blob: 2f647fbf4a737c9c1d94f1e43ca3df559f7dd86d [file] [log] [blame]
// -*- c++ -*-
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This file needs to be included as .inc as it depends on certain macros being
// defined prior to its inclusion.
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <cmath>
#include <functional>
#include <limits>
#include <vector>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#include <fstream>
#include <sstream>
#include "google/protobuf/descriptor.pb.h"
#include <gmock/gmock.h>
#include "google/protobuf/testing/googletest.h"
#include <gtest/gtest.h>
#include "absl/log/absl_check.h"
#include "absl/log/scoped_mock_log.h"
#include "absl/strings/cord.h"
#include "absl/strings/substitute.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/descriptor.h"
#include "google/protobuf/dynamic_message.h"
#include "google/protobuf/generated_message_reflection.h"
#include "google/protobuf/generated_message_tctable_impl.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/io_win32.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/reflection_ops.h"
#include "google/protobuf/test_util2.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
#if defined(_WIN32)
// DO NOT include <io.h>, instead create functions in io_win32.{h,cc} and import
// them like we do below.
using google::protobuf::io::win32::close;
using google::protobuf::io::win32::open;
#endif
#ifndef O_BINARY
#ifdef _O_BINARY
#define O_BINARY _O_BINARY
#else
#define O_BINARY 0 // If this isn't defined, the platform doesn't need it.
#endif
#endif
namespace {
UNITTEST::NestedTestAllTypes InitNestedProto(int depth) {
UNITTEST::NestedTestAllTypes p;
auto* child = p.mutable_child();
for (int i = 0; i < depth; i++) {
child->mutable_payload()->set_optional_int32(i);
child = child->mutable_child();
}
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
child->mutable_payload()->set_optional_int32(-1);
return p;
}
} // namespace
TEST(MESSAGE_TEST_NAME, SerializeHelpers) {
// TODO: Test more helpers? They're all two-liners so it seems
// like a waste of time.
UNITTEST::TestAllTypes message;
TestUtil::SetAllFields(&message);
std::stringstream stream;
std::string str1("foo");
std::string str2("bar");
EXPECT_TRUE(message.SerializeToString(&str1));
EXPECT_TRUE(message.AppendToString(&str2));
EXPECT_TRUE(message.SerializeToOstream(&stream));
EXPECT_EQ(str1.size() + 3, str2.size());
EXPECT_EQ("bar", str2.substr(0, 3));
// Don't use EXPECT_EQ because we don't want to dump raw binary data to
// stdout.
EXPECT_TRUE(str2.substr(3) == str1);
// GCC gives some sort of error if we try to just do stream.str() == str1.
std::string temp = stream.str();
EXPECT_TRUE(temp == str1);
EXPECT_TRUE(message.SerializeAsString() == str1);
}
TEST(MESSAGE_TEST_NAME, RoundTrip) {
UNITTEST::TestAllTypes message;
TestUtil::SetAllFields(&message);
TestUtil::ExpectAllFieldsSet(message);
UNITTEST::TestAllTypes copied, merged, parsed;
copied = message;
TestUtil::ExpectAllFieldsSet(copied);
merged.MergeFrom(message);
TestUtil::ExpectAllFieldsSet(merged);
std::string data;
ASSERT_TRUE(message.SerializeToString(&data));
ASSERT_TRUE(parsed.ParseFromString(data));
TestUtil::ExpectAllFieldsSet(parsed);
}
TEST(MESSAGE_TEST_NAME, SerializeToBrokenOstream) {
std::ofstream out;
UNITTEST::TestAllTypes message;
message.set_optional_int32(123);
EXPECT_FALSE(message.SerializeToOstream(&out));
}
TEST(MESSAGE_TEST_NAME, ParseFromFileDescriptor) {
std::string filename =
TestUtil::GetTestDataPath("google/protobuf/testdata/golden_message");
int file = open(filename.c_str(), O_RDONLY | O_BINARY);
ASSERT_GE(file, 0);
UNITTEST::TestAllTypes message;
EXPECT_TRUE(message.ParseFromFileDescriptor(file));
TestUtil::ExpectAllFieldsSet(message);
EXPECT_GE(close(file), 0);
}
TEST(MESSAGE_TEST_NAME, ParsePackedFromFileDescriptor) {
std::string filename = TestUtil::GetTestDataPath(
"google/protobuf/testdata/golden_packed_fields_message");
int file = open(filename.c_str(), O_RDONLY | O_BINARY);
ASSERT_GE(file, 0);
UNITTEST::TestPackedTypes message;
EXPECT_TRUE(message.ParseFromFileDescriptor(file));
TestUtil::ExpectPackedFieldsSet(message);
EXPECT_GE(close(file), 0);
}
TEST(MESSAGE_TEST_NAME, ParseHelpers) {
// TODO: Test more helpers? They're all two-liners so it seems
// like a waste of time.
