(*value)); |
| *value = google::protobuf::internal::little_endian::ToHost(*value); |
| return buffer + sizeof(*value); |
| } |
| // static |
| inline const uint8_t* CodedInputStream::ReadLittleEndian32FromArray( |
| const uint8_t* buffer, uint32_t* value) { |
| memcpy(value, buffer, sizeof(*value)); |
| *value = google::protobuf::internal::little_endian::ToHost(*value); |
| return buffer + sizeof(*value); |
| } |
| // static |
| inline const uint8_t* CodedInputStream::ReadLittleEndian64FromArray( |
| const uint8_t* buffer, uint64_t* value) { |
| memcpy(value, buffer, sizeof(*value)); |
| *value = google::protobuf::internal::little_endian::ToHost(*value); |
| return buffer + sizeof(*value); |
| } |
| |
| inline bool CodedInputStream::ReadLittleEndian16(uint16_t* value) { |
| if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { |
| buffer_ = ReadLittleEndian16FromArray(buffer_, value); |
| return true; |
| } else { |
| return ReadLittleEndian16Fallback(value); |
| } |
| } |
| |
| inline bool CodedInputStream::ReadLittleEndian32(uint32_t* value) { |
| #if defined(ABSL_IS_LITTLE_ENDIAN) && \ |
| !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { |
| buffer_ = ReadLittleEndian32FromArray(buffer_, value); |
| return true; |
| } else { |
| return ReadLittleEndian32Fallback(value); |
| } |
| #else |
| return ReadLittleEndian32Fallback(value); |
| #endif |
| } |
| |
| inline bool CodedInputStream::ReadLittleEndian64(uint64_t* value) { |
| #if defined(ABSL_IS_LITTLE_ENDIAN) && \ |
| !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { |
| buffer_ = ReadLittleEndian64FromArray(buffer_, value); |
| return true; |
| } else { |
| return ReadLittleEndian64Fallback(value); |
| } |
| #else |
| return ReadLittleEndian64Fallback(value); |
| #endif |
| } |
| |
| inline uint32_t CodedInputStream::ReadTagNoLastTag() { |
| uint32_t v = 0; |
| if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) { |
| v = *buffer_; |
| if (v < 0x80) { |
| Advance(1); |
| return v; |
| } |
| } |
| v = ReadTagFallback(v); |
| return v; |
| } |
| |
| inline std::pair<uint32_t, bool> CodedInputStream::ReadTagWithCutoffNoLastTag( |
| uint32_t cutoff) { |
| // In performance-sensitive code we can expect cutoff to be a compile-time |
| // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at |
| // compile time. |
| uint32_t first_byte_or_zero = 0; |
| if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) { |
| // Hot case: buffer_ non_empty, buffer_[0] in [1, 128). |
| // TODO: Is it worth rearranging this? E.g., if the number of fields |
| // is large enough then is it better to check for the two-byte case first? |
| first_byte_or_zero = buffer_[0]; |
| if (static_cast<int8_t>(buffer_[0]) > 0) { |
| const uint32_t kMax1ByteVarint = 0x7f; |
| uint32_t tag = buffer_[0]; |
| Advance(1); |
| return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff); |
| } |
| // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available, |
| // and tag is two bytes. The latter is tested by bitwise-and-not of the |
| // first byte and the second byte. |
| if (cutoff >= 0x80 && PROTOBUF_PREDICT_TRUE(buffer_ + 1 < buffer_end_) && |
| PROTOBUF_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) { |
| const uint32_t kMax2ByteVarint = (0x7f << 7) + 0x7f; |
| uint32_t tag = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80); |
| Advance(2); |
| // It might make sense to test for tag == 0 now, but it is so rare that |
| // that we don't bother. A varint-encoded 0 should be one byte unless |
| // the encoder lost its mind. The second part of the return value of |
| // this function is allowed to be either true or false if the tag is 0, |
| // so we don't have to check for tag == 0. We may need to check whether |
| // it exceeds cutoff. |
| bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff; |
| return std::make_pair(tag, at_or_below_cutoff); |
| } |
| } |
| // Slow path |
| const uint32_t tag = ReadTagFallback(first_byte_or_zero); |
| return std::make_pair(tag, static_cast<uint32_t>(tag - 1) < cutoff); |
| } |
| |
| inline bool CodedInputStream::LastTagWas(uint32_t expected) { |
| return last_tag_ == expected; |
| } |
| |
| inline bool CodedInputStream::ConsumedEntireMessage() { |
| return legitimate_message_end_; |
