blob: 5f85eb179793725c926dbf590d2efca9e355b7e3 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// This file defines the map container and its helpers to support protobuf maps.
//
// The Map and MapIterator types are provided by this header file.
// Please avoid using other types defined here, unless they are public
// types within Map or MapIterator, such as Map::value_type.
#ifndef GOOGLE_PROTOBUF_MAP_H__
#define GOOGLE_PROTOBUF_MAP_H__
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits> // To support Visual Studio 2008
#include <string>
#include <type_traits>
#include <utility>
#if !defined(GOOGLE_PROTOBUF_NO_RDTSC) && defined(__APPLE__)
#include <time.h>
#endif
#include "google/protobuf/stubs/common.h"
#include "absl/base/attributes.h"
#include "absl/container/btree_map.h"
#include "absl/hash/hash.h"
#include "absl/log/absl_check.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/generated_enum_util.h"
#include "google/protobuf/internal_visibility.h"
#include "google/protobuf/map_type_handler.h"
#include "google/protobuf/port.h"
#include "google/protobuf/wire_format_lite.h"
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
template <typename Key, typename T>
class Map;
class MapIterator;
template <typename Enum>
struct is_proto_enum;
namespace internal {
template <typename Key, typename T>
class MapFieldLite;
template <typename Derived, typename Key, typename T,
WireFormatLite::FieldType key_wire_type,
WireFormatLite::FieldType value_wire_type>
class MapField;
struct MapTestPeer;
struct MapBenchmarkPeer;
template <typename Key, typename T>
class TypeDefinedMapFieldBase;
class DynamicMapField;
class GeneratedMessageReflection;
// The largest valid serialization for a message is INT_MAX, so we can't have
// more than 32-bits worth of elements.
using map_index_t = uint32_t;
// Internal type traits that can be used to define custom key/value types. These
// are only be specialized by protobuf internals, and never by users.
template <typename T, typename VoidT = void>
struct is_internal_map_key_type : std::false_type {};
template <typename T, typename VoidT = void>
struct is_internal_map_value_type : std::false_type {};
// re-implement std::allocator to use arena allocator for memory allocation.
// Used for Map implementation. Users should not use this class
// directly.
template <typename U>
class MapAllocator {
public:
using value_type = U;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = size_t;
using difference_type = ptrdiff_t;
constexpr MapAllocator() : arena_(nullptr) {}
explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {}
template <typename X>
MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit)
: arena_(allocator.arena()) {}
// MapAllocator does not support alignments beyond 8. Technically we should
// support up to std::max_align_t, but this fails with ubsan and tcmalloc
// debug allocation logic which assume 8 as default alignment.
static_assert(alignof(value_type) <= 8, "");
pointer allocate(size_type n, const void* /* hint */ = nullptr) {
// If arena is not given, malloc needs to be called which doesn't
// construct element object.
if (arena_ == nullptr) {
return static_cast<pointer>(::operator new(n * sizeof(value_type)));
} else {
return reinterpret_cast<pointer>(
Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type)));
}
}
void deallocate(pointer p, size_type n) {
if (arena_ == nullptr) {
internal::SizedDelete(p, n * sizeof(value_type));
}
}
#if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \
!defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
template <class NodeType, class... Args>
void construct(NodeType* p, Args&&... args) {
// Clang 3.6 doesn't compile static casting to void* directly. (Issue
// #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
// not cast away constness". So first the maybe const pointer is casted to
// const void* and after the const void* is const casted.
new (const_cast<void*>(static_cast<const void*>(p)))
NodeType(std::forward<Args>(args)...);
}
template <class NodeType>
void destroy(NodeType* p) {
p->~NodeType();
}
#else
void construct(pointer p, const_reference t) { new (p) value_type(t); }
void destroy(pointer p) { p->~value_type(); }
#endif
template <typename X>
struct rebind {
using other = MapAllocator<X>;
};
template <typename X>
bool operator==(const MapAllocator<X>& other) const {
return arena_ == other.arena_;
}
template <typename X>
bool operator!=(const MapAllocator<X>& other) const {
return arena_ != other.arena_;
}
// To support Visual Studio 2008
size_type max_size() const {
// parentheses around (std::...:max) prevents macro warning of max()
return (std::numeric_limits<size_type>::max)();
}
// To support gcc-4.4, which does not properly
// support templated friend classes
Arena* arena() const { return arena_; }
private:
using DestructorSkippable_ = void;
Arena* arena_;
};
// To save on binary size and simplify generic uses of the map types we collapse
// signed/unsigned versions of the same sized integer to the unsigned version.
template <typename T, typename = void>
struct KeyForBaseImpl {
using type = T;
};
template <typename T>
struct KeyForBaseImpl<T, std::enable_if_t<std::is_integral<T>::value &&
std::is_signed<T>::value>> {
using type = std::make_unsigned_t<T>;
};
template <typename T>
using KeyForBase = typename KeyForBaseImpl<T>::type;
// Default case: Not transparent.
// We use std::hash<key_type>/std::less<key_type> and all the lookup functions
// only accept `key_type`.
template <typename key_type>
struct TransparentSupport {
// We hash all the scalars as uint64_t so that we can implement the same hash
// function for VariantKey. This way we can have MapKey provide the same hash
// as the underlying value would have.
using hash = std::hash<
std::conditional_t<std::is_scalar<key_type>::value, uint64_t, key_type>>;
static bool Equals(const key_type& a, const key_type& b) { return a == b; }
template <typename K>
using key_arg = key_type;
using ViewType = std::conditional_t<std::is_scalar<key_type>::value, key_type,
const key_type&>;
static ViewType ToView(const key_type& v) { return v; }
};
// We add transparent support for std::string keys. We use
// std::hash<absl::string_view> as it supports the input types we care about.
// The lookup functions accept arbitrary `K`. This will include any key type
// that is convertible to absl::string_view.
template <>
struct TransparentSupport<std::string> {
// Use go/ranked-overloads for dispatching.
struct Rank0 {};
struct Rank1 : Rank0 {};
struct Rank2 : Rank1 {};
template <typename T, typename = std::enable_if_t<
std::is_convertible<T, absl::string_view>::value>>
static absl::string_view ImplicitConvertImpl(T&& str, Rank2) {
absl::string_view ref = str;
return ref;
}
template <typename T, typename = std::enable_if_t<
std::is_convertible<T, const std::string&>::value>>
static absl::string_view ImplicitConvertImpl(T&& str, Rank1) {
const std::string& ref = str;
return ref;
}
template <typename T>
static absl::string_view ImplicitConvertImpl(T&& str, Rank0) {
return {str.data(), str.size()};
}
template <typename T>
static absl::string_view ImplicitConvert(T&& str) {
return ImplicitConvertImpl(std::forward<T>(str), Rank2{});
}
struct hash : public absl::Hash<absl::string_view> {
using is_transparent = void;
template <typename T>
size_t operator()(T&& str) const {
return absl::Hash<absl::string_view>::operator()(
ImplicitConvert(std::forward<T>(str)));
}
};
template <typename T, typename U>
static bool Equals(T&& t, U&& u) {
return ImplicitConvert(std::forward<T>(t)) ==
ImplicitConvert(std::forward<U>(u));
}
template <typename K>
using key_arg = K;
using ViewType = absl::string_view;
template <typename T>
static ViewType ToView(const T& v) {
return ImplicitConvert(v);
}
};
enum class MapNodeSizeInfoT : uint32_t;
inline uint16_t SizeFromInfo(MapNodeSizeInfoT node_size_info) {
return static_cast<uint16_t>(static_cast<uint32_t>(node_size_info) >> 16);
}
inline uint16_t ValueOffsetFromInfo(MapNodeSizeInfoT node_size_info) {
return static_cast<uint16_t>(static_cast<uint32_t>(node_size_info) >> 0);
}
constexpr MapNodeSizeInfoT MakeNodeInfo(uint16_t size, uint16_t value_offset) {
return static_cast<MapNodeSizeInfoT>((static_cast<uint32_t>(size) << 16) |
value_offset);
}
struct NodeBase {
// Align the node to allow KeyNode to predict the location of the key.
// This way sizeof(NodeBase) contains any possible padding it was going to
// have between NodeBase and the key.
alignas(kMaxMessageAlignment) NodeBase* next;
void* GetVoidKey() { return this + 1; }
const void* GetVoidKey() const { return this + 1; }
void* GetVoidValue(MapNodeSizeInfoT size_info) {
return reinterpret_cast<char*>(this) + ValueOffsetFromInfo(size_info);
}
};
inline NodeBase* EraseFromLinkedList(NodeBase* item, NodeBase* head) {
if (head == item) {
return head->next;
} else {
head->next = EraseFromLinkedList(item, head->next);
return head;
}
}
constexpr size_t MapTreeLengthThreshold() { return 8; }
inline bool TableEntryIsTooLong(NodeBase* node) {
const size_t kMaxLength = MapTreeLengthThreshold();
size_t count = 0;
do {
++count;
node = node->next;
} while (node != nullptr);
// Invariant: no linked list ever is more than kMaxLength in length.
ABSL_DCHECK_LE(count, kMaxLength);
return count >= kMaxLength;
}
// Similar to the public MapKey, but specialized for the internal
// implementation.
struct VariantKey {
// We make this value 16 bytes to make it cheaper to pass in the ABI.
// Can't overload string_view this way, so we unpack the fields.
// data==nullptr means this is a number and `integral` is the value.
// data!=nullptr means this is a string and `integral` is the size.
const char* data;
uint64_t integral;
explicit VariantKey(uint64_t v) : data(nullptr), integral(v) {}
explicit VariantKey(absl::string_view v)
: data(v.data()), integral(v.size()) {
// We use `data` to discriminate between the types, so make sure it is never
// null here.
if (data == nullptr) data = "";
}
size_t Hash() const {
return data == nullptr ? std::hash<uint64_t>{}(integral)
: absl::Hash<absl::string_view>{}(
absl::string_view(data, integral));
}
friend bool operator<(const VariantKey& left, const VariantKey& right) {
ABSL_DCHECK_EQ(left.data == nullptr, right.data == nullptr);
if (left.integral != right.integral) {
// If they are numbers with different value, or strings with different
// size, check the number only.
return left.integral < right.integral;
}
if (left.data == nullptr) {
// If they are numbers they have the same value, so return.
return false;
}
// They are strings of the same size, so check the bytes.
return memcmp(left.data, right.data, left.integral) < 0;
}
};
// This is to be specialized by MapKey.
template <typename T>
struct RealKeyToVariantKey {
VariantKey operator()(T value) const { return VariantKey(value); }
};
template <>
struct RealKeyToVariantKey<std::string> {
template <typename T>
VariantKey operator()(const T& value) const {
return VariantKey(TransparentSupport<std::string>::ImplicitConvert(value));
}
};
// We use a single kind of tree for all maps. This reduces code duplication.
using TreeForMap =
absl::btree_map<VariantKey, NodeBase*, std::less<VariantKey>,
MapAllocator<std::pair<const VariantKey, NodeBase*>>>;
// Type safe tagged pointer.
// We convert to/from nodes and trees using the operations below.
// They ensure that the tags are used correctly.
// There are three states:
// - x == 0: the entry is empty
// - x != 0 && (x&1) == 0: the entry is a node list
// - x != 0 && (x&1) == 1: the entry is a tree
enum class TableEntryPtr : uintptr_t;
inline bool TableEntryIsEmpty(TableEntryPtr entry) {
return entry == TableEntryPtr{};
}
inline bool TableEntryIsTree(TableEntryPtr entry) {
return (static_cast<uintptr_t>(entry) & 1) == 1;
}
inline bool TableEntryIsList(TableEntryPtr entry) {
return !TableEntryIsTree(entry);
}
inline bool TableEntryIsNonEmptyList(TableEntryPtr entry) {
return !TableEntryIsEmpty(entry) && TableEntryIsList(entry);
}
inline NodeBase* TableEntryToNode(TableEntryPtr entry) {
ABSL_DCHECK(TableEntryIsList(entry));
return reinterpret_cast<NodeBase*>(static_cast<uintptr_t>(entry));
}
inline TableEntryPtr NodeToTableEntry(NodeBase* node) {
ABSL_DCHECK((reinterpret_cast<uintptr_t>(node) & 1) == 0);
return static_cast<TableEntryPtr>(reinterpret_cast<uintptr_t>(node));
}
inline TreeForMap* TableEntryToTree(TableEntryPtr entry) {
ABSL_DCHECK(TableEntryIsTree(entry));
return reinterpret_cast<TreeForMap*>(static_cast<uintptr_t>(entry) - 1);
}
inline TableEntryPtr TreeToTableEntry(TreeForMap* node) {
ABSL_DCHECK((reinterpret_cast<uintptr_t>(node) & 1) == 0);
return static_cast<TableEntryPtr>(reinterpret_cast<uintptr_t>(node) | 1);
}
// This captures all numeric types.
inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; }
inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) {
return StringSpaceUsedExcludingSelfLong(str);
}
template <typename T,
typename = decltype(std::declval<const T&>().SpaceUsedLong())>
size_t MapValueSpaceUsedExcludingSelfLong(const T& message) {
return message.SpaceUsedLong() - sizeof(T);
}
constexpr size_t kGlobalEmptyTableSize = 1;
PROTOBUF_EXPORT extern const TableEntryPtr
kGlobalEmptyTable[kGlobalEmptyTableSize];
template <typename Map,
typename = typename std::enable_if<
!std::is_scalar<typename Map::key_type>::value ||
!std::is_scalar<typename Map::mapped_type>::value>::type>
size_t SpaceUsedInValues(const Map* map) {
size_t size = 0;
for (const auto& v : *map) {
size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) +
internal::MapValueSpaceUsedExcludingSelfLong(v.second);
}
return size;
}
inline size_t SpaceUsedInValues(const void*) { return 0; }
class UntypedMapBase;
class UntypedMapIterator {
public:
// Invariants:
// node_ is always correct. This is handy because the most common
// operations are operator* and operator-> and they only use node_.
// When node_ is set to a non-null value, all the other non-const fields
// are updated to be correct also, but those fields can become stale
// if the underlying map is modified. When those fields are needed they
// are rechecked, and updated if necessary.
UntypedMapIterator() : node_(nullptr), m_(nullptr), bucket_index_(0) {}
explicit UntypedMapIterator(const UntypedMapBase* m);
UntypedMapIterator(NodeBase* n, const UntypedMapBase* m, map_index_t index)
: node_(n), m_(m), bucket_index_(index) {}
// Advance through buckets, looking for the first that isn't empty.
// If nothing non-empty is found then leave node_ == nullptr.
void SearchFrom(map_index_t start_bucket);
// The definition of operator== is handled by the derived type. If we were
// to do it in this class it would allow comparing iterators of different
// map types.
bool Equals(const UntypedMapIterator& other) const {
return node_ == other.node_;
}
// The definition of operator++ is handled in the derived type. We would not
// be able to return the right type from here.
void PlusPlus() {
if (node_->next == nullptr) {
SearchFrom(bucket_index_ + 1);
} else {
node_ = node_->next;
}
}
// Conversion to and from a typed iterator child class is used by FFI.
template <class Iter>
static UntypedMapIterator FromTyped(Iter it) {
static_assert(
#if defined(__cpp_lib_is_layout_compatible) && \
__cpp_lib_is_layout_compatible >= 201907L
std::is_layout_compatible_v<Iter, UntypedMapIterator>,
#else
sizeof(it) == sizeof(UntypedMapIterator),
#endif
"Map iterator must not have extra state that the base class"
"does not define.");
return static_cast<UntypedMapIterator>(it);
}
template <class Iter>
Iter ToTyped() const {
return Iter(*this);
}
NodeBase* node_;
const UntypedMapBase* m_;
map_index_t bucket_index_;
};
// These properties are depended upon by Rust FFI.
static_assert(std::is_trivially_copyable<UntypedMapIterator>::value,
"UntypedMapIterator must be trivially copyable.");
static_assert(std::is_trivially_destructible<UntypedMapIterator>::value,
"UntypedMapIterator must be trivially destructible.");
static_assert(std::is_standard_layout<UntypedMapIterator>::value,
"UntypedMapIterator must be standard layout.");
static_assert(offsetof(UntypedMapIterator, node_) == 0,
"node_ must be the first field of UntypedMapIterator.");
static_assert(sizeof(UntypedMapIterator) ==
sizeof(void*) * 2 +
std::max(sizeof(uint32_t), alignof(void*)),
"UntypedMapIterator does not have the expected size for FFI");
static_assert(
alignof(UntypedMapIterator) == std::max(alignof(void*), alignof(uint32_t)),
"UntypedMapIterator does not have the expected alignment for FFI");
// Base class for all Map instantiations.
// This class holds all the data and provides the basic functionality shared
// among all instantiations.
// Having an untyped base class helps generic consumers (like the table-driven
// parser) by having non-template code that can handle all instantiations.
class PROTOBUF_EXPORT UntypedMapBase {
using Allocator = internal::MapAllocator<void*>;
using Tree = internal::TreeForMap;
public:
using size_type = size_t;
explicit constexpr UntypedMapBase(Arena* arena)
: num_elements_(0),
num_buckets_(internal::kGlobalEmptyTableSize),
seed_(0),
index_of_first_non_null_(internal::kGlobalEmptyTableSize),
table_(const_cast<TableEntryPtr*>(internal::kGlobalEmptyTable)),
alloc_(arena) {}
UntypedMapBase(const UntypedMapBase&) = delete;
UntypedMapBase& operator=(const UntypedMapBase&) = delete;
protected:
// 16 bytes is the minimum useful size for the array cache in the arena.
enum { kMinTableSize = 16 / sizeof(void*) };
public:
Arena* arena() const { return this->alloc_.arena(); }
void InternalSwap(UntypedMapBase* other) {
std::swap(num_elements_, other->num_elements_);
std::swap(num_buckets_, other->num_buckets_);
std::swap(seed_, other->seed_);
std::swap(index_of_first_non_null_, other->index_of_first_non_null_);
std::swap(table_, other->table_);
std::swap(alloc_, other->alloc_);
}
static size_type max_size() {
return std::numeric_limits<map_index_t>::max();
}
size_type size() const { return num_elements_; }
bool empty() const { return size() == 0; }
UntypedMapIterator begin() const { return UntypedMapIterator(this); }
// We make this a static function to reduce the cost in MapField.
// All the end iterators are singletons anyway.
static UntypedMapIterator EndIterator() { return {}; }
protected:
friend class TcParser;
friend struct MapTestPeer;
friend struct MapBenchmarkPeer;
friend class UntypedMapIterator;
struct NodeAndBucket {
NodeBase* node;
map_index_t bucket;
};
// Returns whether we should insert after the head of the list. For
// non-optimized builds, we randomly decide whether to insert right at the
// head of the list or just after the head. This helps add a little bit of
// non-determinism to the map ordering.
bool ShouldInsertAfterHead(void* node) {
#ifdef NDEBUG
(void)node;
return false;
#else
// Doing modulo with a prime mixes the bits more.
return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6;
#endif
}
// Helper for InsertUnique. Handles the case where bucket b is a
// not-too-long linked list.
void InsertUniqueInList(map_index_t b, NodeBase* node) {
if (!TableEntryIsEmpty(b) && ShouldInsertAfterHead(node)) {
auto* first = TableEntryToNode(table_[b]);
node->next = first->next;
first->next = node;
} else {
node->next = TableEntryToNode(table_[b]);
table_[b] = NodeToTableEntry(node);
}
}
bool TableEntryIsEmpty(map_index_t b) const {
return internal::TableEntryIsEmpty(table_[b]);
}
bool TableEntryIsNonEmptyList(map_index_t b) const {
return internal::TableEntryIsNonEmptyList(table_[b]);
}
bool TableEntryIsTree(map_index_t b) const {
return internal::TableEntryIsTree(table_[b]);
}
bool TableEntryIsList(map_index_t b) const {
return internal::TableEntryIsList(table_[b]);
}
// Return whether table_[b] is a linked list that seems awfully long.
// Requires table_[b] to point to a non-empty linked list.
bool TableEntryIsTooLong(map_index_t b) {
return internal::TableEntryIsTooLong(TableEntryToNode(table_[b]));
}
// Return a power of two no less than max(kMinTableSize, n).
// Assumes either n < kMinTableSize or n is a power of two.
map_index_t TableSize(map_index_t n) {
return n < static_cast<map_index_t>(kMinTableSize)
? static_cast<map_index_t>(kMinTableSize)
: n;
}
template <typename T>
using AllocFor = absl::allocator_traits<Allocator>::template rebind_alloc<T>;
// Alignment of the nodes is the same as alignment of NodeBase.
NodeBase* AllocNode(MapNodeSizeInfoT size_info) {
return AllocNode(SizeFromInfo(size_info));
}
NodeBase* AllocNode(size_t node_size) {
PROTOBUF_ASSUME(node_size % sizeof(NodeBase) == 0);
return AllocFor<NodeBase>(alloc_).allocate(node_size / sizeof(NodeBase));
}
void DeallocNode(NodeBase* node, MapNodeSizeInfoT size_info) {
DeallocNode(node, SizeFromInfo(size_info));
}
void DeallocNode(NodeBase* node, size_t node_size) {
PROTOBUF_ASSUME(node_size % sizeof(NodeBase) == 0);
AllocFor<NodeBase>(alloc_).deallocate(node, node_size / sizeof(NodeBase));
}
void DeleteTable(TableEntryPtr* table, map_index_t n) {
if (auto* a = arena()) {
a->ReturnArrayMemory(table, n * sizeof(TableEntryPtr));
} else {
internal::SizedDelete(table, n * sizeof(TableEntryPtr));
}
}
NodeBase* DestroyTree(Tree* tree);
using GetKey = VariantKey (*)(NodeBase*);
void InsertUniqueInTree(map_index_t b, GetKey get_key, NodeBase* node);
void TransferTree(Tree* tree, GetKey get_key);
TableEntryPtr ConvertToTree(NodeBase* node, GetKey get_key);
void EraseFromTree(map_index_t b, typename Tree::iterator tree_it);
map_index_t VariantBucketNumber(VariantKey key) const;
map_index_t BucketNumberFromHash(uint64_t h) const {
// We xor the hash value against the random seed so that we effectively
// have a random hash function.
// We use absl::Hash to do bit mixing for uniform bucket selection.
return absl::HashOf(h ^ seed_) & (num_buckets_ - 1);
}
TableEntryPtr* CreateEmptyTable(map_index_t n) {
ABSL_DCHECK_GE(n, map_index_t{kMinTableSize});
ABSL_DCHECK_EQ(n & (n - 1), 0u);
TableEntryPtr* result = AllocFor<TableEntryPtr>(alloc_).allocate(n);
memset(result, 0, n * sizeof(result[0]));
return result;
}
// Return a randomish value.
map_index_t Seed() const {
uint64_t s = 0;
#if !defined(GOOGLE_PROTOBUF_NO_RDTSC)
#if defined(__APPLE__)
// Use a commpage-based fast time function on Apple environments (MacOS,
// iOS, tvOS, watchOS, etc).
s = clock_gettime_nsec_np(CLOCK_UPTIME_RAW);
#elif defined(__x86_64__) && defined(__GNUC__)
uint32_t hi, lo;
asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
s = ((static_cast<uint64_t>(hi) << 32) | lo);
#elif defined(__aarch64__) && defined(__GNUC__)
// There is no rdtsc on ARMv8. CNTVCT_EL0 is the virtual counter of the
// system timer. It runs at a different frequency than the CPU's, but is
// the best source of time-based entropy we get.
uint64_t virtual_timer_value;
asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
s = virtual_timer_value;
#endif
#endif // !defined(GOOGLE_PROTOBUF_NO_RDTSC)
// Add entropy from the address of the map and the address of the table
// array.
return static_cast<map_index_t>(
absl::HashOf(s, table_, static_cast<const void*>(this)));
}
enum {
kKeyIsString = 1 << 0,
kValueIsString = 1 << 1,
kValueIsProto = 1 << 2,
kUseDestructFunc = 1 << 3,
};
template <typename Key, typename Value>
static constexpr uint8_t MakeDestroyBits() {
uint8_t result = 0;
if (!std::is_trivially_destructible<Key>::value) {
if (std::is_same<Key, std::string>::value) {
result |= kKeyIsString;
} else {
return kUseDestructFunc;
}
}
if (!std::is_trivially_destructible<Value>::value) {
if (std::is_same<Value, std::string>::value) {
result |= kValueIsString;
} else if (std::is_base_of<MessageLite, Value>::value) {
result |= kValueIsProto;
} else {
return kUseDestructFunc;
}
}
return result;
}
struct ClearInput {
MapNodeSizeInfoT size_info;
uint8_t destroy_bits;
bool reset_table;
void (*destroy_node)(NodeBase*);
};
template <typename Node>
static void DestroyNode(NodeBase* node) {
static_cast<Node*>(node)->~Node();
}
template <typename Node>
static constexpr ClearInput MakeClearInput(bool reset) {
constexpr auto bits =
MakeDestroyBits<typename Node::key_type, typename Node::mapped_type>();
return ClearInput{Node::size_info(), bits, reset,
bits & kUseDestructFunc ? DestroyNode<Node> : nullptr};
}
void ClearTable(ClearInput input);
NodeAndBucket FindFromTree(map_index_t b, VariantKey key,
Tree::iterator* it) const;
// Space used for the table, trees, and nodes.
// Does not include the indirect space used. Eg the data of a std::string.
size_t SpaceUsedInTable(size_t sizeof_node) const;
map_index_t num_elements_;
map_index_t num_buckets_;
map_index_t seed_;
map_index_t index_of_first_non_null_;
TableEntryPtr* table_; // an array with num_buckets_ entries
Allocator alloc_;
};
inline UntypedMapIterator::UntypedMapIterator(const UntypedMapBase* m) : m_(m) {
if (m_->index_of_first_non_null_ == m_->num_buckets_) {
bucket_index_ = 0;
node_ = nullptr;
} else {
bucket_index_ = m_->index_of_first_non_null_;
TableEntryPtr entry = m_->table_[bucket_index_];
node_ = PROTOBUF_PREDICT_TRUE(TableEntryIsList(entry))
? TableEntryToNode(entry)
: TableEntryToTree(entry)->begin()->second;
PROTOBUF_ASSUME(node_ != nullptr);
}
}
inline void UntypedMapIterator::SearchFrom(map_index_t start_bucket) {
ABSL_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
!m_->TableEntryIsEmpty(m_->index_of_first_non_null_));
for (map_index_t i = start_bucket; i < m_->num_buckets_; ++i) {
TableEntryPtr entry = m_->table_[i];
if (entry == TableEntryPtr{}) continue;
bucket_index_ = i;
if (PROTOBUF_PREDICT_TRUE(TableEntryIsList(entry))) {
node_ = TableEntryToNode(entry);
} else {
TreeForMap* tree = TableEntryToTree(entry);
ABSL_DCHECK(!tree->empty());
node_ = tree->begin()->second;
}
return;
}
node_ = nullptr;
bucket_index_ = 0;
}
// Base class used by TcParser to extract the map object from a map field.
// We keep it here to avoid a dependency into map_field.h from the main TcParser
// code, since that would bring in Message too.
class MapFieldBaseForParse {
public:
const UntypedMapBase& GetMap() const {
return vtable_->get_map(*this, false);
}
UntypedMapBase* MutableMap() {
return &const_cast<UntypedMapBase&>(vtable_->get_map(*this, true));
}
protected:
struct VTable {
const UntypedMapBase& (*get_map)(const MapFieldBaseForParse&,
bool is_mutable);
};
explicit constexpr MapFieldBaseForParse(const VTable* vtable)
: vtable_(vtable) {}
~MapFieldBaseForParse() = default;
const VTable* vtable_;
};
// The value might be of different signedness, so use memcpy to extract it.
template <typename T, std::enable_if_t<std::is_integral<T>::value, int> = 0>
T ReadKey(const void* ptr) {
T out;
memcpy(&out, ptr, sizeof(T));
return out;
}
template <typename T, std::enable_if_t<!std::is_integral<T>::value, int> = 0>
const T& ReadKey(const void* ptr) {
return *reinterpret_cast<const T*>(ptr);
}
template <typename Key>
struct KeyNode : NodeBase {
static constexpr size_t kOffset = sizeof(NodeBase);
decltype(auto) key() const { return ReadKey<Key>(GetVoidKey()); }
};
// KeyMapBase is a chaining hash map with the additional feature that some
// buckets can be converted to use an ordered container. This ensures O(lg n)
// bounds on find, insert, and erase, while avoiding the overheads of ordered
// containers most of the time.
//
// The implementation doesn't need the full generality of unordered_map,
// and it doesn't have it. More bells and whistles can be added as needed.
// Some implementation details:
// 1. The number of buckets is a power of two.
// 2. As is typical for hash_map and such, the Keys and Values are always
// stored in linked list nodes. Pointers to elements are never invalidated
// until the element is deleted.
// 3. The trees' payload type is pointer to linked-list node. Tree-converting
// a bucket doesn't copy Key-Value pairs.
// 4. Once we've tree-converted a bucket, it is never converted back unless the
// bucket is completely emptied out. Note that the items a tree contains may
// wind up assigned to trees or lists upon a rehash.
// 5. Mutations to a map do not invalidate the map's iterators, pointers to
// elements, or references to elements.
// 6. Except for erase(iterator), any non-const method can reorder iterators.
// 7. Uses VariantKey when using the Tree representation, which holds all
// possible key types as a variant value.
template <typename Key>
class KeyMapBase : public UntypedMapBase {
static_assert(!std::is_signed<Key>::value || !std::is_integral<Key>::value,
"");
using TS = TransparentSupport<Key>;
public:
using hasher = typename TS::hash;
using UntypedMapBase::UntypedMapBase;
protected:
using KeyNode = internal::KeyNode<Key>;
// Trees. The payload type is a copy of Key, so that we can query the tree
// with Keys that are not in any particular data structure.
// The value is a void* pointing to Node. We use void* instead of Node* to
// avoid code bloat. That way there is only one instantiation of the tree
// class per key type.
using Tree = internal::TreeForMap;
using TreeIterator = typename Tree::iterator;
public:
hasher hash_function() const { return {}; }
protected:
friend class TcParser;
friend struct MapTestPeer;
friend struct MapBenchmarkPeer;
PROTOBUF_NOINLINE void erase_no_destroy(map_index_t b, KeyNode* node) {
TreeIterator tree_it;
const bool is_list = revalidate_if_necessary(b, node, &tree_it);
if (is_list) {
ABSL_DCHECK(TableEntryIsNonEmptyList(b));
auto* head = TableEntryToNode(table_[b]);
head = EraseFromLinkedList(node, head);
table_[b] = NodeToTableEntry(head);
} else {
EraseFromTree(b, tree_it);
}
--num_elements_;
if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
while (index_of_first_non_null_ < num_buckets_ &&
TableEntryIsEmpty(index_of_first_non_null_)) {
++index_of_first_non_null_;
}
}
}
NodeAndBucket FindHelper(typename TS::ViewType k,
TreeIterator* it = nullptr) const {
map_index_t b = BucketNumber(k);
if (TableEntryIsNonEmptyList(b)) {
auto* node = internal::TableEntryToNode(table_[b]);
do {
if (TS::Equals(static_cast<KeyNode*>(node)->key(), k)) {
return {node, b};
} else {
node = node->next;
}
} while (node != nullptr);
} else if (TableEntryIsTree(b)) {
return FindFromTree(b, internal::RealKeyToVariantKey<Key>{}(k), it);
}
return {nullptr, b};
}
// Insert the given node.
// If the key is a duplicate, it inserts the new node and returns the old one.
// Gives ownership to the caller.
// If the key is unique, it returns `nullptr`.
KeyNode* InsertOrReplaceNode(KeyNode* node) {
KeyNode* to_erase = nullptr;
auto p = this->FindHelper(node->key());
if (p.node != nullptr) {
erase_no_destroy(p.bucket, static_cast<KeyNode*>(p.node));
to_erase = static_cast<KeyNode*>(p.node);
} else if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
p = FindHelper(node->key());
}
const map_index_t b = p.bucket; // bucket number
InsertUnique(b, node);
++num_elements_;
return to_erase;
}
// Insert the given Node in bucket b. If that would make bucket b too big,
// and bucket b is not a tree, create a tree for buckets b.
// Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
// bucket. num_elements_ is not modified.
void InsertUnique(map_index_t b, KeyNode* node) {
ABSL_DCHECK(index_of_first_non_null_ == num_buckets_ ||
!TableEntryIsEmpty(index_of_first_non_null_));
// In practice, the code that led to this point may have already
// determined whether we are inserting into an empty list, a short list,
// or whatever. But it's probably cheap enough to recompute that here;
// it's likely that we're inserting into an empty or short list.
ABSL_DCHECK(FindHelper(node->key()).node == nullptr);
if (TableEntryIsEmpty(b)) {
InsertUniqueInList(b, node);
index_of_first_non_null_ = (std::min)(index_of_first_non_null_, b);
} else if (TableEntryIsNonEmptyList(b) && !TableEntryIsTooLong(b)) {
InsertUniqueInList(b, node);
} else {
InsertUniqueInTree(b, NodeToVariantKey, node);
}
}
static VariantKey NodeToVariantKey(NodeBase* node) {
return internal::RealKeyToVariantKey<Key>{}(
static_cast<KeyNode*>(node)->key());
}
// Have it a separate function for testing.
static size_type CalculateHiCutoff(size_type num_buckets) {
// We want the high cutoff to follow this rules:
// - When num_buckets_ == kGlobalEmptyTableSize, then make it 0 to force an
// allocation.
// - When num_buckets_ < 8, then make it num_buckets_ to avoid
// a reallocation. A large load factor is not that important on small
// tables and saves memory.
// - Otherwise, make it 75% of num_buckets_.
return num_buckets - num_buckets / 16 * 4 - num_buckets % 2;
}
// Returns whether it did resize. Currently this is only used when
// num_elements_ increases, though it could be used in other situations.
// It checks for load too low as well as load too high: because any number
// of erases can occur between inserts, the load could be as low as 0 here.
// Resizing to a lower size is not always helpful, but failing to do so can
// destroy the expected big-O bounds for some operations. By having the
// policy that sometimes we resize down as well as up, clients can easily
// keep O(size()) = O(number of buckets) if they want that.
bool ResizeIfLoadIsOutOfRange(size_type new_size) {
const size_type hi_cutoff = CalculateHiCutoff(num_buckets_);
const size_type lo_cutoff = hi_cutoff / 4;
// We don't care how many elements are in trees. If a lot are,
// we may resize even though there are many empty buckets. In
// practice, this seems fine.
if (PROTOBUF_PREDICT_FALSE(new_size > hi_cutoff)) {
if (num_buckets_ <= max_size() / 2) {
Resize(num_buckets_ * 2);
return true;
}
} else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
num_buckets_ > kMinTableSize)) {
size_type lg2_of_size_reduction_factor = 1;
// It's possible we want to shrink a lot here... size() could even be 0.
// So, estimate how much to shrink by making sure we don't shrink so
// much that we would need to grow the table after a few inserts.
const size_type hypothetical_size = new_size * 5 / 4 + 1;
while ((hypothetical_size << lg2_of_size_reduction_factor) < hi_cutoff) {
++lg2_of_size_reduction_factor;
}
size_type new_num_buckets = std::max<size_type>(
kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
if (new_num_buckets != num_buckets_) {
Resize(new_num_buckets);
return true;
}
}
return false;
}
// Resize to the given number of buckets.
void Resize(map_index_t new_num_buckets) {
if (num_buckets_ == kGlobalEmptyTableSize) {
// This is the global empty array.
// Just overwrite with a new one. No need to transfer or free anything.
num_buckets_ = index_of_first_non_null_ = kMinTableSize;
table_ = CreateEmptyTable(num_buckets_);
seed_ = Seed();
return;
}
ABSL_DCHECK_GE(new_num_buckets, kMinTableSize);
const auto old_table = table_;
const map_index_t old_table_size = num_buckets_;
num_buckets_ = new_num_buckets;
table_ = CreateEmptyTable(num_buckets_);
const map_index_t start = index_of_first_non_null_;
index_of_first_non_null_ = num_buckets_;
for (map_index_t i = start; i < old_table_size; ++i) {
if (internal::TableEntryIsNonEmptyList(old_table[i])) {
TransferList(static_cast<KeyNode*>(TableEntryToNode(old_table[i])));
} else if (internal::TableEntryIsTree(old_table[i])) {
this->TransferTree(TableEntryToTree(old_table[i]), NodeToVariantKey);
}
}
DeleteTable(old_table, old_table_size);
}
// Transfer all nodes in the list `node` into `this`.
void TransferList(KeyNode* node) {
do {
auto* next = static_cast<KeyNode*>(node->next);
InsertUnique(BucketNumber(node->key()), node);
node = next;
} while (node != nullptr);
}
map_index_t BucketNumber(typename TS::ViewType k) const {
ABSL_DCHECK_EQ(BucketNumberFromHash(hash_function()(k)),
VariantBucketNumber(RealKeyToVariantKey<Key>{}(k)));
return BucketNumberFromHash(hash_function()(k));
}
// Assumes node_ and m_ are correct and non-null, but other fields may be
// stale. Fix them as needed. Then return true iff node_ points to a
// Node in a list. If false is returned then *it is modified to be
// a valid iterator for node_.
bool revalidate_if_necessary(map_index_t& bucket_index, KeyNode* node,
TreeIterator* it) const {
// Force bucket_index to be in range.
bucket_index &= (num_buckets_ - 1);
// Common case: the bucket we think is relevant points to `node`.
if (table_[bucket_index] == NodeToTableEntry(node)) return true;
// Less common: the bucket is a linked list with node_ somewhere in it,
// but not at the head.
if (TableEntryIsNonEmptyList(bucket_index)) {
auto* l = TableEntryToNode(table_[bucket_index]);
while ((l = l->next) != nullptr) {
if (l == node) {
return true;
}
}
}
// Well, bucket_index_ still might be correct, but probably
// not. Revalidate just to be sure. This case is rare enough that we
// don't worry about potential optimizations, such as having a custom
// find-like method that compares Node* instead of the key.
auto res = FindHelper(node->key(), it);
bucket_index = res.bucket;
return TableEntryIsList(bucket_index);
}
};
template <typename T, typename K>
bool InitializeMapKey(T*, K&&, Arena*) {
return false;
}
} // namespace internal
// This is the class for Map's internal value_type.
template <typename Key, typename T>
using MapPair = std::pair<const Key, T>;
// Map is an associative container type used to store protobuf map
// fields. Each Map instance may or may not use a different hash function, a
// different iteration order, and so on. E.g., please don't examine
// implementation details to decide if the following would work:
// Map<int, int> m0, m1;
// m0[0] = m1[0] = m0[1] = m1[1] = 0;
// assert(m0.begin()->first == m1.begin()->first); // Bug!
//
// Map's interface is similar to std::unordered_map, except that Map is not
// designed to play well with exceptions.
template <typename Key, typename T>
class Map : private internal::KeyMapBase<internal::KeyForBase<Key>> {
using Base = typename Map::KeyMapBase;
using TS = internal::TransparentSupport<Key>;
public:
using key_type = Key;
using mapped_type = T;
using init_type = std::pair<Key, T>;
using value_type = MapPair<Key, T>;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = size_t;
using hasher = typename TS::hash;
constexpr Map() : Base(nullptr) { StaticValidityCheck(); }
Map(const Map& other) : Map(nullptr, other) {}
// Internal Arena constructors: do not use!
// TODO: remove non internal ctors
explicit Map(Arena* arena) : Base(arena) { StaticValidityCheck(); }
Map(internal::InternalVisibility, Arena* arena) : Map(arena) {}
Map(internal::InternalVisibility, Arena* arena, const Map& other)
: Map(arena, other) {}
Map(Map&& other) noexcept : Map() {
if (other.arena() != nullptr) {
*this = other;
} else {
swap(other);
}
}
Map& operator=(Map&& other) noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (this != &other) {
if (arena() != other.arena()) {
*this = other;
} else {
swap(other);
}
}
return *this;
}
template <class InputIt>
Map(const InputIt& first, const InputIt& last) : Map() {
insert(first, last);
}
~Map() {
// Fail-safe in case we miss calling this in a constructor. Note: this one
// won't trigger for leaked maps that never get destructed.
StaticValidityCheck();
if (this->num_buckets_ != internal::kGlobalEmptyTableSize) {
this->ClearTable(this->template MakeClearInput<Node>(false));
}
}
private:
Map(Arena* arena, const Map& other) : Base(arena) {
StaticValidityCheck();
insert(other.begin(), other.end());
}
static_assert(!std::is_const<mapped_type>::value &&
!std::is_const<key_type>::value,
"We do not support const types.");
static_assert(!std::is_volatile<mapped_type>::value &&
!std::is_volatile<key_type>::value,
"We do not support volatile types.");
static_assert(!std::is_pointer<mapped_type>::value &&
!std::is_pointer<key_type>::value,
"We do not support pointer types.");
static_assert(!std::is_reference<mapped_type>::value &&
!std::is_reference<key_type>::value,
"We do not support reference types.");
static constexpr PROTOBUF_ALWAYS_INLINE void StaticValidityCheck() {
static_assert(alignof(internal::NodeBase) >= alignof(mapped_type),
"Alignment of mapped type is too high.");
static_assert(
absl::disjunction<internal::is_supported_integral_type<key_type>,
internal::is_supported_string_type<key_type>,
internal::is_internal_map_key_type<key_type>>::value,
"We only support integer, string, or designated internal key "
"types.");
static_assert(absl::disjunction<
internal::is_supported_scalar_type<mapped_type>,
is_proto_enum<mapped_type>,
internal::is_supported_message_type<mapped_type>,
internal::is_internal_map_value_type<mapped_type>>::value,
"We only support scalar, Message, and designated internal "
"mapped types.");
}
template <typename P>
struct SameAsElementReference
: std::is_same<typename std::remove_cv<
typename std::remove_reference<reference>::type>::type,
typename std::remove_cv<
typename std::remove_reference<P>::type>::type> {};
template <class P>
using RequiresInsertable =
typename std::enable_if<std::is_convertible<P, init_type>::value ||
SameAsElementReference<P>::value,
int>::type;
template <class P>
using RequiresNotInit =
typename std::enable_if<!std::is_same<P, init_type>::value, int>::type;
template <typename LookupKey>
using key_arg = typename TS::template key_arg<LookupKey>;
public:
// Iterators
class const_iterator : private internal::UntypedMapIterator {
using BaseIt = internal::UntypedMapIterator;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename Map::value_type;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = const value_type&;
const_iterator() {}
const_iterator(const const_iterator&) = default;
const_iterator& operator=(const const_iterator&) = default;
reference operator*() const { return static_cast<Node*>(this->node_)->kv; }
pointer operator->() const { return &(operator*()); }
const_iterator& operator++() {
this->PlusPlus();
return *this;
}
const_iterator operator++(int) {
auto copy = *this;
this->PlusPlus();
return copy;
}
friend bool operator==(const const_iterator& a, const const_iterator& b) {
return a.Equals(b);
}
friend bool operator!=(const const_iterator& a, const const_iterator& b) {
return !a.Equals(b);
}
private:
using BaseIt::BaseIt;
explicit const_iterator(const BaseIt& base) : BaseIt(base) {}
friend class Map;
friend class internal::UntypedMapIterator;
friend class internal::TypeDefinedMapFieldBase<Key, T>;
};
class iterator : private internal::UntypedMapIterator {
using BaseIt = internal::UntypedMapIterator;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename Map::value_type;
using difference_type = ptrdiff_t;
using pointer = value_type*;
using reference = value_type&;
iterator() {}
iterator(const iterator&) = default;
iterator& operator=(const iterator&) = default;
reference operator*() const { return static_cast<Node*>(this->node_)->kv; }
pointer operator->() const { return &(operator*()); }
iterator& operator++() {
this->PlusPlus();
return *this;
}
iterator operator++(int) {
auto copy = *this;
this->PlusPlus();
return copy;
}
// Allow implicit conversion to const_iterator.
operator const_iterator() const { // NOLINT(runtime/explicit)
return const_iterator(static_cast<const BaseIt&>(*this));
}
friend bool operator==(const iterator& a, const iterator& b) {
return a.Equals(b);
}
friend bool operator!=(const iterator& a, const iterator& b) {
return !a.Equals(b);
}
private:
using BaseIt::BaseIt;
friend class Map;
};
iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return iterator(this); }
iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return iterator(); }
const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(this);
}
const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator();
}
const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return begin();
}
const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
using Base::empty;
using Base::size;
// Element access
template <typename K = key_type>
T& operator[](const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return try_emplace(key).first->second;
}
template <
typename K = key_type,
// Disable for integral types to reduce code bloat.
typename = typename std::enable_if<!std::is_integral<K>::value>::type>
T& operator[](key_arg<K>&& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return try_emplace(std::forward<K>(key)).first->second;
}
template <typename K = key_type>
const T& at(const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
const_iterator it = find(key);
ABSL_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
return it->second;
}
template <typename K = key_type>
T& at(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
iterator it = find(key);
ABSL_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
return it->second;
}
// Lookup
template <typename K = key_type>
size_type count(const key_arg<K>& key) const {
return find(key) == end() ? 0 : 1;
}
template <typename K = key_type>
const_iterator find(const key_arg<K>& key) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_cast<Map*>(this)->find(key);
}
template <typename K = key_type>
iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
auto res = this->FindHelper(TS::ToView(key));
return iterator(static_cast<Node*>(res.node), this, res.bucket);
}
template <typename K = key_type>
bool contains(const key_arg<K>& key) const {
return find(key) != end();
}
template <typename K = key_type>
std::pair<const_iterator, const_iterator> equal_range(
const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
const_iterator it = find(key);
if (it == end()) {
return std::pair<const_iterator, const_iterator>(it, it);
} else {
const_iterator begin = it++;
return std::pair<const_iterator, const_iterator>(begin, it);
}
}
template <typename K = key_type>
std::pair<iterator, iterator> equal_range(const key_arg<K>& key)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
iterator it = find(key);
if (it == end()) {
return std::pair<iterator, iterator>(it, it);
} else {
iterator begin = it++;
return std::pair<iterator, iterator>(begin, it);
}
}
// insert
template <typename K, typename... Args>
std::pair<iterator, bool> try_emplace(K&& k, Args&&... args)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
// Inserts a new element into the container if there is no element with the
// key in the container.
// The new element is:
// (1) Constructed in-place with the given args, if mapped_type is not
// arena constructible.
// (2) Constructed in-place with the arena and then assigned with a
// mapped_type temporary constructed with the given args, otherwise.
return ArenaAwareTryEmplace(Arena::is_arena_constructable<mapped_type>(),
std::forward<K>(k),
std::forward<Args>(args)...);
}
std::pair<iterator, bool> insert(init_type&& value)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return try_emplace(std::move(value.first), std::move(value.second));
}
template <typename P, RequiresInsertable<P> = 0>
std::pair<iterator, bool> insert(P&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return try_emplace(std::forward<P>(value).first,
std::forward<P>(value).second);
}
template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return EmplaceInternal(Rank0{}, std::forward<Args>(args)...);
}
template <class InputIt>
void insert(InputIt first, InputIt last) {
for (; first != last; ++first) {
auto&& pair = *first;
try_emplace(pair.first, pair.second);
}
}
void insert(std::initializer_list<init_type> values) {
insert(values.begin(), values.end());
}
template <typename P, RequiresNotInit<P> = 0,
RequiresInsertable<const P&> = 0>
void insert(std::initializer_list<P> values) {
insert(values.begin(), values.end());
}
// Erase and clear
template <typename K = key_type>
size_type erase(const key_arg<K>& key) {
iterator it = find(key);
if (it == end()) {
return 0;
} else {
erase(it);
return 1;
}
}
iterator erase(iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND {
auto next = std::next(pos);
ABSL_DCHECK_EQ(pos.m_, static_cast<Base*>(this));
auto* node = static_cast<Node*>(pos.node_);
this->erase_no_destroy(pos.bucket_index_, node);
DestroyNode(node);
return next;
}
void erase(iterator first, iterator last) {
while (first != last) {
first = erase(first);
}
}
void clear() {
if (this->num_buckets_ == internal::kGlobalEmptyTableSize) return;
this->ClearTable(this->template MakeClearInput<Node>(true));
}
// Assign
Map& operator=(const Map& other) ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (this != &other) {
clear();
insert(other.begin(), other.end());
}
return *this;
}
void swap(Map& other) {
if (arena() == other.arena()) {
InternalSwap(&other);
} else {
// TODO: optimize this. The temporary copy can be allocated
// in the same arena as the other message, and the "other = copy" can
// be replaced with the fast-path swap above.
Map copy = *this;
*this = other;
other = copy;
}
}
void InternalSwap(Map* other) {
internal::UntypedMapBase::InternalSwap(other);
}
hasher hash_function() const { return {}; }
size_t SpaceUsedExcludingSelfLong() const {
if (empty()) return 0;
return SpaceUsedInternal() + internal::SpaceUsedInValues(this);
}
private:
struct Rank1 {};
struct Rank0 : Rank1 {};
// Linked-list nodes, as one would expect for a chaining hash table.
struct Node : Base::KeyNode {
using key_type = Key;
using mapped_type = T;
static constexpr internal::MapNodeSizeInfoT size_info() {
return internal::MakeNodeInfo(sizeof(Node),
PROTOBUF_FIELD_OFFSET(Node, kv.second));
}
value_type kv;
};
using Tree = internal::TreeForMap;
using TreeIterator = typename Tree::iterator;
using TableEntryPtr = internal::TableEntryPtr;
static Node* NodeFromTreeIterator(TreeIterator it) {
static_assert(
PROTOBUF_FIELD_OFFSET(Node, kv.first) == Base::KeyNode::kOffset, "");
static_assert(alignof(Node) == alignof(internal::NodeBase), "");
return static_cast<Node*>(it->second);
}
void DestroyNode(Node* node) {
if (this->alloc_.arena() == nullptr) {
node->kv.first.~key_type();
node->kv.second.~mapped_type();
this->DeallocNode(node, sizeof(Node));
}
}
size_t SpaceUsedInternal() const {
return this->SpaceUsedInTable(sizeof(Node));
}
// We try to construct `init_type` from `Args` with a fall back to
// `value_type`. The latter is less desired as it unconditionally makes a copy
// of `value_type::first`.
template <typename... Args>
auto EmplaceInternal(Rank0, Args&&... args) ->
typename std::enable_if<std::is_constructible<init_type, Args...>::value,
std::pair<iterator, bool>>::type {
return insert(init_type(std::forward<Args>(args)...));
}
template <typename... Args>
std::pair<iterator, bool> EmplaceInternal(Rank1, Args&&... args) {
return insert(value_type(std::forward<Args>(args)...));
}
template <typename K, typename... Args>
std::pair<iterator, bool> TryEmplaceInternal(K&& k, Args&&... args) {
auto p = this->FindHelper(TS::ToView(k));
// Case 1: key was already present.
if (p.node != nullptr)
return std::make_pair(
iterator(static_cast<Node*>(p.node), this, p.bucket), false);
// Case 2: insert.
if (this->ResizeIfLoadIsOutOfRange(this->num_elements_ + 1)) {
p = this->FindHelper(TS::ToView(k));
}
const auto b = p.bucket; // bucket number
// If K is not key_type, make the conversion to key_type explicit.
using TypeToInit = typename std::conditional<
std::is_same<typename std::decay<K>::type, key_type>::value, K&&,
key_type>::type;
Node* node = static_cast<Node*>(this->AllocNode(sizeof(Node)));
// Even when arena is nullptr, CreateInArenaStorage is still used to
// ensure the arena of submessage will be consistent. Otherwise,
// submessage may have its own arena when message-owned arena is enabled.
// Note: This only works if `Key` is not arena constructible.
if (!internal::InitializeMapKey(const_cast<Key*>(&node->kv.first),
std::forward<K>(k), this->alloc_.arena())) {
Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first),
this->alloc_.arena(),
static_cast<TypeToInit>(std::forward<K>(k)));
}
// Note: if `T` is arena constructible, `Args` needs to be empty.
Arena::CreateInArenaStorage(&node->kv.second, this->alloc_.arena(),
std::forward<Args>(args)...);
this->InsertUnique(b, node);
++this->num_elements_;
return std::make_pair(iterator(node, this, b), true);
}
// A helper function to perform an assignment of `mapped_type`.
// If the first argument is true, then it is a regular assignment.
// Otherwise, we first create a temporary and then perform an assignment.
template <typename V>
static void AssignMapped(std::true_type, mapped_type& mapped, V&& v) {
mapped = std::forward<V>(v);
}
template <typename... Args>
static void AssignMapped(std::false_type, mapped_type& mapped,
Args&&... args) {
mapped = mapped_type(std::forward<Args>(args)...);
}
// Case 1: `mapped_type` is arena constructible. A temporary object is
// created and then (if `Args` are not empty) assigned to a mapped value
// that was created with the arena.
template <typename K>
std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k) {
// case 1.1: "default" constructed (e.g. from arena only).
return TryEmplaceInternal(std::forward<K>(k));
}
template <typename K, typename... Args>
std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k,
Args&&... args) {
// case 1.2: "default" constructed + copy/move assignment
auto p = TryEmplaceInternal(std::forward<K>(k));
if (p.second) {
AssignMapped(std::is_same<void(typename std::decay<Args>::type...),
void(mapped_type)>(),
p.first->second, std::forward<Args>(args)...);
}
return p;
}
// Case 2: `mapped_type` is not arena constructible. Using in-place
// construction.
template <typename... Args>
std::pair<iterator, bool> ArenaAwareTryEmplace(std::false_type,
Args&&... args) {
return TryEmplaceInternal(std::forward<Args>(args)...);
}
using Base::arena;
friend class Arena;
template <typename, typename>
friend class internal::TypeDefinedMapFieldBase;
using InternalArenaConstructable_ = void;
using DestructorSkippable_ = void;
template <typename K, typename V>
friend class internal::MapFieldLite;
friend class internal::TcParser;
friend struct internal::MapTestPeer;
friend struct internal::MapBenchmarkPeer;
};
namespace internal {
template <typename... T>
PROTOBUF_NOINLINE void MapMergeFrom(Map<T...>& dest, const Map<T...>& src) {
for (const auto& elem : src) {
dest[elem.first] = elem.second;
}
}
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_MAP_H__