std::string data;
{
// Set up.
UNITTEST::TestAllTypes message;
TestUtil::SetAllFields(&message);
message.SerializeToString(&data);
}
{
// Test ParseFromString.
UNITTEST::TestAllTypes message;
EXPECT_TRUE(message.ParseFromString(data));
TestUtil::ExpectAllFieldsSet(message);
}
{
// Test ParseFromIstream.
UNITTEST::TestAllTypes message;
std::stringstream stream(data);
EXPECT_TRUE(message.ParseFromIstream(&stream));
EXPECT_TRUE(stream.eof());
TestUtil::ExpectAllFieldsSet(message);
}
{
// Test ParseFromBoundedZeroCopyStream.
std::string data_with_junk(data);
data_with_junk.append("some junk on the end");
io::ArrayInputStream stream(data_with_junk.data(), data_with_junk.size());
UNITTEST::TestAllTypes message;
EXPECT_TRUE(message.ParseFromBoundedZeroCopyStream(&stream, data.size()));
TestUtil::ExpectAllFieldsSet(message);
}
{
// Test that ParseFromBoundedZeroCopyStream fails (but doesn't crash) if
// EOF is reached before the expected number of bytes.
io::ArrayInputStream stream(data.data(), data.size());
UNITTEST::TestAllTypes message;
EXPECT_FALSE(
message.ParseFromBoundedZeroCopyStream(&stream, data.size() + 1));
}
// Test bytes cord
{
UNITTEST::TestCord cord_message;
cord_message.set_optional_bytes_cord("bytes_cord");
EXPECT_TRUE(cord_message.SerializeToString(&data));
EXPECT_TRUE(cord_message.SerializeAsString() == data);
}
{
UNITTEST::TestCord cord_message;
EXPECT_TRUE(cord_message.ParseFromString(data));
EXPECT_EQ("bytes_cord", cord_message.optional_bytes_cord());
}
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfNotInitialized) {
UNITTEST::TestRequired message;
{
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(log, Log(absl::LogSeverity::kError, testing::_, absl::StrCat(
"Can't parse message of type \"", UNITTEST_PACKAGE_NAME,
".TestRequired\" because it is missing required fields: a, b, c")));
log.StartCapturingLogs();
EXPECT_FALSE(message.ParseFromString(""));
}
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfSubmessageNotInitialized) {
UNITTEST::TestRequiredForeign source, message;
source.mutable_optional_message()->set_dummy2(100);
std::string serialized = source.SerializePartialAsString();
EXPECT_TRUE(message.ParsePartialFromString(serialized));
EXPECT_FALSE(message.IsInitialized());
{
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(log, Log(absl::LogSeverity::kError, testing::_, absl::StrCat(
"Can't parse message of type \"", UNITTEST_PACKAGE_NAME,
".TestRequiredForeign\" because it is missing required fields: "
"optional_message.a, optional_message.b, optional_message.c")));
log.StartCapturingLogs();
EXPECT_FALSE(message.ParseFromString(source.SerializePartialAsString()));
}
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfExtensionNotInitialized) {
UNITTEST::TestChildExtension source, message;
auto* r = source.mutable_optional_extension()->MutableExtension(
UNITTEST::TestRequired::single);
r->set_dummy2(100);
std::string serialized = source.SerializePartialAsString();
