blob: f9a8cccb89028bb33caa24a32b6916b917987968 [file] [log] [blame] [edit]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// This file defines the map container and its helpers to support protobuf maps.
//
// The Map and MapIterator types are provided by this header file.
// Please avoid using other types defined here, unless they are public
// types within Map or MapIterator, such as Map::value_type.
#ifndef GOOGLE_PROTOBUF_MAP_H__
#define GOOGLE_PROTOBUF_MAP_H__
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits> // To support Visual Studio 2008
#include <new> // IWYU pragma: keep for ::operator new.
#include <string>
#include <type_traits>
#include <utility>
#include "absl/base/optimization.h"
#include "absl/memory/memory.h"
#include "google/protobuf/message_lite.h"
#include "absl/base/attributes.h"
#include "absl/container/btree_map.h"
#include "absl/hash/hash.h"
#include "absl/log/absl_check.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/generated_enum_util.h"
#include "google/protobuf/internal_visibility.h"
#include "google/protobuf/port.h"
#include "google/protobuf/wire_format_lite.h"
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
template <typename Key, typename T>
class Map;
class MapIterator;
template <typename Enum>
struct is_proto_enum;
namespace rust {
struct PtrAndLen;
} // namespace rust
namespace internal {
namespace v2 {
class TableDriven;
};
template <typename Key, typename T>
class MapFieldLite;
template <typename Derived, typename Key, typename T,
WireFormatLite::FieldType key_wire_type,
WireFormatLite::FieldType value_wire_type>
class MapField;
struct MapTestPeer;
struct MapBenchmarkPeer;
template <typename Key, typename T>
class TypeDefinedMapFieldBase;
class DynamicMapField;
class GeneratedMessageReflection;
namespace v2 {
class TableDriven;
} // namespace v2
// The largest valid serialization for a message is INT_MAX, so we can't have
// more than 32-bits worth of elements.
using map_index_t = uint32_t;
// Internal type traits that can be used to define custom key/value types. These
// are only be specialized by protobuf internals, and never by users.
template <typename T, typename VoidT = void>
struct is_internal_map_key_type : std::false_type {};
template <typename T, typename VoidT = void>
struct is_internal_map_value_type : std::false_type {};
// To save on binary size and simplify generic uses of the map types we collapse
// signed/unsigned versions of the same sized integer to the unsigned version.
template <typename T, typename = void>
struct KeyForBaseImpl {
using type = T;
};
template <typename T>
struct KeyForBaseImpl<T, std::enable_if_t<std::is_integral<T>::value &&
std::is_signed<T>::value>> {
using type = std::make_unsigned_t<T>;
};
template <typename T>
using KeyForBase = typename KeyForBaseImpl<T>::type;
// Default case: Not transparent.
// We use std::hash<key_type>/std::less<key_type> and all the lookup functions
// only accept `key_type`.
template <typename key_type>
struct TransparentSupport {
static_assert(std::is_scalar<key_type>::value,
"Should only be used for ints.");
template <typename K>
using key_arg = key_type;
using ViewType = key_type;
static key_type ToView(key_type v) { return v; }
};
// We add transparent support for std::string keys. We use
// absl::Hash<absl::string_view> as it supports the input types we care about.
// The lookup functions accept arbitrary `K`. This will include any key type
// that is convertible to absl::string_view.
template <>
struct TransparentSupport<std::string> {
template <typename T>
static absl::string_view ImplicitConvert(T&& str) {
if constexpr (std::is_convertible<T, absl::string_view>::value) {
absl::string_view res = str;
return res;
} else if constexpr (std::is_convertible<T, const std::string&>::value) {
const std::string& ref = str;
return ref;
} else {
return {str.data(), str.size()};
}
}
template <typename K>
using key_arg = K;
using ViewType = absl::string_view;
template <typename T>
static ViewType ToView(const T& v) {
return ImplicitConvert(v);
}
};
enum class MapNodeSizeInfoT : uint32_t;
inline uint16_t SizeFromInfo(MapNodeSizeInfoT node_size_info) {
return static_cast<uint16_t>(static_cast<uint32_t>(node_size_info) >> 16);
}
inline constexpr uint16_t ValueOffsetFromInfo(MapNodeSizeInfoT node_size_info) {
return static_cast<uint16_t>(static_cast<uint32_t>(node_size_info) >> 0);
}
constexpr MapNodeSizeInfoT MakeNodeInfo(uint16_t size, uint16_t value_offset) {
return static_cast<MapNodeSizeInfoT>((static_cast<uint32_t>(size) << 16) |
value_offset);
}
struct NodeBase {
// Align the node to allow KeyNode to predict the location of the key.
// This way sizeof(NodeBase) contains any possible padding it was going to
// have between NodeBase and the key.
alignas(kMaxMessageAlignment) NodeBase* next;
void* GetVoidKey() { return this + 1; }
const void* GetVoidKey() const { return this + 1; }
void* GetVoidValue(MapNodeSizeInfoT size_info) {
return reinterpret_cast<char*>(this) + ValueOffsetFromInfo(size_info);
}
};
constexpr size_t kGlobalEmptyTableSize = 1;
PROTOBUF_EXPORT extern NodeBase* const kGlobalEmptyTable[kGlobalEmptyTableSize];
class UntypedMapBase;
class UntypedMapIterator {
public:
// Invariants:
// node_ is always correct. This is handy because the most common
// operations are operator* and operator-> and they only use node_.
// When node_ is set to a non-null value, all the other non-const fields
// are updated to be correct also, but those fields can become stale
// if the underlying map is modified. When those fields are needed they
// are rechecked, and updated if necessary.
// We do not provide any constructors for this type. We need it to be a
// trivial type to ensure that we can safely share it with Rust.