| } |
| |
| inline bool CodedInputStream::ExpectTag(uint32_t expected) { |
| if (expected < (1 << 7)) { |
| if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) && |
| buffer_[0] == expected) { |
| Advance(1); |
| return true; |
| } else { |
| return false; |
| } |
| } else if (expected < (1 << 14)) { |
| if (PROTOBUF_PREDICT_TRUE(BufferSize() >= 2) && |
| buffer_[0] == static_cast<uint8_t>(expected | 0x80) && |
| buffer_[1] == static_cast<uint8_t>(expected >> 7)) { |
| Advance(2); |
| return true; |
| } else { |
| return false; |
| } |
| } else { |
| // Don't bother optimizing for larger values. |
| return false; |
| } |
| } |
| |
| inline const uint8_t* CodedInputStream::ExpectTagFromArray( |
| const uint8_t* buffer, uint32_t expected) { |
| if (expected < (1 << 7)) { |
| if (buffer[0] == expected) { |
| return buffer + 1; |
| } |
| } else if (expected < (1 << 14)) { |
| if (buffer[0] == static_cast<uint8_t>(expected | 0x80) && |
| buffer[1] == static_cast<uint8_t>(expected >> 7)) { |
| return buffer + 2; |
| } |
| } |
| return nullptr; |
| } |
| |
| inline void CodedInputStream::GetDirectBufferPointerInline(const void** data, |
| int* size) { |
| *data = buffer_; |
| *size = static_cast<int>(buffer_end_ - buffer_); |
| } |
| |
| inline bool CodedInputStream::ExpectAtEnd() { |
| // If we are at a limit we know no more bytes can be read. Otherwise, it's |
| // hard to say without calling Refresh(), and we'd rather not do that. |
| |
| if (buffer_ == buffer_end_ && ((buffer_size_after_limit_ != 0) || |
| (total_bytes_read_ == current_limit_))) { |
| last_tag_ = 0; // Pretend we called ReadTag()... |
| legitimate_message_end_ = true; // ... and it hit EOF. |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| inline int CodedInputStream::CurrentPosition() const { |
| return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_); |
| } |
| |
| inline void CodedInputStream::Advance(int amount) { buffer_ += amount; } |
| |
| inline void CodedInputStream::SetRecursionLimit(int limit) { |
| recursion_budget_ += limit - recursion_limit_; |
| recursion_limit_ = limit; |
| } |
| |
| inline bool CodedInputStream::IncrementRecursionDepth() { |
| --recursion_budget_; |
| return recursion_budget_ >= 0; |
| } |
| |
| inline void CodedInputStream::DecrementRecursionDepth() { |
| if (recursion_budget_ < recursion_limit_) ++recursion_budget_; |
| } |
| |
| inline void CodedInputStream::UnsafeDecrementRecursionDepth() { |
| assert(recursion_budget_ < recursion_limit_); |
| ++recursion_budget_; |
| } |
| |
| inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool, |
| MessageFactory* factory) { |
| extension_pool_ = pool; |
| extension_factory_ = factory; |
| } |
| |
| inline const DescriptorPool* CodedInputStream::GetExtensionPool() { |
| return extension_pool_; |
| } |
| |
| inline MessageFactory* CodedInputStream::GetExtensionFactory() { |
| return extension_factory_; |
| } |
| |
| inline int CodedInputStream::BufferSize() const { |
| return static_cast<int>(buffer_end_ - buffer_); |
| } |
| |
| inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input) |
| : buffer_(nullptr), |
| buffer_end_(nullptr), |
| input_(input), |
| total_bytes_read_(0), |
| overflow_bytes_(0), |
| last_tag_(0), |
| legitimate_message_end_(false), |
| aliasing_enabled_(false), |
| force_eager_parsing_(false), |
| current_limit_(std::numeric_limits<int32_t>::max()), |
| buffer_size_after_limit_(0), |
| total_bytes_limit_(kDefaultTotalBytesLimit), |
| recursion_budget_(default_recursion_limit_), |
| recursion_limit_(default_recursion_limit_), |
| extension_pool_(nullptr), |
| extension_factory_(nullptr) { |
| // Eagerly Refresh() so buffer space is immediately available. |
| Refresh(); |
| } |
| |
| inline CodedInputStream::CodedInputStream(const uint8_t* buffer, int size) |
| : buffer_(buffer), |
| buffer_end_(buffer + size), |
| input_(nullptr), |
| total_bytes_read_(size), |
| overflow_bytes_(0), |
| last_tag_(0), |
| legitimate_message_end_(false), |
| aliasing_enabled_(false), |
| force_eager_parsing_(false), |
| current_limit_(size), |
| buffer_size_after_limit_(0), |
| total_bytes_limit_(kDefaultTotalBytesLimit), |
| recursion_budget_(default_recursion_limit_), |
| recursion_limit_(default_recursion_limit_), |