EXPECT_TRUE(message.ParsePartialFromString(serialized));
EXPECT_FALSE(message.IsInitialized());
{
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(log, Log(absl::LogSeverity::kError, testing::_, absl::Substitute(
"Can't parse message of type \"$0.TestChildExtension\" "
"because it is missing required fields: "
"optional_extension.($0.TestRequired.single).a, "
"optional_extension.($0.TestRequired.single).b, "
"optional_extension.($0.TestRequired.single).c",
UNITTEST_PACKAGE_NAME)));
log.StartCapturingLogs();
EXPECT_FALSE(message.ParseFromString(source.SerializePartialAsString()));
}
}
TEST(MESSAGE_TEST_NAME, MergeFromUninitialized) {
UNITTEST::TestNestedRequiredForeign o, p, q;
UNITTEST::TestNestedRequiredForeign* child = o.mutable_child();
constexpr int kDepth = 2;
for (int i = 0; i < kDepth; i++) {
child->set_dummy(i);
child = child->mutable_child();
}
UNITTEST::TestRequiredForeign* payload = child->mutable_payload();
payload->mutable_optional_message()->set_a(1);
payload->mutable_optional_message()->set_dummy2(100);
payload->mutable_optional_message()->set_dummy4(200);
ASSERT_TRUE(p.ParsePartialFromString(o.SerializePartialAsString()));
q.mutable_child()->set_dummy(500);
q = p;
q.ParsePartialFromString(q.SerializePartialAsString());
EXPECT_TRUE(TestUtil::EqualsToSerialized(q, o.SerializePartialAsString()));
EXPECT_TRUE(TestUtil::EqualsToSerialized(q, p.SerializePartialAsString()));
}
TEST(MESSAGE_TEST_NAME, UninitializedAndTooDeep) {
UNITTEST::TestRequiredForeign original;
original.mutable_optional_message()->set_a(1);
original.mutable_optional_lazy_message()
->mutable_child()
->mutable_payload()
->set_optional_int64(0);
std::string data;
ASSERT_TRUE(original.SerializePartialToString(&data));
UNITTEST::TestRequiredForeign pass;
ASSERT_TRUE(pass.ParsePartialFromString(data));
ASSERT_FALSE(pass.IsInitialized());
io::ArrayInputStream array_stream(data.data(), data.size());
io::CodedInputStream input_stream(&array_stream);
input_stream.SetRecursionLimit(2);
UNITTEST::TestRequiredForeign fail;
EXPECT_FALSE(fail.ParsePartialFromCodedStream(&input_stream));
UNITTEST::TestRequiredForeign fail_uninitialized;
EXPECT_FALSE(fail_uninitialized.ParseFromString(data));
}
TEST(MESSAGE_TEST_NAME, ExplicitLazyExceedRecursionLimit) {
UNITTEST::NestedTestAllTypes original, parsed;
// Build proto with recursion depth of 3.
original.mutable_lazy_child()
->mutable_child()
->mutable_payload()
->set_optional_int32(-1);
std::string serialized;
ASSERT_TRUE(original.SerializeToString(&serialized));
// User annotated LazyField ([lazy = true]) is eagerly verified and should
// catch the recursion limit violation.
io::ArrayInputStream array_stream(serialized.data(), serialized.size());
io::CodedInputStream input_stream(&array_stream);
input_stream.SetRecursionLimit(2);
EXPECT_FALSE(parsed.ParseFromCodedStream(&input_stream));
// Lazy read results in parsing error which can be verified by not having
// expected value.