// The definition of operator== is handled by the derived type. If we were
// to do it in this class it would allow comparing iterators of different
// map types.
bool Equals(const UntypedMapIterator& other) const {
return node_ == other.node_;
}
// The definition of operator++ is handled in the derived type. We would not
// be able to return the right type from here.
void PlusPlus();
// Conversion to and from a typed iterator child class is used by FFI.
template <class Iter>
static UntypedMapIterator FromTyped(Iter it) {
static_assert(
#if defined(__cpp_lib_is_layout_compatible) && \
__cpp_lib_is_layout_compatible >= 201907L
std::is_layout_compatible_v<Iter, UntypedMapIterator>,
#else
sizeof(it) == sizeof(UntypedMapIterator),
#endif
"Map iterator must not have extra state that the base class"
"does not define.");
return static_cast<UntypedMapIterator>(it);
}
template <class Iter>
Iter ToTyped() const {
return Iter(*this);
}
NodeBase* node_;
const UntypedMapBase* m_;
map_index_t bucket_index_;
};
// These properties are depended upon by Rust FFI.
static_assert(std::is_trivial<UntypedMapIterator>::value,
"UntypedMapIterator must be a trivial type.");
static_assert(std::is_trivially_copyable<UntypedMapIterator>::value,
"UntypedMapIterator must be trivially copyable.");
static_assert(std::is_trivially_destructible<UntypedMapIterator>::value,
"UntypedMapIterator must be trivially destructible.");
static_assert(std::is_standard_layout<UntypedMapIterator>::value,
"UntypedMapIterator must be standard layout.");
static_assert(offsetof(UntypedMapIterator, node_) == 0,
"node_ must be the first field of UntypedMapIterator.");
static_assert(sizeof(UntypedMapIterator) ==
sizeof(void*) * 2 +
std::max(sizeof(uint32_t), alignof(void*)),
"UntypedMapIterator does not have the expected size for FFI");
static_assert(
alignof(UntypedMapIterator) == std::max(alignof(void*), alignof(uint32_t)),
"UntypedMapIterator does not have the expected alignment for FFI");
// Base class for all Map instantiations.
// This class holds all the data and provides the basic functionality shared
// among all instantiations.
// Having an untyped base class helps generic consumers (like the table-driven
// parser) by having non-template code that can handle all instantiations.
class PROTOBUF_EXPORT UntypedMapBase {
public:
using size_type = size_t;
// Possible types that a key/value can take.
// LINT.IfChange(map_ffi)
enum class TypeKind : uint8_t {
kBool, // bool
kU32, // int32_t, uint32_t, enums
kU64, // int64_t, uint64_t
kFloat, // float
kDouble, // double
kString, // std::string
kMessage, // Derived from MessageLite
kUnknown, // For DynamicMapField for now
};
// LINT.ThenChange(//depot/google3/third_party/protobuf/rust/cpp.rs:map_ffi)
template <typename T>
static constexpr TypeKind StaticTypeKind() {
if constexpr (std::is_same_v<T, bool>) {
return TypeKind::kBool;
} else if constexpr (std::is_same_v<T, int32_t> ||
std::is_same_v<T, uint32_t> || std::is_enum_v<T>) {
static_assert(sizeof(T) == 4,
"Only enums with the right underlying type are supported.");
return TypeKind::kU32;
} else if constexpr (std::is_same_v<T, int64_t> ||
std::is_same_v<T, uint64_t>) {
return TypeKind::kU64;
} else if constexpr (std::is_same_v<T, float>) {
return TypeKind::kFloat;
} else if constexpr (std::is_same_v<T, double>) {
return TypeKind::kDouble;
} else if constexpr (std::is_same_v<T, std::string>) {
return TypeKind::kString;
} else if constexpr (std::is_base_of_v<MessageLite, T>) {
return TypeKind::kMessage;
} else {
return TypeKind::kUnknown;
}
}
struct TypeInfo {
// Equivalent to `sizeof(Node)` in the derived type.
uint16_t node_size;
// Equivalent to `offsetof(Node, kv.second)` in the derived type.
uint8_t value_offset;
TypeKind key_type : 4;
TypeKind value_type : 4;
};
static_assert(sizeof(TypeInfo) == 4);
static TypeInfo GetTypeInfoDynamic(
TypeKind key_type, TypeKind value_type,
const MessageLite* value_prototype_if_message);
explicit constexpr UntypedMapBase(Arena* arena, TypeInfo type_info)
: num_elements_(0),
num_buckets_(internal::kGlobalEmptyTableSize),
index_of_first_non_null_(internal::kGlobalEmptyTableSize),
type_info_(type_info),
table_(const_cast<NodeBase**>(internal::kGlobalEmptyTable)),
arena_(arena) {}
UntypedMapBase(const UntypedMapBase&) = delete;
UntypedMapBase& operator=(const UntypedMapBase&) = delete;
template <typename T>
T* GetKey(NodeBase* node) const {
// Debug check that `T` matches what we expect from the type info.
ABSL_DCHECK_EQ(static_cast<int>(StaticTypeKind<T>()),
static_cast<int>(type_info_.key_type));
return reinterpret_cast<T*>(node->GetVoidKey());
}
template <typename T>
T* GetValue(NodeBase* node) const {
// Debug check that `T` matches what we expect from the type info.