| extension_pool_(nullptr), |
| extension_factory_(nullptr) { |
| // Note that setting current_limit_ == size is important to prevent some |
| // code paths from trying to access input_ and segfaulting. |
| } |
| |
| inline bool CodedInputStream::IsFlat() const { return input_ == nullptr; } |
| |
| inline bool CodedInputStream::Skip(int count) { |
| if (count < 0) return false; // security: count is often user-supplied |
| |
| const int original_buffer_size = BufferSize(); |
| |
| if (count <= original_buffer_size) { |
| // Just skipping within the current buffer. Easy. |
| Advance(count); |
| return true; |
| } |
| |
| return SkipFallback(count, original_buffer_size); |
| } |
| |
| template <class Stream, class> |
| inline CodedOutputStream::CodedOutputStream(Stream* stream) |
| : impl_(stream, IsDefaultSerializationDeterministic(), &cur_), |
| start_count_(stream->ByteCount()) { |
| InitEagerly(stream); |
| } |
| |
| template <class Stream, class> |
| inline CodedOutputStream::CodedOutputStream(Stream* stream, bool eager_init) |
| : impl_(stream, IsDefaultSerializationDeterministic(), &cur_), |
| start_count_(stream->ByteCount()) { |
| if (eager_init) { |
| InitEagerly(stream); |
| } |
| } |
| |
| template <class Stream> |
| inline void CodedOutputStream::InitEagerly(Stream* stream) { |
| void* data; |
| int size; |
| if (PROTOBUF_PREDICT_TRUE(stream->Next(&data, &size) && size > 0)) { |
| cur_ = impl_.SetInitialBuffer(data, size); |
| } |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteVarint32ToArray(uint32_t value, |
| uint8_t* target) { |
| return EpsCopyOutputStream::UnsafeVarint(value, target); |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteVarint64ToArray(uint64_t value, |
| uint8_t* target) { |
| return EpsCopyOutputStream::UnsafeVarint(value, target); |
| } |
| |
| inline void CodedOutputStream::WriteVarint32SignExtended(int32_t value) { |
| WriteVarint64(static_cast<uint64_t>(value)); |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteVarint32SignExtendedToArray( |
| int32_t value, uint8_t* target) { |
| return WriteVarint64ToArray(static_cast<uint64_t>(value), target); |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteLittleEndian16ToArray(uint16_t value, |
| uint8_t* target) { |
| uint16_t little_endian_value = google::protobuf::internal::little_endian::ToHost(value); |
| memcpy(target, &little_endian_value, sizeof(value)); |
| return target + sizeof(value); |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteLittleEndian32ToArray(uint32_t value, |
| uint8_t* target) { |
| #if defined(ABSL_IS_LITTLE_ENDIAN) && \ |
| !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| memcpy(target, &value, sizeof(value)); |
| #else |
| target[0] = static_cast<uint8_t>(value); |
| target[1] = static_cast<uint8_t>(value >> 8); |
| target[2] = static_cast<uint8_t>(value >> 16); |
| target[3] = static_cast<uint8_t>(value >> 24); |
| #endif |
| return target + sizeof(value); |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteLittleEndian64ToArray(uint64_t value, |
| uint8_t* target) { |
| #if defined(ABSL_IS_LITTLE_ENDIAN) && \ |
| !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
| memcpy(target, &value, sizeof(value)); |
| #else |
| uint32_t part0 = static_cast<uint32_t>(value); |
| uint32_t part1 = static_cast<uint32_t>(value >> 32); |
| |
| target[0] = static_cast<uint8_t>(part0); |
| target[1] = static_cast<uint8_t>(part0 >> 8); |
| target[2] = static_cast<uint8_t>(part0 >> 16); |
| target[3] = static_cast<uint8_t>(part0 >> 24); |
| target[4] = static_cast<uint8_t>(part1); |
| target[5] = static_cast<uint8_t>(part1 >> 8); |
| target[6] = static_cast<uint8_t>(part1 >> 16); |
| target[7] = static_cast<uint8_t>(part1 >> 24); |
| #endif |
| return target + sizeof(value); |
| } |
| |
| inline void CodedOutputStream::WriteVarint32(uint32_t value) { |
| cur_ = impl_.EnsureSpace(cur_); |
| SetCur(WriteVarint32ToArray(value, Cur())); |
| } |
| |
| inline void CodedOutputStream::WriteVarint64(uint64_t value) { |
| cur_ = impl_.EnsureSpace(cur_); |
| SetCur(WriteVarint64ToArray(value, Cur())); |
| } |
| |
| inline void CodedOutputStream::WriteTag(uint32_t value) { |
| WriteVarint32(value); |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteTagToArray(uint32_t value, |
