blob: 1ffaf5f10e7317757734295463f6162c17c351d2 [file] [log] [blame] [edit]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "google/protobuf/io/strtod.h"
#include <float.h> // FLT_DIG and DBL_DIG
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <string>
#include <system_error> // NOLINT(build/c++11)
#include "absl/log/absl_check.h"
#include "absl/strings/charconv.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_format.h"
namespace google {
namespace protobuf {
namespace io {
// This approximately 0x1.ffffffp127, but we don't use 0x1.ffffffp127 because
// it won't compile in MSVC.
constexpr double MAX_FLOAT_AS_DOUBLE_ROUNDED = 3.4028235677973366e+38;
float SafeDoubleToFloat(double value) {
// static_cast<float> on a number larger than float can result in illegal
// instruction error, so we need to manually convert it to infinity or max.
if (value > std::numeric_limits<float>::max()) {
// Max float value is about 3.4028234664E38 when represented as a double.
// However, when printing float as text, it will be rounded as
// 3.4028235e+38. If we parse the value of 3.4028235e+38 from text and
// compare it to 3.4028234664E38, we may think that it is larger, but
// actually, any number between these two numbers could only be represented
// as the same max float number in float, so we should treat them the same
// as max float.
if (value <= MAX_FLOAT_AS_DOUBLE_ROUNDED) {
return std::numeric_limits<float>::max();
}
return std::numeric_limits<float>::infinity();
} else if (value < -std::numeric_limits<float>::max()) {
if (value >= -MAX_FLOAT_AS_DOUBLE_ROUNDED) {
return -std::numeric_limits<float>::max();
}
return -std::numeric_limits<float>::infinity();
} else {
return static_cast<float>(value);
}
}
double NoLocaleStrtod(const char *str, char **endptr) {
double ret = 0.0;
// This isn't ideal, but the existing function interface does not provide any
// bounds.
const char *end = strchr(str, 0);
auto result = absl::from_chars(str, end, ret);
// from_chars() with DR 3081's current wording will return max() on
// overflow. SimpleAtod returns infinity instead.
if (result.ec == std::errc::result_out_of_range) {
if (ret > 1.0) {
ret = std::numeric_limits<double>::infinity();
} else if (ret < -1.0) {
ret = -std::numeric_limits<double>::infinity();
}
}
if (endptr) {
*endptr = const_cast<char *>(result.ptr);
}
return ret;
}
// ----------------------------------------------------------------------
// SimpleDtoa()
// SimpleFtoa()
// We want to print the value without losing precision, but we also do
// not want to print more digits than necessary. This turns out to be
// trickier than it sounds. Numbers like 0.2 cannot be represented
// exactly in binary. If we print 0.2 with a very large precision,
// e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
// On the other hand, if we set the precision too low, we lose
// significant digits when printing numbers that actually need them.
// It turns out there is no precision value that does the right thing
// for all numbers.
//
// Our strategy is to first try printing with a precision that is never
// over-precise, then parse the result with strtod() to see if it
// matches. If not, we print again with a precision that will always
// give a precise result, but may use more digits than necessary.
//
// An arguably better strategy would be to use the algorithm described
// in "How to Print Floating-Point Numbers Accurately" by Steele &
// White, e.g. as implemented by David M. Gay's dtoa(). It turns out,
// however, that the following implementation is about as fast as
// DMG's code. Furthermore, DMG's code locks mutexes, which means it
// will not scale well on multi-core machines. DMG's code is slightly
// more accurate (in that it will never use more digits than
// necessary), but this is probably irrelevant for most users.
//
// Rob Pike and Ken Thompson also have an implementation of dtoa() in
// third_party/fmt/fltfmt.cc. Their implementation is similar to this
// one in that it makes guesses and then uses strtod() to check them.
// Their implementation is faster because they use their own code to
// generate the digits in the first place rather than use snprintf(),
// thus avoiding format string parsing overhead. However, this makes
// it considerably more complicated than the following implementation,
// and it is embedded in a larger library. If speed turns out to be
// an issue, we could re-implement this in terms of their
// implementation.