ABSL_DCHECK_EQ(static_cast<int>(StaticTypeKind<T>()),
static_cast<int>(type_info_.value_type));
return reinterpret_cast<T*>(reinterpret_cast<char*>(node) +
type_info_.value_offset);
}
void ClearTable(bool reset, void (*destroy)(NodeBase*)) {
if (num_buckets_ == internal::kGlobalEmptyTableSize) return;
ClearTableImpl(reset, destroy);
}
// Space used for the table and nodes.
size_t SpaceUsedExcludingSelfLong() const;
TypeInfo type_info() const { return type_info_; }
protected:
// 16 bytes is the minimum useful size for the array cache in the arena.
enum : map_index_t { kMinTableSize = 16 / sizeof(void*) };
public:
Arena* arena() const { return arena_; }
void InternalSwap(UntypedMapBase* other) {
std::swap(num_elements_, other->num_elements_);
std::swap(num_buckets_, other->num_buckets_);
std::swap(index_of_first_non_null_, other->index_of_first_non_null_);
std::swap(type_info_, other->type_info_);
std::swap(table_, other->table_);
std::swap(arena_, other->arena_);
}
static size_type max_size() {
return std::numeric_limits<map_index_t>::max();
}
size_type size() const { return num_elements_; }
bool empty() const { return size() == 0; }
UntypedMapIterator begin() const;
// We make this a static function to reduce the cost in MapField.
// All the end iterators are singletons anyway.
static UntypedMapIterator EndIterator() { return {nullptr, nullptr, 0}; }
// Calls `f(k)` with the key of the node, where `k` is the appropriate type
// according to the stored TypeInfo.
template <typename F>
auto VisitKey(NodeBase* node, F f) const;
// Calls `f(v)` with the value of the node, where `v` is the appropriate type
// according to the stored TypeInfo.
// Messages are visited as `MessageLite`, and enums are visited as int32.
template <typename F>
auto VisitValue(NodeBase* node, F f) const;
// As above, but calls `f(k, v)` for every node in the map.
template <typename F>
void VisitAllNodes(F f) const;
protected:
friend class TcParser;
friend struct MapTestPeer;
friend struct MapBenchmarkPeer;
friend class UntypedMapIterator;
friend class RustMapHelper;
friend class v2::TableDriven;
// Calls `f(type_t)` where `type_t` is an unspecified type that has a `::type`
// typedef in it representing the dynamic type of key/value of the node.
template <typename F>
auto VisitKeyType(F f) const;
template <typename F>
auto VisitValueType(F f) const;
struct NodeAndBucket {
NodeBase* node;
map_index_t bucket;
};
void ClearTableImpl(bool reset, void (*destroy)(NodeBase*));
// Returns whether we should insert after the head of the list. For
// non-optimized builds, we randomly decide whether to insert right at the
// head of the list or just after the head. This helps add a little bit of
// non-determinism to the map ordering.
bool ShouldInsertAfterHead(void* node) {
#ifdef NDEBUG
(void)node;
return false;
#else
// Doing modulo with a prime mixes the bits more.
return absl::HashOf(node, table_) % 13 > 6;
#endif
}
// Return a power of two no less than max(kMinTableSize, n).
// Assumes either n < kMinTableSize or n is a power of two.
map_index_t TableSize(map_index_t n) {
return n < kMinTableSize ? kMinTableSize : n;
}
// Alignment of the nodes is the same as alignment of NodeBase.
NodeBase* AllocNode() { return AllocNode(type_info_.node_size); }
NodeBase* AllocNode(size_t node_size) {
return static_cast<NodeBase*>(arena_ == nullptr
? ::operator new(node_size)
: arena_->AllocateAligned(node_size));
}
void DeallocNode(NodeBase* node) { DeallocNode(node, type_info_.node_size); }
void DeallocNode(NodeBase* node, size_t node_size) {
ABSL_DCHECK(arena_ == nullptr);
internal::SizedDelete(node, node_size);
}
void DeleteTable(NodeBase** table, map_index_t n) {
if (auto* a = arena()) {
a->ReturnArrayMemory(table, n * sizeof(NodeBase*));
} else {
internal::SizedDelete(table, n * sizeof(NodeBase*));
}
}
NodeBase** CreateEmptyTable(map_index_t n) {
ABSL_DCHECK_GE(n, kMinTableSize);
ABSL_DCHECK_EQ(n & (n - 1), 0u);
NodeBase** result =
arena_ == nullptr
? static_cast<NodeBase**>(::operator new(n * sizeof(NodeBase*)))
: Arena::CreateArray<NodeBase*>(arena_, n);
memset(result, 0, n * sizeof(result[0]));
return result;
}
void DeleteNode(NodeBase* node);
template <typename Node>
static void DestroyNode(NodeBase* node) {
static_cast<Node*>(node)->~Node();
}
template <typename Node>
static constexpr auto GetDestroyNode() {
return internal::UntypedMapBase::StaticTypeKind<
typename Node::key_type>() == TypeKind::kUnknown ||
internal::UntypedMapBase::StaticTypeKind<
typename Node::mapped_type>() == TypeKind::kUnknown
? DestroyNode<Node>
: nullptr;
}
map_index_t num_elements_;
map_index_t num_buckets_;
map_index_t index_of_first_non_null_;
TypeInfo type_info_;
NodeBase** table_; // an array with num_buckets_ entries
Arena* arena_;
};
template <typename F>
auto UntypedMapBase::VisitKeyType(F f) const {
switch (type_info_.key_type) {
case TypeKind::kBool:
return f(std::enable_if<true, bool>{});
case TypeKind::kU32:
return f(std::enable_if<true, uint32_t>{});
case TypeKind::kU64:
return f(std::enable_if<true, uint64_t>{});
case TypeKind::kString:
return f(std::enable_if<true, std::string>{});
case TypeKind::kFloat:
case TypeKind::kDouble:
case TypeKind::kMessage:
case TypeKind::kUnknown:
default:
Unreachable();
}
}
template <typename F>
auto UntypedMapBase::VisitValueType(F f) const {
