blob: 25e2d7d928ef31f74fc74d168220f8f018990993 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Authors: wink@google.com (Wink Saville),
// kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include "google/protobuf/message_lite.h"
#include <climits>
#include <cstddef>
#include <cstdint>
#include <istream>
#include <ostream>
#include <string>
#include <utility>
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/strings/cord.h"
#include "absl/strings/cord_buffer.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/generated_message_tctable_impl.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/io/zero_copy_stream_impl_lite.h"
#include "google/protobuf/metadata_lite.h"
#include "google/protobuf/parse_context.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
void MessageLite::CheckTypeAndMergeFrom(const MessageLite& other) {
auto* data = GetClassData();
auto* other_data = other.GetClassData();
ABSL_CHECK_EQ(data, other_data)
<< "Invalid call to CheckTypeAndMergeFrom between types " << GetTypeName()
<< " and " << other.GetTypeName();
data->merge_to_from(*this, other);
}
bool MessageLite::IsInitialized() const {
auto* data = GetClassData();
return data->is_initialized != nullptr ? data->is_initialized(*this) : true;
}
const char* MessageLite::_InternalParse(const char* ptr,
internal::ParseContext* ctx) {
return internal::TcParser::ParseLoop(this, ptr, ctx, GetTcParseTable());
}
std::string MessageLite::GetTypeName() const {
auto* data = GetClassData();
ABSL_DCHECK(data != nullptr);
if (!data->is_lite) {
// For !LITE messages, we use the descriptor method function.
return data->full().descriptor_methods->get_type_name(*this);
}
// For LITE messages, the type name is a char[] just beyond ClassData.
return reinterpret_cast<const char*>(data) + sizeof(ClassData);
}
void MessageLite::OnDemandRegisterArenaDtor(Arena* arena) {
if (arena == nullptr) return;
auto* data = GetClassData();
ABSL_DCHECK(data != nullptr);
if (data->on_demand_register_arena_dtor != nullptr) {
data->on_demand_register_arena_dtor(*this, *arena);
}
}
std::string MessageLite::InitializationErrorString() const {
auto* data = GetClassData();
ABSL_DCHECK(data != nullptr);
if (!data->is_lite) {
// For !LITE messages, we use the descriptor method function.
return data->full().descriptor_methods->initialization_error_string(*this);
}
return "(cannot determine missing fields for lite message)";
}
std::string MessageLite::DebugString() const {
return absl::StrCat("MessageLite at 0x", absl::Hex(this));
}
int MessageLite::GetCachedSize() const { return AccessCachedSize().Get(); }
internal::CachedSize& MessageLite::AccessCachedSize() const {
auto* data = GetClassData();
ABSL_DCHECK(data != nullptr);
ABSL_DCHECK(data->cached_size_offset != 0);
return *reinterpret_cast<internal::CachedSize*>(const_cast<char*>(
reinterpret_cast<const char*>(this) + data->cached_size_offset));
}
namespace {
// When serializing, we first compute the byte size, then serialize the message.
// If serialization produces a different number of bytes than expected, we
// call this function, which crashes. The problem could be due to a bug in the
// protobuf implementation but is more likely caused by concurrent modification
// of the message. This function attempts to distinguish between the two and
// provide a useful error message.
void ByteSizeConsistencyError(size_t byte_size_before_serialization,
size_t byte_size_after_serialization,
size_t bytes_produced_by_serialization,
const MessageLite& message) {
ABSL_CHECK_EQ(byte_size_before_serialization, byte_size_after_serialization)
<< message.GetTypeName()
<< " was modified concurrently during serialization.";
ABSL_CHECK_EQ(bytes_produced_by_serialization, byte_size_before_serialization)
<< "Byte size calculation and serialization were inconsistent. This "
"may indicate a bug in protocol buffers or it may be caused by "
"concurrent modification of "
<< message.GetTypeName() << ".";
ABSL_LOG(FATAL) << "This shouldn't be called if all the sizes are equal.";
}
std::string InitializationErrorMessage(absl::string_view action,
const MessageLite& message) {
return absl::StrCat("Can't ", action, " message of type \"",
message.GetTypeName(),
"\" because it is missing required fields: ",
message.InitializationErrorString());
}
inline absl::string_view as_string_view(const void* data, int size) {
return absl::string_view(static_cast<const char*>(data), size);
}
// Returns true if all required fields are present / have values.
inline bool CheckFieldPresence(const internal::ParseContext& ctx,
const MessageLite& msg,
MessageLite::ParseFlags parse_flags) {
(void)ctx; // Parameter is used by Google-internal code.
if (PROTOBUF_PREDICT_FALSE((parse_flags & MessageLite::kMergePartial) != 0)) {
return true;
}
return msg.IsInitializedWithErrors();
}
} // namespace
void MessageLite::LogInitializationErrorMessage() const {
ABSL_LOG(ERROR) << InitializationErrorMessage("parse", *this);
}
namespace internal {
template <bool aliasing>
bool MergeFromImpl(absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags) {
const char* ptr;
internal::ParseContext ctx(io::CodedInputStream::GetDefaultRecursionLimit(),
aliasing, &ptr, input);
ptr = internal::TcParser::ParseLoop(msg, ptr, &ctx, tc_table);
// ctx has an explicit limit set (length of string_view).
if (PROTOBUF_PREDICT_TRUE(ptr && ctx.EndedAtLimit())) {
return CheckFieldPresence(ctx, *msg, parse_flags);
}
return false;
}
template <bool aliasing>
bool MergeFromImpl(io::ZeroCopyInputStream* input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags) {
const char* ptr;
internal::ParseContext ctx(io::CodedInputStream::GetDefaultRecursionLimit(),
aliasing, &ptr, input);
ptr = internal::TcParser::ParseLoop(msg, ptr, &ctx, tc_table);
// ctx has no explicit limit (hence we end on end of stream)
if (PROTOBUF_PREDICT_TRUE(ptr && ctx.EndedAtEndOfStream())) {
return CheckFieldPresence(ctx, *msg, parse_flags);
}
return false;
}
template <bool aliasing>
bool MergeFromImpl(BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags) {
const char* ptr;
internal::ParseContext ctx(io::CodedInputStream::GetDefaultRecursionLimit(),
aliasing, &ptr, input.zcis, input.limit);
ptr = internal::TcParser::ParseLoop(msg, ptr, &ctx, tc_table);
if (PROTOBUF_PREDICT_FALSE(!ptr)) return false;
ctx.BackUp(ptr);
if (PROTOBUF_PREDICT_TRUE(ctx.EndedAtLimit())) {
return CheckFieldPresence(ctx, *msg, parse_flags);
}
return false;
}
template bool MergeFromImpl<false>(absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template bool MergeFromImpl<true>(absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template bool MergeFromImpl<false>(io::ZeroCopyInputStream* input,
MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template bool MergeFromImpl<true>(io::ZeroCopyInputStream* input,
MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template bool MergeFromImpl<false>(BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template bool MergeFromImpl<true>(BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
} // namespace internal
class ZeroCopyCodedInputStream : public io::ZeroCopyInputStream {
public:
explicit ZeroCopyCodedInputStream(io::CodedInputStream* cis) : cis_(cis) {}
bool Next(const void** data, int* size) final {
if (!cis_->GetDirectBufferPointer(data, size)) return false;
cis_->Skip(*size);
return true;
}
void BackUp(int count) final { cis_->Advance(-count); }
bool Skip(int count) final { return cis_->Skip(count); }
int64_t ByteCount() const final { return 0; }
bool aliasing_enabled() { return cis_->aliasing_enabled_; }
bool ReadCord(absl::Cord* cord, int count) final {
// Fast path: tail call into ReadCord reading new value.
if (PROTOBUF_PREDICT_TRUE(cord->empty())) {
return cis_->ReadCord(cord, count);
}
absl::Cord tmp;
bool res = cis_->ReadCord(&tmp, count);
cord->Append(std::move(tmp));
return res;
}
private:
io::CodedInputStream* cis_;
};
bool MessageLite::MergeFromImpl(io::CodedInputStream* input,
MessageLite::ParseFlags parse_flags) {
ZeroCopyCodedInputStream zcis(input);
const char* ptr;
internal::ParseContext ctx(input->RecursionBudget(), zcis.aliasing_enabled(),
&ptr, &zcis);
// MergePartialFromCodedStream allows terminating the wireformat by 0 or
// end-group tag. Leaving it up to the caller to verify correct ending by
// calling LastTagWas on input. We need to maintain this behavior.
ctx.TrackCorrectEnding();
ctx.data().pool = input->GetExtensionPool();
ctx.data().factory = input->GetExtensionFactory();
ptr = internal::TcParser::ParseLoop(this, ptr, &ctx, GetTcParseTable());
if (PROTOBUF_PREDICT_FALSE(!ptr)) return false;
ctx.BackUp(ptr);
if (!ctx.EndedAtEndOfStream()) {
ABSL_DCHECK_NE(ctx.LastTag(), 1u); // We can't end on a pushed limit.
if (ctx.IsExceedingLimit(ptr)) return false;
input->SetLastTag(ctx.LastTag());
} else {
input->SetConsumed();
}
return CheckFieldPresence(ctx, *this, parse_flags);
}
bool MessageLite::MergePartialFromCodedStream(io::CodedInputStream* input) {
return MergeFromImpl(input, kMergePartial);
}
bool MessageLite::MergeFromCodedStream(io::CodedInputStream* input) {
return MergeFromImpl(input, kMerge);
}
bool MessageLite::ParseFromCodedStream(io::CodedInputStream* input) {
Clear();
return MergeFromImpl(input, kParse);
}
bool MessageLite::ParsePartialFromCodedStream(io::CodedInputStream* input) {
Clear();
return MergeFromImpl(input, kParsePartial);
}
bool MessageLite::ParseFromZeroCopyStream(io::ZeroCopyInputStream* input) {
return ParseFrom<kParse>(input);
}
bool MessageLite::ParsePartialFromZeroCopyStream(
io::ZeroCopyInputStream* input) {
return ParseFrom<kParsePartial>(input);
}
bool MessageLite::ParseFromFileDescriptor(int file_descriptor) {
io::FileInputStream input(file_descriptor);
return ParseFromZeroCopyStream(&input) && input.GetErrno() == 0;
}
bool MessageLite::ParsePartialFromFileDescriptor(int file_descriptor) {
io::FileInputStream input(file_descriptor);
return ParsePartialFromZeroCopyStream(&input) && input.GetErrno() == 0;
}
bool MessageLite::ParseFromIstream(std::istream* input) {
io::IstreamInputStream zero_copy_input(input);
return ParseFromZeroCopyStream(&zero_copy_input) && input->eof();
}
bool MessageLite::ParsePartialFromIstream(std::istream* input) {
io::IstreamInputStream zero_copy_input(input);
return ParsePartialFromZeroCopyStream(&zero_copy_input) && input->eof();
}
bool MessageLite::MergePartialFromBoundedZeroCopyStream(
io::ZeroCopyInputStream* input, int size) {
return ParseFrom<kMergePartial>(internal::BoundedZCIS{input, size});
}
bool MessageLite::MergeFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input,
int size) {
return ParseFrom<kMerge>(internal::BoundedZCIS{input, size});
}
bool MessageLite::ParseFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input,
int size) {
return ParseFrom<kParse>(internal::BoundedZCIS{input, size});
}
bool MessageLite::ParsePartialFromBoundedZeroCopyStream(
io::ZeroCopyInputStream* input, int size) {
return ParseFrom<kParsePartial>(internal::BoundedZCIS{input, size});
}
bool MessageLite::ParseFromString(absl::string_view data) {
return ParseFrom<kParse>(data);
}
bool MessageLite::ParsePartialFromString(absl::string_view data) {
return ParseFrom<kParsePartial>(data);
}
bool MessageLite::ParseFromArray(const void* data, int size) {
return ParseFrom<kParse>(as_string_view(data, size));
}
bool MessageLite::ParsePartialFromArray(const void* data, int size) {
return ParseFrom<kParsePartial>(as_string_view(data, size));
}
bool MessageLite::MergeFromString(absl::string_view data) {
return ParseFrom<kMerge>(data);
}
namespace internal {
template <>
struct SourceWrapper<absl::Cord> {
explicit SourceWrapper(const absl::Cord* c) : cord(c) {}
template <bool alias>
bool MergeInto(MessageLite* msg, const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags) const {
absl::optional<absl::string_view> flat = cord->TryFlat();
if (flat && flat->size() <= ParseContext::kMaxCordBytesToCopy) {
return MergeFromImpl<alias>(*flat, msg, tc_table, parse_flags);
} else {
io::CordInputStream input(cord);
return MergeFromImpl<alias>(&input, msg, tc_table, parse_flags);
}
}
const absl::Cord* const cord;
};
} // namespace internal
bool MessageLite::MergeFromCord(const absl::Cord& cord) {
return ParseFrom<kMerge>(internal::SourceWrapper<absl::Cord>(&cord));
}
bool MessageLite::MergePartialFromCord(const absl::Cord& cord) {
return ParseFrom<kMergePartial>(internal::SourceWrapper<absl::Cord>(&cord));
}
bool MessageLite::ParseFromCord(const absl::Cord& cord) {
return ParseFrom<kParse>(internal::SourceWrapper<absl::Cord>(&cord));
}
bool MessageLite::ParsePartialFromCord(const absl::Cord& cord) {
return ParseFrom<kParsePartial>(internal::SourceWrapper<absl::Cord>(&cord));
}
// ===================================================================
inline uint8_t* SerializeToArrayImpl(const MessageLite& msg, uint8_t* target,
int size) {
constexpr bool debug = false;
if (debug) {
// Force serialization to a stream with a block size of 1, which forces
// all writes to the stream to cross buffers triggering all fallback paths
// in the unittests when serializing to string / array.
io::ArrayOutputStream stream(target, size, 1);
uint8_t* ptr;
io::EpsCopyOutputStream out(
&stream, io::CodedOutputStream::IsDefaultSerializationDeterministic(),
&ptr);
ptr = msg._InternalSerialize(ptr, &out);
out.Trim(ptr);
ABSL_DCHECK(!out.HadError() && stream.ByteCount() == size);
return target + size;
} else {
io::EpsCopyOutputStream out(
target, size,
io::CodedOutputStream::IsDefaultSerializationDeterministic());
uint8_t* res = msg._InternalSerialize(target, &out);
ABSL_DCHECK(target + size == res);
return res;
}
}
uint8_t* MessageLite::SerializeWithCachedSizesToArray(uint8_t* target) const {
// We only optimize this when using optimize_for = SPEED. In other cases
// we just use the CodedOutputStream path.
return SerializeToArrayImpl(*this, target, GetCachedSize());
}
bool MessageLite::SerializeToCodedStream(io::CodedOutputStream* output) const {
ABSL_DCHECK(IsInitialized())
<< InitializationErrorMessage("serialize", *this);
return SerializePartialToCodedStream(output);
}
bool MessageLite::SerializePartialToCodedStream(
io::CodedOutputStream* output) const {
const size_t size = ByteSizeLong(); // Force size to be cached.
if (size > INT_MAX) {
ABSL_LOG(ERROR) << GetTypeName()
<< " exceeded maximum protobuf size of 2GB: " << size;
return false;
}
int original_byte_count = output->ByteCount();
SerializeWithCachedSizes(output);
if (output->HadError()) {
return false;
}
int final_byte_count = output->ByteCount();
if (final_byte_count - original_byte_count != static_cast<int64_t>(size)) {
ByteSizeConsistencyError(size, ByteSizeLong(),
final_byte_count - original_byte_count, *this);
}
return true;
}
bool MessageLite::SerializeToZeroCopyStream(
io::ZeroCopyOutputStream* output) const {
ABSL_DCHECK(IsInitialized())
<< InitializationErrorMessage("serialize", *this);
return SerializePartialToZeroCopyStream(output);
}
bool MessageLite::SerializePartialToZeroCopyStream(
io::ZeroCopyOutputStream* output) const {
const size_t size = ByteSizeLong(); // Force size to be cached.
if (size > INT_MAX) {
ABSL_LOG(ERROR) << GetTypeName()
<< " exceeded maximum protobuf size of 2GB: " << size;
return false;
}
uint8_t* target;
io::EpsCopyOutputStream stream(
output, io::CodedOutputStream::IsDefaultSerializationDeterministic(),
&target);
target = _InternalSerialize(target, &stream);
stream.Trim(target);
if (stream.HadError()) return false;
return true;
}
bool MessageLite::SerializeToFileDescriptor(int file_descriptor) const {
io::FileOutputStream output(file_descriptor);
return SerializeToZeroCopyStream(&output) && output.Flush();
}
bool MessageLite::SerializePartialToFileDescriptor(int file_descriptor) const {
io::FileOutputStream output(file_descriptor);
return SerializePartialToZeroCopyStream(&output) && output.Flush();
}
bool MessageLite::SerializeToOstream(std::ostream* output) const {
{
io::OstreamOutputStream zero_copy_output(output);
if (!SerializeToZeroCopyStream(&zero_copy_output)) return false;
}
return output->good();
}
bool MessageLite::SerializePartialToOstream(std::ostream* output) const {
io::OstreamOutputStream zero_copy_output(output);
return SerializePartialToZeroCopyStream(&zero_copy_output);
}
bool MessageLite::AppendToString(std::string* output) const {
ABSL_DCHECK(IsInitialized())
<< InitializationErrorMessage("serialize", *this);
return AppendPartialToString(output);
}
bool MessageLite::AppendPartialToString(std::string* output) const {
size_t old_size = output->size();
size_t byte_size = ByteSizeLong();
if (byte_size > INT_MAX) {
ABSL_LOG(ERROR) << GetTypeName()
<< " exceeded maximum protobuf size of 2GB: " << byte_size;
return false;
}
absl::strings_internal::STLStringResizeUninitializedAmortized(
output, old_size + byte_size);
uint8_t* start =
reinterpret_cast<uint8_t*>(io::mutable_string_data(output) + old_size);
SerializeToArrayImpl(*this, start, byte_size);
return true;
}
bool MessageLite::SerializeToString(std::string* output) const {
output->clear();
return AppendToString(output);
}
bool MessageLite::SerializePartialToString(std::string* output) const {
output->clear();
return AppendPartialToString(output);
}
bool MessageLite::SerializeToArray(void* data, int size) const {
ABSL_DCHECK(IsInitialized())
<< InitializationErrorMessage("serialize", *this);
return SerializePartialToArray(data, size);
}
bool MessageLite::SerializePartialToArray(void* data, int size) const {
const size_t byte_size = ByteSizeLong();
if (byte_size > INT_MAX) {
ABSL_LOG(ERROR) << GetTypeName()
<< " exceeded maximum protobuf size of 2GB: " << byte_size;
return false;
}
if (size < static_cast<int64_t>(byte_size)) return false;
uint8_t* start = reinterpret_cast<uint8_t*>(data);
SerializeToArrayImpl(*this, start, byte_size);
return true;
}
std::string MessageLite::SerializeAsString() const {
// If the compiler implements the (Named) Return Value Optimization,
// the local variable 'output' will not actually reside on the stack
// of this function, but will be overlaid with the object that the
// caller supplied for the return value to be constructed in.
std::string output;
if (!AppendToString(&output)) output.clear();
return output;
}
std::string MessageLite::SerializePartialAsString() const {
std::string output;
if (!AppendPartialToString(&output)) output.clear();
return output;
}
bool MessageLite::AppendToCord(absl::Cord* output) const {
ABSL_DCHECK(IsInitialized())
<< InitializationErrorMessage("serialize", *this);
return AppendPartialToCord(output);
}
bool MessageLite::AppendPartialToCord(absl::Cord* output) const {
// For efficiency, we'd like to pass a size hint to CordOutputStream with
// the exact total size expected.
const size_t size = ByteSizeLong();
const size_t total_size = size + output->size();
if (size > INT_MAX) {
ABSL_LOG(ERROR) << "Exceeded maximum protobuf size of 2GB.";
return false;
}
// Allocate a CordBuffer (which may utilize private capacity in 'output').
absl::CordBuffer buffer = output->GetAppendBuffer(size);
absl::Span<char> available = buffer.available();
auto target = reinterpret_cast<uint8_t*>(available.data());
if (available.size() >= size) {
// Use EpsCopyOutputStream with full available capacity, as serialization
// may in the future use the extra slop bytes if available.
io::EpsCopyOutputStream out(
target, static_cast<int>(available.size()),
io::CodedOutputStream::IsDefaultSerializationDeterministic());
auto res = _InternalSerialize(target, &out);
ABSL_DCHECK_EQ(static_cast<const void*>(res),
static_cast<const void*>(target + size));
buffer.IncreaseLengthBy(size);
output->Append(std::move(buffer));
ABSL_DCHECK_EQ(output->size(), total_size);
return true;
}
// Donate the buffer to the CordOutputStream with length := capacity.
// This follows the eager `EpsCopyOutputStream` initialization logic.
buffer.SetLength(buffer.capacity());
io::CordOutputStream output_stream(std::move(*output), std::move(buffer),
total_size);
io::EpsCopyOutputStream out(
target, static_cast<int>(available.size()), &output_stream,
io::CodedOutputStream::IsDefaultSerializationDeterministic(), &target);
target = _InternalSerialize(target, &out);
out.Trim(target);
if (out.HadError()) return false;
*output = output_stream.Consume();
ABSL_DCHECK_EQ(output->size(), total_size);
return true;
}
bool MessageLite::SerializeToCord(absl::Cord* output) const {
output->Clear();
return AppendToCord(output);
}
bool MessageLite::SerializePartialToCord(absl::Cord* output) const {
output->Clear();
return AppendPartialToCord(output);
}
absl::Cord MessageLite::SerializeAsCord() const {
absl::Cord output;
if (!AppendToCord(&output)) output.Clear();
return output;
}
absl::Cord MessageLite::SerializePartialAsCord() const {
absl::Cord output;
if (!AppendPartialToCord(&output)) output.Clear();
return output;
}
namespace internal {
MessageLite* NewFromPrototypeHelper(const MessageLite* prototype,
Arena* arena) {
return prototype->New(arena);
}
template <>
void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
MessageLite* to) {
to->CheckTypeAndMergeFrom(from);
}
// Non-inline variants of std::string specializations for
// various InternalMetadata routines.
template <>
void InternalMetadata::DoClear<std::string>() {
mutable_unknown_fields<std::string>()->clear();
}
template <>
void InternalMetadata::DoMergeFrom<std::string>(const std::string& other) {
mutable_unknown_fields<std::string>()->append(other);
}
template <>
void InternalMetadata::DoSwap<std::string>(std::string* other) {
mutable_unknown_fields<std::string>()->swap(*other);
}
} // namespace internal
std::string ShortFormat(const MessageLite& message_lite) {
return message_lite.DebugString();
}
std::string Utf8Format(const MessageLite& message_lite) {
return message_lite.DebugString();
}
// ===================================================================
// Shutdown support.
namespace internal {
struct ShutdownData {
~ShutdownData() {
std::reverse(functions.begin(), functions.end());
for (auto pair : functions) pair.first(pair.second);
}
static ShutdownData* get() {
static auto* data = new ShutdownData;
return data;
}
std::vector<std::pair<void (*)(const void*), const void*>> functions;
absl::Mutex mutex;
};
static void RunZeroArgFunc(const void* arg) {
void (*func)() = reinterpret_cast<void (*)()>(const_cast<void*>(arg));
func();
}
void OnShutdown(void (*func)()) {
OnShutdownRun(RunZeroArgFunc, reinterpret_cast<void*>(func));
}
void OnShutdownRun(void (*f)(const void*), const void* arg) {
auto shutdown_data = ShutdownData::get();
absl::MutexLock lock(&shutdown_data->mutex);
shutdown_data->functions.push_back(std::make_pair(f, arg));
}
} // namespace internal
void ShutdownProtobufLibrary() {
// This function should be called only once, but accepts multiple calls.
static bool is_shutdown = false;
if (!is_shutdown) {
delete internal::ShutdownData::get();
is_shutdown = true;
}
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"