// ----------------------------------------------------------------------
namespace {
// In practice, doubles should never need more than 24 bytes and floats
// should never need more than 14 (including null terminators), but we
// overestimate to be safe.
constexpr int kDoubleToBufferSize = 32;
constexpr int kFloatToBufferSize = 24;
inline bool IsValidFloatChar(char c) {
return ('0' <= c && c <= '9') || c == 'e' || c == 'E' || c == '+' || c == '-';
}
void DelocalizeRadix(char *buffer) {
// Fast check: if the buffer has a normal decimal point, assume no
// translation is needed.
if (strchr(buffer, '.') != nullptr) return;
// Find the first unknown character.
while (IsValidFloatChar(*buffer)) ++buffer;
if (*buffer == '\0') {
// No radix character found.
return;
}
// We are now pointing at the locale-specific radix character. Replace it
// with '.'.
*buffer = '.';
++buffer;
if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
// It appears the radix was a multi-byte character. We need to remove the
// extra bytes.
char *target = buffer;
do {
++buffer;
} while (!IsValidFloatChar(*buffer) && *buffer != '\0');
memmove(target, buffer, strlen(buffer) + 1);
}
}
bool safe_strtof(const char *str, float *value) {
char *endptr;
errno = 0; // errno only gets set on errors
*value = strtof(str, &endptr);
return *str != 0 && *endptr == 0 && errno == 0;
}
char *FloatToBuffer(float value, char *buffer) {
// FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
// platforms these days. Just in case some system exists where FLT_DIG
// is significantly larger -- and risks overflowing our buffer -- we have
// this assert.
static_assert(FLT_DIG < 10, "FLT_DIG_is_too_big");
if (value == std::numeric_limits<double>::infinity()) {
absl::SNPrintF(buffer, kFloatToBufferSize, "inf");
return buffer;
} else if (value == -std::numeric_limits<double>::infinity()) {
absl::SNPrintF(buffer, kFloatToBufferSize, "-inf");
return buffer;
} else if (std::isnan(value)) {
absl::SNPrintF(buffer, kFloatToBufferSize, "nan");
return buffer;
}
int snprintf_result =
absl::SNPrintF(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
// The snprintf should never overflow because the buffer is significantly
// larger than the precision we asked for.
ABSL_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
float parsed_value;
if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
snprintf_result =
absl::SNPrintF(buffer, kFloatToBufferSize, "%.*g", FLT_DIG + 3, value);
// Should never overflow; see above.
ABSL_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
}
DelocalizeRadix(buffer);
return buffer;
}
char *DoubleToBuffer(double value, char *buffer) {
// DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
// platforms these days. Just in case some system exists where DBL_DIG
// is significantly larger -- and risks overflowing our buffer -- we have
// this assert.
static_assert(DBL_DIG < 20, "DBL_DIG_is_too_big");
if (value == std::numeric_limits<double>::infinity()) {
absl::SNPrintF(buffer, kDoubleToBufferSize, "inf");
return buffer;
} else if (value == -std::numeric_limits<double>::infinity()) {
absl::SNPrintF(buffer, kDoubleToBufferSize, "-inf");
return buffer;
} else if (std::isnan(value)) {
absl::SNPrintF(buffer, kDoubleToBufferSize, "nan");
return buffer;
}
int snprintf_result =
absl::SNPrintF(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
// The snprintf should never overflow because the buffer is significantly
// larger than the precision we asked for.
ABSL_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
// We need to make parsed_value volatile in order to force the compiler to
// write it out to the stack. Otherwise, it may keep the value in a
// register, and if it does that, it may keep it as a long double instead
// of a double. This long double may have extra bits that make it compare
// unequal to "value" even though it would be exactly equal if it were
// truncated to a double.
volatile double parsed_value = NoLocaleStrtod(buffer, nullptr);
if (parsed_value != value) {
snprintf_result =
absl::SNPrintF(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG + 2, value);
// Should never overflow; see above.
ABSL_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
}
DelocalizeRadix(buffer);
return buffer;
}
} // namespace
std::string SimpleDtoa(double value) {
char buffer[kDoubleToBufferSize];
return DoubleToBuffer(value, buffer);
}
std::string SimpleFtoa(float value) {
char buffer[kFloatToBufferSize];
return FloatToBuffer(value, buffer);
}
} // namespace io
} // namespace protobuf
} // namespace google