switch (type_info_.value_type) {
case TypeKind::kBool:
return f(std::enable_if<true, bool>{});
case TypeKind::kU32:
return f(std::enable_if<true, uint32_t>{});
case TypeKind::kU64:
return f(std::enable_if<true, uint64_t>{});
case TypeKind::kFloat:
return f(std::enable_if<true, float>{});
case TypeKind::kDouble:
return f(std::enable_if<true, double>{});
case TypeKind::kString:
return f(std::enable_if<true, std::string>{});
case TypeKind::kMessage:
return f(std::enable_if<true, MessageLite>{});
case TypeKind::kUnknown:
default:
Unreachable();
}
}
template <typename F>
void UntypedMapBase::VisitAllNodes(F f) const {
VisitKeyType([&](auto key_type) {
VisitValueType([&](auto value_type) {
for (auto it = begin(); !it.Equals(EndIterator()); it.PlusPlus()) {
f(GetKey<typename decltype(key_type)::type>(it.node_),
GetValue<typename decltype(value_type)::type>(it.node_));
}
});
});
}
template <typename F>
auto UntypedMapBase::VisitKey(NodeBase* node, F f) const {
return VisitKeyType([&](auto key_type) {
return f(GetKey<typename decltype(key_type)::type>(node));
});
}
template <typename F>
auto UntypedMapBase::VisitValue(NodeBase* node, F f) const {
return VisitValueType([&](auto value_type) {
return f(GetValue<typename decltype(value_type)::type>(node));
});
}
inline UntypedMapIterator UntypedMapBase::begin() const {
map_index_t bucket_index;
NodeBase* node;
if (index_of_first_non_null_ == num_buckets_) {
bucket_index = 0;
node = nullptr;
} else {
bucket_index = index_of_first_non_null_;
node = table_[bucket_index];
PROTOBUF_ASSUME(node != nullptr);
}
return UntypedMapIterator{node, this, bucket_index};
}
inline void UntypedMapIterator::PlusPlus() {
if (node_->next != nullptr) {
node_ = node_->next;
return;
}
for (map_index_t i = bucket_index_ + 1; i < m_->num_buckets_; ++i) {
NodeBase* node = m_->table_[i];
if (node == nullptr) continue;
node_ = node;
bucket_index_ = i;
return;
}
node_ = nullptr;
bucket_index_ = 0;
}
// Base class used by TcParser to extract the map object from a map field.
// We keep it here to avoid a dependency into map_field.h from the main TcParser
// code, since that would bring in Message too.
class MapFieldBaseForParse {
public:
const UntypedMapBase& GetMap() const {
return vtable_->get_map(*this, false);
}
UntypedMapBase* MutableMap() {
return &const_cast<UntypedMapBase&>(vtable_->get_map(*this, true));
}
protected:
struct VTable {
const UntypedMapBase& (*get_map)(const MapFieldBaseForParse&,
bool is_mutable);
};
explicit constexpr MapFieldBaseForParse(const VTable* vtable)
: vtable_(vtable) {}
~MapFieldBaseForParse() = default;
const VTable* vtable_;
};
// The value might be of different signedness, so use memcpy to extract it.
template <typename T, std::enable_if_t<std::is_integral<T>::value, int> = 0>
T ReadKey(const void* ptr) {
T out;
memcpy(&out, ptr, sizeof(T));
return out;
}
template <typename T, std::enable_if_t<!std::is_integral<T>::value, int> = 0>
const T& ReadKey(const void* ptr) {
return *reinterpret_cast<const T*>(ptr);
}
template <typename Key>
struct KeyNode : NodeBase {
static constexpr size_t kOffset = sizeof(NodeBase);
decltype(auto) key() const { return ReadKey<Key>(GetVoidKey()); }
};
// KeyMapBase is a chaining hash map.
// The implementation doesn't need the full generality of unordered_map,
// and it doesn't have it. More bells and whistles can be added as needed.
// Some implementation details:
// 1. The number of buckets is a power of two.
// 2. As is typical for hash_map and such, the Keys and Values are always
// stored in linked list nodes. Pointers to elements are never invalidated
// until the element is deleted.
// 3. Mutations to a map do not invalidate the map's iterators, pointers to
// elements, or references to elements.
// 4. Except for erase(iterator), any non-const method can reorder iterators.
template <typename Key>
class KeyMapBase : public UntypedMapBase {
static_assert(!std::is_signed<Key>::value || !std::is_integral<Key>::value,
"");
using TS = TransparentSupport<Key>;
public:
using UntypedMapBase::UntypedMapBase;
protected:
using KeyNode = internal::KeyNode<Key>;
protected:
friend class TcParser;
friend struct MapTestPeer;
friend struct MapBenchmarkPeer;
friend class RustMapHelper;
friend class v2::TableDriven;
PROTOBUF_NOINLINE void erase_no_destroy(map_index_t b, KeyNode* node) {
// Force bucket_index to be in range.
b &= (num_buckets_ - 1);
const auto find_prev = [&] {
NodeBase** prev = table_ + b;
for (; *prev != nullptr && *prev != node; prev = &(*prev)->next) {
}
return prev;
};
NodeBase** prev = find_prev();
if (*prev == nullptr) {
// The bucket index is wrong. The table was modified since the iterator
// was made, so let's find the new bucket.
b = FindHelper(TS::ToView(node->key())).bucket;
prev = find_prev();
}
ABSL_DCHECK_EQ(*prev, node);
*prev = (*prev)->next;
--num_elements_;
if (ABSL_PREDICT_FALSE(b == index_of_first_non_null_)) {
while (index_of_first_non_null_ < num_buckets_ &&
table_[index_of_first_non_null_] == nullptr) {
++index_of_first_non_null_;
}
}
}
NodeAndBucket FindHelper(typename TS::ViewType k) const {
map_index_t b = BucketNumber(k);
for (auto* node = table_[b]; node != nullptr; node = node->next) {
if (TS::ToView(static_cast<KeyNode*>(node)->key()) == k) {
return {node, b};
}
}
return {nullptr, b};
}
// Insert the given node.
// If the key is a duplicate, it inserts the new node and returns the old one.
// Gives ownership to the caller.
// If the key is unique, it returns `nullptr`.
KeyNode* InsertOrReplaceNode(KeyNode* node) {
KeyNode* to_erase = nullptr;
auto p = this->FindHelper(node->key());
map_index_t b = p.bucket;
if (p.node != nullptr) {
erase_no_destroy(p.bucket, static_cast<KeyNode*>(p.node));
to_erase = static_cast<KeyNode*>(p.node);
} else if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
b = BucketNumber(node->key()); // bucket_number
}
InsertUnique(b, node);
++num_elements_;
return to_erase;
}
// Insert the given Node in bucket b. If that would make bucket b too big,
// and bucket b is not a tree, create a tree for buckets b.
// Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
// bucket. num_elements_ is not modified.
void InsertUnique(map_index_t b, KeyNode* node) {
ABSL_DCHECK(index_of_first_non_null_ == num_buckets_ ||
table_[index_of_first_non_null_] != nullptr);
// In practice, the code that led to this point may have already
// determined whether we are inserting into an empty list, a short list,
// or whatever. But it's probably cheap enough to recompute that here;
// it's likely that we're inserting into an empty or short list.
ABSL_DCHECK(FindHelper(TS::ToView(node->key())).node == nullptr);
auto*& head = table_[b];
if (head == nullptr) {
head = node;
node->next = nullptr;
index_of_first_non_null_ = (std::min)(index_of_first_non_null_, b);
} else if (ShouldInsertAfterHead(node)) {
node->next = head->next;
head->next = node;
} else {
node->next = head;
head = node;
}
}
// Have it a separate function for testing.
static size_type CalculateHiCutoff(size_type num_buckets) {
// We want the high cutoff to follow this rules:
// - When num_buckets_ == kGlobalEmptyTableSize, then make it 0 to force an
// allocation.
// - When num_buckets_ < 8, then make it num_buckets_ to avoid
// a reallocation. A large load factor is not that important on small
// tables and saves memory.
// - Otherwise, make it 75% of num_buckets_.
return num_buckets - num_buckets / 16 * 4 - num_buckets % 2;
}
// Returns whether it did resize. Currently this is only used when
// num_elements_ increases, though it could be used in other situations.
// It checks for load too low as well as load too high: because any number
// of erases can occur between inserts, the load could be as low as 0 here.
// Resizing to a lower size is not always helpful, but failing to do so can
// destroy the expected big-O bounds for some operations. By having the
// policy that sometimes we resize down as well as up, clients can easily
// keep O(size()) = O(number of buckets) if they want that.
bool ResizeIfLoadIsOutOfRange(size_type new_size) {
const size_type hi_cutoff = CalculateHiCutoff(num_buckets_);
const size_type lo_cutoff = hi_cutoff / 4;
// We don't care how many elements are in trees. If a lot are,
// we may resize even though there are many empty buckets. In
// practice, this seems fine.
if (ABSL_PREDICT_FALSE(new_size > hi_cutoff)) {
if (num_buckets_ <= max_size() / 2) {
Resize(num_buckets_ * 2);
return true;
}
} else if (ABSL_PREDICT_FALSE(new_size <= lo_cutoff &&
num_buckets_ > kMinTableSize)) {
size_type lg2_of_size_reduction_factor = 1;
// It's possible we want to shrink a lot here... size() could even be 0.
// So, estimate how much to shrink by making sure we don't shrink so
// much that we would need to grow the table after a few inserts.
const size_type hypothetical_size = new_size * 5 / 4 + 1;
while ((hypothetical_size << lg2_of_size_reduction_factor) < hi_cutoff) {
++lg2_of_size_reduction_factor;
}
size_type new_num_buckets = std::max<size_type>(
kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
if (new_num_buckets != num_buckets_) {
Resize(new_num_buckets);
return true;
}
}
return false;
}
// Resize to the given number of buckets.
void Resize(map_index_t new_num_buckets) {
if (num_buckets_ == kGlobalEmptyTableSize) {
// This is the global empty array.
// Just overwrite with a new one. No need to transfer or free anything.
num_buckets_ = index_of_first_non_null_ = kMinTableSize;
table_ = CreateEmptyTable(num_buckets_);
return;
}
ABSL_DCHECK_GE(new_num_buckets, kMinTableSize);
const auto old_table = table_;
const map_index_t old_table_size = num_buckets_;
num_buckets_ = new_num_buckets;
table_ = CreateEmptyTable(num_buckets_);
const map_index_t start = index_of_first_non_null_;
index_of_first_non_null_ = num_buckets_;
for (map_index_t i = start; i < old_table_size; ++i) {
for (KeyNode* node = static_cast<KeyNode*>(old_table[i]);
node != nullptr;) {
auto* next = static_cast<KeyNode*>(node->next);
InsertUnique(BucketNumber(TS::ToView(node->key())), node);
node = next;
}
}
DeleteTable(old_table, old_table_size);
}
map_index_t BucketNumber(typename TS::ViewType k) const {
return static_cast<map_index_t>(absl::HashOf(k, table_) &
(num_buckets_ - 1));
}
};
template <typename T, typename K>
bool InitializeMapKey(T*, K&&, Arena*) {
return false;
}
// The purpose of this class is to give the Rust implementation visibility into
// some of the internals of C++ proto maps. We need access to these internals
// to be able to implement Rust map operations without duplicating the same
// functionality for every message type.
class RustMapHelper {
public:
using NodeAndBucket = UntypedMapBase::NodeAndBucket;
static NodeBase* AllocNode(UntypedMapBase* m) { return m->AllocNode(); }
static void DeleteNode(UntypedMapBase* m, NodeBase* node) {
return m->DeleteNode(node);
}
template <typename Map, typename Key>
static NodeAndBucket FindHelper(Map* m, Key key) {
return m->FindHelper(key);
}
template <typename Map>
static typename Map::KeyNode* InsertOrReplaceNode(Map* m, NodeBase* node) {
return m->InsertOrReplaceNode(static_cast<typename Map::KeyNode*>(node));
}
template <typename Map>
static void EraseNoDestroy(Map* m, map_index_t bucket, NodeBase* node) {
m->erase_no_destroy(bucket, static_cast<typename Map::KeyNode*>(node));
}
static google::protobuf::MessageLite* PlacementNew(const MessageLite* prototype,
void* mem) {
return prototype->GetClassData()->PlacementNew(mem, /* arena = */ nullptr);
}
};
} // namespace internal
// This is the class for Map's internal value_type.
template <typename Key, typename T>
using MapPair = std::pair<const Key, T>;
// Map is an associative container type used to store protobuf map
// fields. Each Map instance may or may not use a different hash function, a
// different iteration order, and so on. E.g., please don't examine
// implementation details to decide if the following would work:
// Map<int, int> m0, m1;
// m0[0] = m1[0] = m0[1] = m1[1] = 0;
// assert(m0.begin()->first == m1.begin()->first); // Bug!
//
// Map's interface is similar to std::unordered_map, except that Map is not
// designed to play well with exceptions.
template <typename Key, typename T>
class Map : private internal::KeyMapBase<internal::KeyForBase<Key>> {
using Base = typename Map::KeyMapBase;
using TS = internal::TransparentSupport<Key>;
public:
using key_type = Key;
using mapped_type = T;
using init_type = std::pair<Key, T>;
using value_type = MapPair<Key, T>;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = size_t;
using hasher = absl::Hash<typename TS::ViewType>;
constexpr Map() : Base(nullptr, GetTypeInfo()) { StaticValidityCheck(); }
Map(const Map& other) : Map(nullptr, other) {}
// Internal Arena constructors: do not use!
// TODO: remove non internal ctors
explicit Map(Arena* arena) : Base(arena, GetTypeInfo()) {
StaticValidityCheck();
}
Map(internal::InternalVisibility, Arena* arena) : Map(arena) {}
Map(internal::InternalVisibility, Arena* arena, const Map& other)
: Map(arena, other) {}
Map(Map&& other) noexcept : Map() {
if (other.arena() != nullptr) {
*this = other;
} else {
swap(other);
}
}
Map& operator=(Map&& other) noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (this != &other) {
if (arena() != other.arena()) {
*this = other;
} else {
swap(other);
}
}
return *this;
}
template <class InputIt>
Map(const InputIt& first, const InputIt& last) : Map() {
insert(first, last);
}
~Map() {
// Fail-safe in case we miss calling this in a constructor. Note: this one
// won't trigger for leaked maps that never get destructed.
StaticValidityCheck();
this->ClearTable(false, this->template GetDestroyNode<Node>());
}
private:
Map(Arena* arena, const Map& other) : Map(arena) {
StaticValidityCheck();
insert(other.begin(), other.end());
}
static_assert(!std::is_const<mapped_type>::value &&
!std::is_const<key_type>::value,
"We do not support const types.");
static_assert(!std::is_volatile<mapped_type>::value &&
!std::is_volatile<key_type>::value,
"We do not support volatile types.");
static_assert(!std::is_pointer<mapped_type>::value &&
!std::is_pointer<key_type>::value,
"We do not support pointer types.");
static_assert(!std::is_reference<mapped_type>::value &&
!std::is_reference<key_type>::value,
"We do not support reference types.");
static constexpr PROTOBUF_ALWAYS_INLINE void StaticValidityCheck() {
static_assert(alignof(internal::NodeBase) >= alignof(mapped_type),
"Alignment of mapped type is too high.");
static_assert(
absl::disjunction<internal::is_supported_integral_type<key_type>,
internal::is_supported_string_type<key_type>,
internal::is_internal_map_key_type<key_type>>::value,
"We only support integer, string, or designated internal key "
"types.");
static_assert(absl::disjunction<
internal::is_supported_scalar_type<mapped_type>,
is_proto_enum<mapped_type>,
internal::is_supported_message_type<mapped_type>,
internal::is_internal_map_value_type<mapped_type>>::value,
"We only support scalar, Message, and designated internal "
"mapped types.");
// The Rust implementation that wraps C++ protos relies on the ability to
// create an UntypedMapBase and cast a pointer of it to google::protobuf::Map*.
static_assert(
sizeof(Map) == sizeof(internal::UntypedMapBase),
"Map must not have any data members beyond what is in UntypedMapBase.");
// Check for MpMap optimizations.