| uint8_t* target) { |
| return WriteVarint32ToArray(value, target); |
| } |
| |
| #if (defined(__x86__) || defined(__x86_64__) || defined(_M_IX86) || \ |
| defined(_M_X64)) && \ |
| !(defined(__LZCNT__) || defined(__AVX2__)) |
| // X86 CPUs lacking the lzcnt instruction are faster with the bsr-based |
| // implementation. MSVC does not define __LZCNT__, the nearest option that |
| // it interprets as lzcnt availability is __AVX2__. |
| #define PROTOBUF_CODED_STREAM_H_PREFER_BSR 1 |
| #else |
| #define PROTOBUF_CODED_STREAM_H_PREFER_BSR 0 |
| #endif |
| inline size_t CodedOutputStream::VarintSize32(uint32_t value) { |
| #if PROTOBUF_CODED_STREAM_H_PREFER_BSR |
| // Explicit OR 0x1 to avoid calling absl::countl_zero(0), which |
| // requires a branch to check for on platforms without a clz instruction. |
| uint32_t log2value = (std::numeric_limits<uint32_t>::digits - 1) - |
| absl::countl_zero(value | 0x1); |
| return static_cast<size_t>((log2value * 9 + (64 + 9)) / 64); |
| #else |
| uint32_t clz = absl::countl_zero(value); |
| return static_cast<size_t>( |
| ((std::numeric_limits<uint32_t>::digits * 9 + 64) - (clz * 9)) / 64); |
| #endif |
| } |
| |
| inline size_t CodedOutputStream::VarintSize32PlusOne(uint32_t value) { |
| // Same as above, but one more. |
| #if PROTOBUF_CODED_STREAM_H_PREFER_BSR |
| uint32_t log2value = (std::numeric_limits<uint32_t>::digits - 1) - |
| absl::countl_zero(value | 0x1); |
| return static_cast<size_t>((log2value * 9 + (64 + 9) + 64) / 64); |
| #else |
| uint32_t clz = absl::countl_zero(value); |
| return static_cast<size_t>( |
| ((std::numeric_limits<uint32_t>::digits * 9 + 64 + 64) - (clz * 9)) / 64); |
| #endif |
| } |
| |
| inline size_t CodedOutputStream::VarintSize64(uint64_t value) { |
| #if PROTOBUF_CODED_STREAM_H_PREFER_BSR |
| // Explicit OR 0x1 to avoid calling absl::countl_zero(0), which |
| // requires a branch to check for on platforms without a clz instruction. |
| uint32_t log2value = (std::numeric_limits<uint64_t>::digits - 1) - |
| absl::countl_zero(value | 0x1); |
| return static_cast<size_t>((log2value * 9 + (64 + 9)) / 64); |
| #else |
| uint32_t clz = absl::countl_zero(value); |
| return static_cast<size_t>( |
| ((std::numeric_limits<uint64_t>::digits * 9 + 64) - (clz * 9)) / 64); |
| #endif |
| } |
| |
| inline size_t CodedOutputStream::VarintSize64PlusOne(uint64_t value) { |
| // Same as above, but one more. |
| #if PROTOBUF_CODED_STREAM_H_PREFER_BSR |
| uint32_t log2value = (std::numeric_limits<uint64_t>::digits - 1) - |
| absl::countl_zero(value | 0x1); |
| return static_cast<size_t>((log2value * 9 + (64 + 9) + 64) / 64); |
| #else |
| uint32_t clz = absl::countl_zero(value); |
| return static_cast<size_t>( |
| ((std::numeric_limits<uint64_t>::digits * 9 + 64 + 64) - (clz * 9)) / 64); |
| #endif |
| } |
| |
| inline size_t CodedOutputStream::VarintSize32SignExtended(int32_t value) { |
| return VarintSize64(static_cast<uint64_t>(int64_t{value})); |
| } |
| |
| inline size_t CodedOutputStream::VarintSize32SignExtendedPlusOne( |
| int32_t value) { |
| return VarintSize64PlusOne(static_cast<uint64_t>(int64_t{value})); |
| } |
| #undef PROTOBUF_CODED_STREAM_H_PREFER_BSR |
| |
| inline void CodedOutputStream::WriteString(const std::string& str) { |
| WriteRaw(str.data(), static_cast<int>(str.size())); |
| } |
| |
| inline void CodedOutputStream::WriteRawMaybeAliased(const void* data, |
| int size) { |
| cur_ = impl_.WriteRawMaybeAliased(data, size, cur_); |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteRawToArray(const void* data, int size, |
| uint8_t* target) { |
| memcpy(target, data, static_cast<unsigned int>(size)); |
| return target + size; |
| } |
| |
| inline uint8_t* CodedOutputStream::WriteStringToArray(const std::string& str, |
| uint8_t* target) { |
| return WriteRawToArray(str.data(), static_cast<int>(str.size()), target); |
| } |
| |
| } // namespace io |
| } // namespace protobuf |
| } // namespace google |
| |
| #if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) |
| #pragma runtime_checks("c", restore) |
| #endif // _MSC_VER && !defined(__INTEL_COMPILER) |
| |
| #include "google/protobuf/port_undef.inc" |
| |
| #endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |