blob: d47922cbc3e4fb2e6a1635930fc78adce476097d [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Authors: wink@google.com (Wink Saville),
// kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// Defines MessageLite, the abstract interface implemented by all (lite
// and non-lite) protocol message objects.
#ifndef GOOGLE_PROTOBUF_MESSAGE_LITE_H__
#define GOOGLE_PROTOBUF_MESSAGE_LITE_H__
#include <climits>
#include <cstddef>
#include <cstdint>
#include <iosfwd>
#include <string>
#include <type_traits>
#include "absl/base/attributes.h"
#include "absl/log/absl_check.h"
#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/explicitly_constructed.h"
#include "google/protobuf/internal_visibility.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/metadata_lite.h"
#include "google/protobuf/port.h"
// clang-format off
#include "google/protobuf/port_def.inc"
// clang-format on
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
template <typename T>
class RepeatedPtrField;
class FastReflectionMessageMutator;
class FastReflectionStringSetter;
class Reflection;
class Descriptor;
class AssignDescriptorsHelper;
class MessageLite;
namespace io {
class CodedInputStream;
class CodedOutputStream;
class ZeroCopyInputStream;
class ZeroCopyOutputStream;
} // namespace io
namespace internal {
// Allow easy change to regular int on platforms where the atomic might have a
// perf impact.
//
// CachedSize is like std::atomic<int> but with some important changes:
//
// 1) CachedSize uses Get / Set rather than load / store.
// 2) CachedSize always uses relaxed ordering.
// 3) CachedSize is assignable and copy-constructible.
// 4) CachedSize has a constexpr default constructor, and a constexpr
// constructor that takes an int argument.
// 5) If the compiler supports the __atomic_load_n / __atomic_store_n builtins,
// then CachedSize is trivially copyable.
//
// Developed at https://godbolt.org/z/vYcx7zYs1 ; supports gcc, clang, MSVC.
class PROTOBUF_EXPORT CachedSize {
private:
using Scalar = int;
public:
constexpr CachedSize() noexcept : atom_(Scalar{}) {}
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr CachedSize(Scalar desired) noexcept : atom_(desired) {}
#if PROTOBUF_BUILTIN_ATOMIC
constexpr CachedSize(const CachedSize& other) = default;
Scalar Get() const noexcept {
return __atomic_load_n(&atom_, __ATOMIC_RELAXED);
}
void Set(Scalar desired) noexcept {
__atomic_store_n(&atom_, desired, __ATOMIC_RELAXED);
}
#else
CachedSize(const CachedSize& other) noexcept : atom_(other.Get()) {}
CachedSize& operator=(const CachedSize& other) noexcept {
Set(other.Get());
return *this;
}
Scalar Get() const noexcept { //
return atom_.load(std::memory_order_relaxed);
}
void Set(Scalar desired) noexcept {
atom_.store(desired, std::memory_order_relaxed);
}
#endif
private:
#if PROTOBUF_BUILTIN_ATOMIC
Scalar atom_;
#else
std::atomic<Scalar> atom_;
#endif
};
// For MessageLite to friend.
class TypeId;
auto GetClassData(const MessageLite& msg);
class SwapFieldHelper;
// See parse_context.h for explanation
class ParseContext;
struct DescriptorTable;
class DescriptorPoolExtensionFinder;
class ExtensionSet;
class LazyField;
class RepeatedPtrFieldBase;
class TcParser;
struct TcParseTableBase;
class WireFormatLite;
class WeakFieldMap;
template <typename Type>
class GenericTypeHandler; // defined in repeated_field.h
// We compute sizes as size_t but cache them as int. This function converts a
// computed size to a cached size. Since we don't proceed with serialization
// if the total size was > INT_MAX, it is not important what this function
// returns for inputs > INT_MAX. However this case should not error or
// ABSL_CHECK-fail, because the full size_t resolution is still returned from
// ByteSizeLong() and checked against INT_MAX; we can catch the overflow
// there.
inline int ToCachedSize(size_t size) { return static_cast<int>(size); }
// We mainly calculate sizes in terms of size_t, but some functions that
// compute sizes return "int". These int sizes are expected to always be
// positive. This function is more efficient than casting an int to size_t
// directly on 64-bit platforms because it avoids making the compiler emit a
// sign extending instruction, which we don't want and don't want to pay for.
inline size_t FromIntSize(int size) {
// Convert to unsigned before widening so sign extension is not necessary.
return static_cast<unsigned int>(size);
}
// For cases where a legacy function returns an integer size. We ABSL_DCHECK()
// that the conversion will fit within an integer; if this is false then we
// are losing information.
inline int ToIntSize(size_t size) {
ABSL_DCHECK_LE(size, static_cast<size_t>(INT_MAX));
return static_cast<int>(size);
}
// Default empty string object. Don't use this directly. Instead, call
// GetEmptyString() to get the reference. This empty string is aligned with a
// minimum alignment of 8 bytes to match the requirement of ArenaStringPtr.
PROTOBUF_EXPORT extern ExplicitlyConstructedArenaString
fixed_address_empty_string;
PROTOBUF_EXPORT constexpr const std::string& GetEmptyStringAlreadyInited() {
return fixed_address_empty_string.get();
}
PROTOBUF_EXPORT size_t StringSpaceUsedExcludingSelfLong(const std::string& str);
} // namespace internal
// Interface to light weight protocol messages.
//
// This interface is implemented by all protocol message objects. Non-lite
// messages additionally implement the Message interface, which is a
// subclass of MessageLite. Use MessageLite instead when you only need
// the subset of features which it supports -- namely, nothing that uses
// descriptors or reflection. You can instruct the protocol compiler
// to generate classes which implement only MessageLite, not the full
// Message interface, by adding the following line to the .proto file:
//
// option optimize_for = LITE_RUNTIME;
//
// This is particularly useful on resource-constrained systems where
// the full protocol buffers runtime library is too big.
//
// Note that on non-constrained systems (e.g. servers) when you need
// to link in lots of protocol definitions, a better way to reduce
// total code footprint is to use optimize_for = CODE_SIZE. This
// will make the generated code smaller while still supporting all the
// same features (at the expense of speed). optimize_for = LITE_RUNTIME
// is best when you only have a small number of message types linked
// into your binary, in which case the size of the protocol buffers
// runtime itself is the biggest problem.
//
// Users must not derive from this class. Only the protocol compiler and
// the internal library are allowed to create subclasses.
class PROTOBUF_EXPORT MessageLite {
public:
constexpr MessageLite() = default;
MessageLite(const MessageLite&) = delete;
MessageLite& operator=(const MessageLite&) = delete;
virtual ~MessageLite() = default;
// Basic Operations ------------------------------------------------
// Get the name of this message type, e.g. "foo.bar.BazProto".
std::string GetTypeName() const;
// Construct a new instance of the same type. Ownership is passed to the
// caller.
MessageLite* New() const { return New(nullptr); }
// Construct a new instance on the arena. Ownership is passed to the caller
// if arena is a nullptr.
virtual MessageLite* New(Arena* arena) const = 0;
// Returns the arena, if any, that directly owns this message and its internal
// memory (Arena::Own is different in that the arena doesn't directly own the
// internal memory). This method is used in proto's implementation for
// swapping, moving and setting allocated, for deciding whether the ownership
// of this message or its internal memory could be changed.
Arena* GetArena() const { return _internal_metadata_.arena(); }
// Clear all fields of the message and set them to their default values.
// Clear() assumes that any memory allocated to hold parts of the message
// will likely be needed again, so the memory used may not be freed.
// To ensure that all memory used by a Message is freed, you must delete it.
virtual void Clear() = 0;
// Quickly check if all required fields have values set.
bool IsInitialized() const;
// This is not implemented for Lite messages -- it just returns "(cannot
// determine missing fields for lite message)". However, it is implemented
// for full messages. See message.h.
std::string InitializationErrorString() const;
// If |other| is the exact same class as this, calls MergeFrom(). Otherwise,
// results are undefined (probably crash).
void CheckTypeAndMergeFrom(const MessageLite& other);
// These methods return a human-readable summary of the message. Note that
// since the MessageLite interface does not support reflection, there is very
// little information that these methods can provide. They are shadowed by
// methods of the same name on the Message interface which provide much more
// information. The methods here are intended primarily to facilitate code
// reuse for logic that needs to interoperate with both full and lite protos.
//
// The format of the returned string is subject to change, so please do not
// assume it will remain stable over time.
std::string DebugString() const;
std::string ShortDebugString() const { return DebugString(); }
// MessageLite::DebugString is already Utf8 Safe. This is to add compatibility
// with Message.
std::string Utf8DebugString() const { return DebugString(); }
// Implementation of the `AbslStringify` interface. This adds `DebugString()`
// to the sink. Do not rely on exact format.
template <typename Sink>
friend void AbslStringify(Sink& sink, const google::protobuf::MessageLite& msg) {
sink.Append(msg.DebugString());
}
// Parsing ---------------------------------------------------------
// Methods for parsing in protocol buffer format. Most of these are
// just simple wrappers around MergeFromCodedStream(). Clear() will be
// called before merging the input.
// Fill the message with a protocol buffer parsed from the given input
// stream. Returns false on a read error or if the input is in the wrong
// format. A successful return does not indicate the entire input is
// consumed, ensure you call ConsumedEntireMessage() to check that if
// applicable.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromCodedStream(
io::CodedInputStream* input);
// Like ParseFromCodedStream(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromCodedStream(
io::CodedInputStream* input);
// Read a protocol buffer from the given zero-copy input stream. If
// successful, the entire input will be consumed.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromZeroCopyStream(
io::ZeroCopyInputStream* input);
// Like ParseFromZeroCopyStream(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromZeroCopyStream(
io::ZeroCopyInputStream* input);
// Parse a protocol buffer from a file descriptor. If successful, the entire
// input will be consumed.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromFileDescriptor(
int file_descriptor);
// Like ParseFromFileDescriptor(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromFileDescriptor(
int file_descriptor);
// Parse a protocol buffer from a C++ istream. If successful, the entire
// input will be consumed.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromIstream(std::istream* input);
// Like ParseFromIstream(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromIstream(
std::istream* input);
// Read a protocol buffer from the given zero-copy input stream, expecting
// the message to be exactly "size" bytes long. If successful, exactly
// this many bytes will have been consumed from the input.
bool MergePartialFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input,
int size);
// Like ParseFromBoundedZeroCopyStream(), but accepts messages that are
// missing required fields.
bool MergeFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input, int size);
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromBoundedZeroCopyStream(
io::ZeroCopyInputStream* input, int size);
// Like ParseFromBoundedZeroCopyStream(), but accepts messages that are
// missing required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromBoundedZeroCopyStream(
io::ZeroCopyInputStream* input, int size);
// Parses a protocol buffer contained in a string. Returns true on success.
// This function takes a string in the (non-human-readable) binary wire
// format, matching the encoding output by MessageLite::SerializeToString().
// If you'd like to convert a human-readable string into a protocol buffer
// object, see google::protobuf::TextFormat::ParseFromString().
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromString(absl::string_view data);
// Like ParseFromString(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromString(
absl::string_view data);
// Parse a protocol buffer contained in an array of bytes.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromArray(const void* data, int size);
// Like ParseFromArray(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromArray(const void* data,
int size);
// Reads a protocol buffer from the stream and merges it into this
// Message. Singular fields read from the what is
// already in the Message and repeated fields are appended to those
// already present.
//
// It is the responsibility of the caller to call input->LastTagWas()
// (for groups) or input->ConsumedEntireMessage() (for non-groups) after
// this returns to verify that the message's end was delimited correctly.
//
// ParseFromCodedStream() is implemented as Clear() followed by
// MergeFromCodedStream().
bool MergeFromCodedStream(io::CodedInputStream* input);
// Like MergeFromCodedStream(), but succeeds even if required fields are
// missing in the input.
//
// MergeFromCodedStream() is just implemented as MergePartialFromCodedStream()
// followed by IsInitialized().
bool MergePartialFromCodedStream(io::CodedInputStream* input);
// Merge a protocol buffer contained in a string.
bool MergeFromString(absl::string_view data);
// Serialization ---------------------------------------------------
// Methods for serializing in protocol buffer format. Most of these
// are just simple wrappers around ByteSize() and SerializeWithCachedSizes().
// Write a protocol buffer of this message to the given output. Returns
// false on a write error. If the message is missing required fields,
// this may ABSL_CHECK-fail.
bool SerializeToCodedStream(io::CodedOutputStream* output) const;
// Like SerializeToCodedStream(), but allows missing required fields.
bool SerializePartialToCodedStream(io::CodedOutputStream* output) const;
// Write the message to the given zero-copy output stream. All required
// fields must be set.
bool SerializeToZeroCopyStream(io::ZeroCopyOutputStream* output) const;
// Like SerializeToZeroCopyStream(), but allows missing required fields.
bool SerializePartialToZeroCopyStream(io::ZeroCopyOutputStream* output) const;
// Serialize the message and store it in the given string. All required
// fields must be set.
bool SerializeToString(std::string* output) const;
// Like SerializeToString(), but allows missing required fields.
bool SerializePartialToString(std::string* output) const;
// Serialize the message and store it in the given byte array. All required
// fields must be set.
bool SerializeToArray(void* data, int size) const;
// Like SerializeToArray(), but allows missing required fields.
bool SerializePartialToArray(void* data, int size) const;
// Make a string encoding the message. Is equivalent to calling
// SerializeToString() on a string and using that. Returns the empty
// string if SerializeToString() would have returned an error.
// Note: If you intend to generate many such strings, you may
// reduce heap fragmentation by instead re-using the same string
// object with calls to SerializeToString().
std::string SerializeAsString() const;
// Like SerializeAsString(), but allows missing required fields.
std::string SerializePartialAsString() const;
// Serialize the message and write it to the given file descriptor. All
// required fields must be set.
bool SerializeToFileDescriptor(int file_descriptor) const;
// Like SerializeToFileDescriptor(), but allows missing required fields.
bool SerializePartialToFileDescriptor(int file_descriptor) const;
// Serialize the message and write it to the given C++ ostream. All
// required fields must be set.
bool SerializeToOstream(std::ostream* output) const;
// Like SerializeToOstream(), but allows missing required fields.
bool SerializePartialToOstream(std::ostream* output) const;
// Like SerializeToString(), but appends to the data to the string's
// existing contents. All required fields must be set.
bool AppendToString(std::string* output) const;
// Like AppendToString(), but allows missing required fields.
bool AppendPartialToString(std::string* output) const;
// Reads a protocol buffer from a Cord and merges it into this message.
bool MergeFromCord(const absl::Cord& cord);
// Like MergeFromCord(), but accepts messages that are missing
// required fields.
bool MergePartialFromCord(const absl::Cord& cord);
// Parse a protocol buffer contained in a Cord.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromCord(const absl::Cord& cord);
// Like ParseFromCord(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromCord(
const absl::Cord& cord);
// Serialize the message and store it in the given Cord. All required
// fields must be set.
bool SerializeToCord(absl::Cord* output) const;
// Like SerializeToCord(), but allows missing required fields.
bool SerializePartialToCord(absl::Cord* output) const;
// Make a Cord encoding the message. Is equivalent to calling
// SerializeToCord() on a Cord and using that. Returns an empty
// Cord if SerializeToCord() would have returned an error.
absl::Cord SerializeAsCord() const;
// Like SerializeAsCord(), but allows missing required fields.
absl::Cord SerializePartialAsCord() const;
// Like SerializeToCord(), but appends to the data to the Cord's existing
// contents. All required fields must be set.
bool AppendToCord(absl::Cord* output) const;
// Like AppendToCord(), but allows missing required fields.
bool AppendPartialToCord(absl::Cord* output) const;
// Computes the serialized size of the message. This recursively calls
// ByteSizeLong() on all embedded messages.
//
// ByteSizeLong() is generally linear in the number of fields defined for the
// proto.
virtual size_t ByteSizeLong() const = 0;
// Legacy ByteSize() API.
[[deprecated("Please use ByteSizeLong() instead")]] int ByteSize() const {
return internal::ToIntSize(ByteSizeLong());
}
// Serializes the message without recomputing the size. The message must not
// have changed since the last call to ByteSize(), and the value returned by
// ByteSize must be non-negative. Otherwise the results are undefined.
void SerializeWithCachedSizes(io::CodedOutputStream* output) const {
output->SetCur(_InternalSerialize(output->Cur(), output->EpsCopy()));
}
// Functions below here are not part of the public interface. It isn't
// enforced, but they should be treated as private, and will be private
// at some future time. Unfortunately the implementation of the "friend"
// keyword in GCC is broken at the moment, but we expect it will be fixed.
// Like SerializeWithCachedSizes, but writes directly to *target, returning
// a pointer to the byte immediately after the last byte written. "target"
// must point at a byte array of at least ByteSize() bytes. Whether to use
// deterministic serialization, e.g., maps in sorted order, is determined by
// CodedOutputStream::IsDefaultSerializationDeterministic().
uint8_t* SerializeWithCachedSizesToArray(uint8_t* target) const;
// Returns the result of the last call to ByteSize(). An embedded message's
// size is needed both to serialize it (only true for length-prefixed
// submessages) and to compute the outer message's size. Caching
// the size avoids computing it multiple times.
// Note that the submessage size is unnecessary when using
// group encoding / delimited since we have SGROUP/EGROUP bounds.
//
// ByteSize() does not automatically use the cached size when available
// because this would require invalidating it every time the message was
// modified, which would be too hard and expensive. (E.g. if a deeply-nested
// sub-message is changed, all of its parents' cached sizes would need to be
// invalidated, which is too much work for an otherwise inlined setter
// method.)
int GetCachedSize() const;
const char* _InternalParse(const char* ptr, internal::ParseContext* ctx);
void OnDemandRegisterArenaDtor(Arena* arena);
protected:
// Message implementations require access to internally visible API.
static constexpr internal::InternalVisibility internal_visibility() {
return internal::InternalVisibility{};
}
template <typename T>
PROTOBUF_ALWAYS_INLINE static T* DefaultConstruct(Arena* arena) {
return static_cast<T*>(Arena::DefaultConstruct<T>(arena));
}
template <typename T>
PROTOBUF_ALWAYS_INLINE static T* CopyConstruct(Arena* arena, const T& from) {
return static_cast<T*>(Arena::CopyConstruct<T>(arena, &from));
}
const internal::TcParseTableBase* GetTcParseTable() const {
auto* data = GetClassData();
ABSL_DCHECK(data != nullptr);
auto* tc_table = data->tc_table;
if (ABSL_PREDICT_FALSE(tc_table == nullptr)) {
ABSL_DCHECK(!data->is_lite);
return data->full().descriptor_methods->get_tc_table(*this);
}
return tc_table;
}
inline explicit MessageLite(Arena* arena) : _internal_metadata_(arena) {}
// We use a secondary vtable for descriptor based methods. This way ClassData
// does not grow with the number of descriptor methods. This avoids extra
// costs in MessageLite.
struct DescriptorMethods {
std::string (*get_type_name)(const MessageLite&);
std::string (*initialization_error_string)(const MessageLite&);
const internal::TcParseTableBase* (*get_tc_table)(const MessageLite&);
size_t (*space_used_long)(const MessageLite&);
};
struct ClassDataFull;
// Note: The order of arguments in the functions is chosen so that it has
// the same ABI as the member function that calls them. Eg the `this`
// pointer becomes the first argument in the free function.
//
// Future work:
// We could save more data by omitting any optional pointer that would
// otherwise be null. We can have some metadata in ClassData telling us if we
// have them and their offset.
struct ClassData {
const internal::TcParseTableBase* tc_table;
void (*on_demand_register_arena_dtor)(MessageLite& msg, Arena& arena);
bool (*is_initialized)(const MessageLite&);
void (*merge_to_from)(MessageLite& to, const MessageLite& from_msg);
// Offset of the CachedSize member.
uint32_t cached_size_offset;
// LITE objects (ie !descriptor_methods) collocate their name as a
// char[] just beyond the ClassData.
bool is_lite;
constexpr ClassData(const internal::TcParseTableBase* tc_table,
void (*on_demand_register_arena_dtor)(MessageLite&,
Arena&),
bool (*is_initialized)(const MessageLite&),
void (*merge_to_from)(MessageLite& to,
const MessageLite& from_msg),
uint32_t cached_size_offset, bool is_lite)
: tc_table(tc_table),
on_demand_register_arena_dtor(on_demand_register_arena_dtor),
is_initialized(is_initialized),
merge_to_from(merge_to_from),
cached_size_offset(cached_size_offset),
is_lite(is_lite) {}
const ClassDataFull& full() const {
ABSL_DCHECK(!is_lite);
return *static_cast<const ClassDataFull*>(this);
}
};
template <size_t N>
struct ClassDataLite {
ClassData header;
const char type_name[N];
constexpr const ClassData* base() const { return &header; }
};
struct ClassDataFull : ClassData {
constexpr ClassDataFull(ClassData base,
const DescriptorMethods* descriptor_methods,
const internal::DescriptorTable* descriptor_table,
void (*get_metadata_tracker)())
: ClassData(base),
descriptor_methods(descriptor_methods),
descriptor_table(descriptor_table),
reflection(),
descriptor(),
get_metadata_tracker(get_metadata_tracker) {}
constexpr const ClassData* base() const { return this; }
const DescriptorMethods* descriptor_methods;
// Codegen types will provide a DescriptorTable to do lazy
// registration/initialization of the reflection objects.
// Other types, like DynamicMessage, keep the table as null but eagerly
// populate `reflection`/`descriptor` fields.
const internal::DescriptorTable* descriptor_table;
// Accesses are protected by the once_flag in `descriptor_table`. When the
// table is null these are populated from the beginning and need to
// protection.
mutable const Reflection* reflection;
mutable const Descriptor* descriptor;
// When an access tracker is installed, this function notifies the tracker
// that GetMetadata was called.
void (*get_metadata_tracker)();
};
// GetClassData() returns a pointer to a ClassData struct which
// exists in global memory and is unique to each subclass. This uniqueness
// property is used in order to quickly determine whether two messages are
// of the same type.
//
// This is a work in progress. There are still some types (eg MapEntry) that
// return a default table instead of a unique one.
virtual const ClassData* GetClassData() const = 0;
template <typename T>
static auto GetClassDataGenerated() {
// We could speed this up if needed by avoiding the function call.
// In LTO this is likely inlined, so it might not matter.
static_assert(
std::is_same<const T&, decltype(T::default_instance())>::value, "");
return T::default_instance().T::GetClassData();
}
internal::InternalMetadata _internal_metadata_;
// Return the cached size object as described by
// ClassData::cached_size_offset.
internal::CachedSize& AccessCachedSize() const;
public:
enum ParseFlags {
kMerge = 0,
kParse = 1,
kMergePartial = 2,
kParsePartial = 3,
kMergeWithAliasing = 4,
kParseWithAliasing = 5,
kMergePartialWithAliasing = 6,
kParsePartialWithAliasing = 7
};
template <ParseFlags flags, typename T>
bool ParseFrom(const T& input);
// Fast path when conditions match (ie. non-deterministic)
// uint8_t* _InternalSerialize(uint8_t* ptr) const;
virtual uint8_t* _InternalSerialize(
uint8_t* ptr, io::EpsCopyOutputStream* stream) const = 0;
// Identical to IsInitialized() except that it logs an error message.
bool IsInitializedWithErrors() const {
if (IsInitialized()) return true;
LogInitializationErrorMessage();
return false;
}
private:
friend class FastReflectionMessageMutator;
friend class AssignDescriptorsHelper;
friend class FastReflectionStringSetter;
friend class Message;
friend class Reflection;
friend class internal::DescriptorPoolExtensionFinder;
friend class internal::ExtensionSet;
friend class internal::LazyField;
friend class internal::SwapFieldHelper;
friend class internal::TcParser;
friend class internal::TypeId;
friend class internal::WeakFieldMap;
friend class internal::WireFormatLite;
template <typename Type>
friend class Arena::InternalHelper;
template <typename Type>
friend class internal::GenericTypeHandler;
friend auto internal::GetClassData(const MessageLite& msg);
void LogInitializationErrorMessage() const;
bool MergeFromImpl(io::CodedInputStream* input, ParseFlags parse_flags);
template <typename T, const void* ptr = T::_raw_default_instance_>
static constexpr auto GetStrongPointerForTypeImpl(int) {
return ptr;
}
template <typename T>
static constexpr auto GetStrongPointerForTypeImpl(char) {
return &T::default_instance;
}
// Return a pointer we can use to make a strong reference to a type.
// Ideally, this is a pointer to the default instance.
// If we can't get that, then we use a pointer to the `default_instance`
// function. The latter always works but pins the function artificially into
// the binary so we avoid it.
template <typename T>
static constexpr auto GetStrongPointerForType() {
return GetStrongPointerForTypeImpl<T>(0);
}
template <typename T>
friend void internal::StrongReferenceToType();
};
namespace internal {
// A typeinfo equivalent for protobuf message types. Used for
// DynamicCastToGenerated.
// We might make this class public later on to have an alternative to
// `std::type_info` that works when RTTI is disabled.
class TypeId {
public:
constexpr explicit TypeId(const MessageLite::ClassData* data) : data_(data) {}
friend constexpr bool operator==(TypeId a, TypeId b) {
return a.data_ == b.data_;
}
friend constexpr bool operator!=(TypeId a, TypeId b) { return !(a == b); }
static TypeId Get(const MessageLite& msg) {
return TypeId(msg.GetClassData());
}
template <typename T>
static TypeId Get() {
return TypeId(MessageLite::GetClassDataGenerated<T>());
}
private:
const MessageLite::ClassData* data_;
};
inline auto GetClassData(const MessageLite& msg) { return msg.GetClassData(); }
template <bool alias>
bool MergeFromImpl(absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<false>(
absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<true>(
absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template <bool alias>
bool MergeFromImpl(io::ZeroCopyInputStream* input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<false>(
io::ZeroCopyInputStream* input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<true>(
io::ZeroCopyInputStream* input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
struct BoundedZCIS {
io::ZeroCopyInputStream* zcis;
int limit;
};
template <bool alias>
bool MergeFromImpl(BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<false>(
BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<true>(
BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template <typename T>
struct SourceWrapper;
template <bool alias, typename T>
bool MergeFromImpl(const SourceWrapper<T>& input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags) {
return input.template MergeInto<alias>(msg, tc_table, parse_flags);
}
} // namespace internal
template <MessageLite::ParseFlags flags, typename T>
bool MessageLite::ParseFrom(const T& input) {
if (flags & kParse) Clear();
constexpr bool alias = (flags & kMergeWithAliasing) != 0;
const internal::TcParseTableBase* tc_table;
PROTOBUF_ALWAYS_INLINE_CALL tc_table = GetTcParseTable();
return internal::MergeFromImpl<alias>(input, this, tc_table, flags);
}
// ===================================================================
// Shutdown support.
// Shut down the entire protocol buffers library, deleting all static-duration
// objects allocated by the library or by generated .pb.cc files.
//
// There are two reasons you might want to call this:
// * You use a draconian definition of "memory leak" in which you expect
// every single malloc() to have a corresponding free(), even for objects
// which live until program exit.
// * You are writing a dynamically-loaded library which needs to clean up
// after itself when the library is unloaded.
//
// It is safe to call this multiple times. However, it is not safe to use
// any other part of the protocol buffers library after
// ShutdownProtobufLibrary() has been called. Furthermore this call is not
// thread safe, user needs to synchronize multiple calls.
PROTOBUF_EXPORT void ShutdownProtobufLibrary();
namespace internal {
// Register a function to be called when ShutdownProtocolBuffers() is called.
PROTOBUF_EXPORT void OnShutdown(void (*func)());
// Run an arbitrary function on an arg
PROTOBUF_EXPORT void OnShutdownRun(void (*f)(const void*), const void* arg);
template <typename T>
T* OnShutdownDelete(T* p) {
OnShutdownRun([](const void* pp) { delete static_cast<const T*>(pp); }, p);
return p;
}
inline void AssertDownCast(const MessageLite& from, const MessageLite& to) {
ABSL_DCHECK(internal::TypeId::Get(from) == internal::TypeId::Get(to))
<< "Cannot downcast " << from.GetTypeName() << " to " << to.GetTypeName();
}
} // namespace internal
std::string ShortFormat(const MessageLite& message_lite);
std::string Utf8Format(const MessageLite& message_lite);
// Tries to downcast this message to a generated message type. Returns nullptr
// if this class is not an instance of T. This works even if RTTI is disabled.
//
// This also has the effect of creating a strong reference to T that will
// prevent the linker from stripping it out at link time. This can be important
// if you are using a DynamicMessageFactory that delegates to the generated
// factory.
template <typename T>
const T* DynamicCastToGenerated(const MessageLite* from) {
static_assert(std::is_base_of<MessageLite, T>::value, "");
internal::StrongReferenceToType<T>();
// We might avoid the call to T::GetClassData() altogether if T were to
// expose the class data pointer.
if (from == nullptr ||
internal::TypeId::Get<T>() != internal::TypeId::Get(*from)) {
return nullptr;
}
return static_cast<const T*>(from);
}
template <typename T>
const T* DynamicCastToGenerated(const MessageLite* from);
template <typename T>
T* DynamicCastToGenerated(MessageLite* from) {
return const_cast<T*>(
DynamicCastToGenerated<T>(static_cast<const MessageLite*>(from)));
}
// An overloaded version of DynamicCastToGenerated for downcasting references to
// base Message class. If the argument is not an instance of T, it terminates
// with an error.
template <typename T>
const T& DynamicCastToGenerated(const MessageLite& from) {
const T* destination_message = DynamicCastToGenerated<T>(&from);
ABSL_CHECK(destination_message != nullptr)
<< "Cannot downcast " << from.GetTypeName() << " to "
<< T::default_instance().GetTypeName();
return *destination_message;
}
template <typename T>
T& DynamicCastToGenerated(MessageLite& from) {
return const_cast<T&>(
DynamicCastToGenerated<T>(static_cast<const MessageLite&>(from)));
}
// A lightweight function for downcasting base MessageLite pointer to derived
// type. It should only be used when the caller is certain that the argument is
// of instance T and T is a generated message type.
template <typename T>
const T* DownCastToGenerated(const MessageLite* from) {
internal::StrongReferenceToType<T>();
ABSL_DCHECK(DynamicCastToGenerated<T>(from) == from)
<< "Cannot downcast " << from->GetTypeName() << " to "
<< T::default_instance().GetTypeName();
return static_cast<const T*>(from);
}
template <typename T>
T* DownCastToGenerated(MessageLite* from) {
return const_cast<T*>(
DownCastToGenerated<T>(static_cast<const MessageLite*>(from)));
}
template <typename T>
const T& DownCastToGenerated(const MessageLite& from) {
return *DownCastToGenerated<T>(&from);
}
template <typename T>
T& DownCastToGenerated(MessageLite& from) {
return *DownCastToGenerated<T>(&from);
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_MESSAGE_LITE_H__