if constexpr (std::is_scalar_v<key_type>) {
static_assert(sizeof(key_type) <= sizeof(uint64_t),
"Scalar must be <= than uint64_t");
}
if constexpr (std::is_scalar_v<mapped_type>) {
static_assert(sizeof(mapped_type) <= sizeof(uint64_t),
"Scalar must be <= than uint64_t");
}
static_assert(internal::kMaxMessageAlignment >= sizeof(uint64_t));
static_assert(sizeof(Node) - sizeof(internal::NodeBase) >= sizeof(uint64_t),
"We must have at least this bytes for MpMap initialization");
}
template <typename P>
struct SameAsElementReference
: std::is_same<typename std::remove_cv<
typename std::remove_reference<reference>::type>::type,
typename std::remove_cv<
typename std::remove_reference<P>::type>::type> {};
template <class P>
using RequiresInsertable =
typename std::enable_if<std::is_convertible<P, init_type>::value ||
SameAsElementReference<P>::value,
int>::type;
template <class P>
using RequiresNotInit =
typename std::enable_if<!std::is_same<P, init_type>::value, int>::type;
template <typename LookupKey>
using key_arg = typename TS::template key_arg<LookupKey>;
public:
// Iterators
class const_iterator : private internal::UntypedMapIterator {
using BaseIt = internal::UntypedMapIterator;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename Map::value_type;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = const value_type&;
const_iterator() : BaseIt{nullptr, nullptr, 0} {}
const_iterator(const const_iterator&) = default;
const_iterator& operator=(const const_iterator&) = default;
explicit const_iterator(BaseIt it) : BaseIt(it) {}
reference operator*() const { return static_cast<Node*>(this->node_)->kv; }
pointer operator->() const { return &(operator*()); }
const_iterator& operator++() {
this->PlusPlus();
return *this;
}
const_iterator operator++(int) {
auto copy = *this;
this->PlusPlus();
return copy;
}
friend bool operator==(const const_iterator& a, const const_iterator& b) {
return a.Equals(b);
}
friend bool operator!=(const const_iterator& a, const const_iterator& b) {
return !a.Equals(b);
}
private:
using BaseIt::BaseIt;
friend class Map;
friend class internal::UntypedMapIterator;
friend class internal::TypeDefinedMapFieldBase<Key, T>;
};
class iterator : private internal::UntypedMapIterator {
using BaseIt = internal::UntypedMapIterator;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename Map::value_type;
using difference_type = ptrdiff_t;
using pointer = value_type*;
using reference = value_type&;
iterator() : BaseIt{nullptr, nullptr, 0} {}
iterator(const iterator&) = default;
iterator& operator=(const iterator&) = default;
explicit iterator(BaseIt it) : BaseIt(it) {}
reference operator*() const { return static_cast<Node*>(this->node_)->kv; }
pointer operator->() const { return &(operator*()); }
iterator& operator++() {
this->PlusPlus();
return *this;
}
iterator operator++(int) {
auto copy = *this;
this->PlusPlus();
return copy;
}
// Allow implicit conversion to const_iterator.
operator const_iterator() const { // NOLINT(runtime/explicit)
return const_iterator(static_cast<const BaseIt&>(*this));
}
friend bool operator==(const iterator& a, const iterator& b) {
return a.Equals(b);
}
friend bool operator!=(const iterator& a, const iterator& b) {
return !a.Equals(b);
}
private:
using BaseIt::BaseIt;
friend class Map;
};
iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(Base::begin());
}
iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return iterator(); }
const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(Base::begin());
}
const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator();
}
const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return begin();
}
const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
using Base::empty;
using Base::size;
// Element access
template <typename K = key_type>
T& operator[](const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return try_emplace(key).first->second;
}
template <
typename K = key_type,
// Disable for integral types to reduce code bloat.
typename = typename std::enable_if<!std::is_integral<K>::value>::type>
T& operator[](key_arg<K>&& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return try_emplace(std::forward<K>(key)).first->second;
}
template <typename K = key_type>
const T& at(const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
const_iterator it = find(key);
ABSL_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
return it->second;
}
template <typename K = key_type>
T& at(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
iterator it = find(key);
ABSL_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
return it->second;
}
// Lookup
template <typename K = key_type>
size_type count(const key_arg<K>& key) const {
return find(key) == end() ? 0 : 1;
}
template <typename K = key_type>
const_iterator find(const key_arg<K>& key) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_cast<Map*>(this)->find(key);
}
template <typename K = key_type>
iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
auto res = this->FindHelper(TS::ToView(key));
return iterator(internal::UntypedMapIterator{static_cast<Node*>(res.node),
this, res.bucket});
}
template <typename K = key_type>
bool contains(const key_arg<K>& key) const {
return find(key) != end();
}
template <typename K = key_type>
std::pair<const_iterator, const_iterator> equal_range(
const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
const_iterator it = find(key);
if (it == end()) {
return std::pair<const_iterator, const_iterator>(it, it);
} else {
const_iterator begin = it++;
return std::pair<const_iterator, const_iterator>(begin, it);
}
}
template <typename K = key_type>
std::pair<iterator, iterator> equal_range(const key_arg<K>& key)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
iterator it = find(key);
if (it == end()) {
return std::pair<iterator, iterator>(it, it);
} else {
iterator begin = it++;
return std::pair<iterator, iterator>(begin, it);
}
}
// insert
template <typename K, typename... Args>
std::pair<iterator, bool> try_emplace(K&& k, Args&&... args)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
// Case 1: `mapped_type` is arena constructible. A temporary object is
// created and then (if `Args` are not empty) assigned to a mapped value
// that was created with the arena.
if constexpr (Arena::is_arena_constructable<mapped_type>::value) {
if constexpr (sizeof...(Args) == 0) {
// case 1.1: "default" constructed (e.g. from arena only).
return TryEmplaceInternal(std::forward<K>(k));
} else {
// case 1.2: "default" constructed + copy/move assignment
auto p = TryEmplaceInternal(std::forward<K>(k));
if (p.second) {
if constexpr (std::is_same<void(typename std::decay<Args>::type...),
void(mapped_type)>::value) {
// Avoid the temporary when the input is the right type.
p.first->second = (std::forward<Args>(args), ...);
} else {
p.first->second = mapped_type(std::forward<Args>(args)...);
}
}
return p;
}
} else {
// Case 2: `mapped_type` is not arena constructible. Using in-place
// construction.
return TryEmplaceInternal(std::forward<K>(k),
std::forward<Args>(args)...);
}
}
std::pair<iterator, bool> insert(init_type&& value)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return try_emplace(std::move(value.first), std::move(value.second));
}
template <typename P, RequiresInsertable<P> = 0>
std::pair<iterator, bool> insert(P&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return try_emplace(std::forward<P>(value).first,
std::forward<P>(value).second);
}
template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
// We try to construct `init_type` from `Args` with a fall back to
// `value_type`. The latter is less desired as it unconditionally makes a
// copy of `value_type::first`.
if constexpr (std::is_constructible<init_type, Args...>::value) {
return insert(init_type(std::forward<Args>(args)...));
} else {
return insert(value_type(std::forward<Args>(args)...));
}
}
template <class InputIt>
void insert(InputIt first, InputIt last) {
for (; first != last; ++first) {
auto&& pair = *first;
try_emplace(pair.first, pair.second);
}
}
void insert(std::initializer_list<init_type> values) {
insert(values.begin(), values.end());
}
template <typename P, RequiresNotInit<P> = 0,
RequiresInsertable<const P&> = 0>
void insert(std::initializer_list<P> values) {
insert(values.begin(), values.end());
}
// Erase and clear
template <typename K = key_type>
size_type erase(const key_arg<K>& key) {
iterator it = find(key);
if (it == end()) {
return 0;
} else {
erase(it);
return 1;
}
}
iterator erase(iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND {
auto next = std::next(pos);
ABSL_DCHECK_EQ(pos.m_, static_cast<Base*>(this));
auto* node = static_cast<Node*>(pos.node_);
this->erase_no_destroy(pos.bucket_index_, node);
DeleteNode(node);
return next;
}
void erase(iterator first, iterator last) {
while (first != last) {
first = erase(first);
}
}
void clear() {
this->ClearTable(true, this->template GetDestroyNode<Node>());
}
// Assign
Map& operator=(const Map& other) ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (this != &other) {
clear();
insert(other.begin(), other.end());
}
return *this;
}
void swap(Map& other) {
if (arena() == other.arena()) {
InternalSwap(&other);
} else {
// TODO: optimize this. The temporary copy can be allocated
// in the same arena as the other message, and the "other = copy" can
// be replaced with the fast-path swap above.
Map copy = *this;
*this = other;
other = copy;
}
}
void InternalSwap(Map* other) {
internal::UntypedMapBase::InternalSwap(other);
}
hasher hash_function() const { return {}; }
size_t SpaceUsedExcludingSelfLong() const {
if (empty()) return 0;
return internal::UntypedMapBase::SpaceUsedExcludingSelfLong();
}
static constexpr size_t InternalGetArenaOffset(internal::InternalVisibility) {
return PROTOBUF_FIELD_OFFSET(Map, arena_);
}
private:
// Linked-list nodes, as one would expect for a chaining hash table.
struct Node : Base::KeyNode {
using key_type = Key;
using mapped_type = T;
static constexpr internal::MapNodeSizeInfoT size_info() {
return internal::MakeNodeInfo(sizeof(Node),
PROTOBUF_FIELD_OFFSET(Node, kv.second));
}
value_type kv;
};
static constexpr auto GetTypeInfo() {
return internal::UntypedMapBase::TypeInfo{
sizeof(Node),
PROTOBUF_FIELD_OFFSET(Node, kv.second),
internal::UntypedMapBase::StaticTypeKind<Key>(),
internal::UntypedMapBase::StaticTypeKind<T>(),
};
}
void DeleteNode(Node* node) {
if (this->arena_ == nullptr) {
node->kv.first.~key_type();
node->kv.second.~mapped_type();
this->DeallocNode(node, sizeof(Node));
}
}
template <typename K, typename... Args>
std::pair<iterator, bool> TryEmplaceInternal(K&& k, Args&&... args) {
auto p = this->FindHelper(TS::ToView(k));
internal::map_index_t b = p.bucket;
// Case 1: key was already present.
if (p.node != nullptr)
return std::make_pair(iterator(internal::UntypedMapIterator{
static_cast<Node*>(p.node), this, p.bucket}),
false);
// Case 2: insert.
if (this->ResizeIfLoadIsOutOfRange(this->num_elements_ + 1)) {
b = this->BucketNumber(TS::ToView(k));
}
// If K is not key_type, make the conversion to key_type explicit.
using TypeToInit = typename std::conditional<
std::is_same<typename std::decay<K>::type, key_type>::value, K&&,
key_type>::type;
Node* node = static_cast<Node*>(this->AllocNode(sizeof(Node)));
// Even when arena is nullptr, CreateInArenaStorage is still used to
// ensure the arena of submessage will be consistent. Otherwise,
// submessage may have its own arena when message-owned arena is enabled.
// Note: This only works if `Key` is not arena constructible.
if (!internal::InitializeMapKey(const_cast<Key*>(&node->kv.first),
std::forward<K>(k), this->arena_)) {
Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first),
this->arena_,
static_cast<TypeToInit>(std::forward<K>(k)));
}
// Note: if `T` is arena constructible, `Args` needs to be empty.
Arena::CreateInArenaStorage(&node->kv.second, this->arena_,
std::forward<Args>(args)...);
this->InsertUnique(b, node);
++this->num_elements_;
return std::make_pair(iterator(internal::UntypedMapIterator{node, this, b}),
true);
}
using Base::arena;
friend class Arena;
template <typename, typename>
friend class internal::TypeDefinedMapFieldBase;
using InternalArenaConstructable_ = void;
using DestructorSkippable_ = void;
template <typename K, typename V>
friend class internal::MapFieldLite;
friend class internal::TcParser;
friend struct internal::MapTestPeer;
friend struct internal::MapBenchmarkPeer;
friend class internal::RustMapHelper;
friend class internal::v2::TableDriven;
};
namespace internal {
template <typename... T>
PROTOBUF_NOINLINE void MapMergeFrom(Map<T...>& dest, const Map<T...>& src) {
for (const auto& elem : src) {
dest[elem.first] = elem.second;
}
}
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_MAP_H__