EXPECT_NE(parsed.lazy_child().child().payload().optional_int32(), -1);
}
TEST(MESSAGE_TEST_NAME, NestedLazyRecursionLimit) {
UNITTEST::NestedTestAllTypes original, parsed;
original.mutable_lazy_child()
->mutable_lazy_child()
->mutable_lazy_child()
->mutable_payload()
->set_optional_int32(-1);
std::string serialized;
ASSERT_TRUE(original.SerializeToString(&serialized));
ASSERT_TRUE(parsed.ParseFromString(serialized));
io::ArrayInputStream array_stream(serialized.data(), serialized.size());
io::CodedInputStream input_stream(&array_stream);
input_stream.SetRecursionLimit(2);
EXPECT_FALSE(parsed.ParseFromCodedStream(&input_stream));
EXPECT_TRUE(parsed.has_lazy_child());
EXPECT_TRUE(parsed.lazy_child().has_lazy_child());
EXPECT_TRUE(parsed.lazy_child().lazy_child().has_lazy_child());
EXPECT_FALSE(parsed.lazy_child().lazy_child().lazy_child().has_payload());
}
TEST(MESSAGE_TEST_NAME, UnparsedEmpty) {
// lazy_child, LEN=100 with no payload.
const char encoded[] = {'\042', 100};
UNITTEST::NestedTestAllTypes message;
EXPECT_FALSE(message.ParseFromArray(encoded, sizeof(encoded)));
EXPECT_TRUE(message.has_lazy_child());
EXPECT_EQ(message.lazy_child().ByteSizeLong(), 0);
}
TEST(MESSAGE_TEST_NAME, ParseFailNonCanonicalZeroTag) {
const char encoded[] = {"\n\x3\x80\0\0"};
UNITTEST::NestedTestAllTypes parsed;
EXPECT_FALSE(parsed.ParsePartialFromString(
absl::string_view{encoded, sizeof(encoded) - 1}));
}
TEST(MESSAGE_TEST_NAME, ParseFailNonCanonicalZeroField) {
const char encoded[] = {"\012\x6\205\0\0\0\0\0"};
UNITTEST::NestedTestAllTypes parsed;
EXPECT_FALSE(parsed.ParsePartialFromString(
absl::string_view{encoded, sizeof(encoded) - 1}));
}
TEST(MESSAGE_TEST_NAME, NestedExplicitLazyExceedRecursionLimit) {
UNITTEST::NestedTestAllTypes original, parsed;
// Build proto with recursion depth of 5, with nested annotated LazyField.
original.mutable_lazy_child()
->mutable_child()
->mutable_lazy_child()
->mutable_child()
->mutable_payload()
->set_optional_int32(-1);
std::string serialized;
EXPECT_TRUE(original.SerializeToString(&serialized));
// User annotated LazyField ([lazy = true]) is eagerly verified and should
// catch the recursion limit violation.
io::ArrayInputStream array_stream(serialized.data(), serialized.size());
io::CodedInputStream input_stream(&array_stream);
input_stream.SetRecursionLimit(4);
EXPECT_FALSE(parsed.ParseFromCodedStream(&input_stream));
// Lazy read results in parsing error which can be verified by not having
// expected value.
EXPECT_NE(parsed.lazy_child()
.child()
.lazy_child()
.child()
.payload()
.optional_int32(),
-1);
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfSubmessageTruncated) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 5;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
TestUtil::SetAllFields(child->mutable_payload());
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
constexpr int kMaxTruncate = 50;
ASSERT_GT(serialized.size(), kMaxTruncate);
for (int i = 1; i < kMaxTruncate; i += 3) {
EXPECT_FALSE(
p.ParseFromString(serialized.substr(0, serialized.size() - i)));
}
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfWireMalformed) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 5;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
child->mutable_payload()->set_optional_int32(-1);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfOneofWireMalformed) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 5;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
child->mutable_payload()->mutable_oneof_nested_message()->set_bb(-1);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfExtensionWireMalformed) {
UNITTEST::TestChildExtension o, p;
auto* m = o.mutable_optional_extension()->MutableExtension(
UNITTEST::optional_nested_message_extension);
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
m->set_bb(-1);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfGroupFieldMalformed) {
UNITTEST::TestMutualRecursionA original, parsed;
original.mutable_bb()
->mutable_a()
->mutable_subgroup()
->mutable_sub_message()
->mutable_b()
->set_optional_int32(-1);
std::string data;
ASSERT_TRUE(original.SerializeToString(&data));
// Should parse correctly.
ASSERT_TRUE(parsed.ParseFromString(data));
// Overwriting the last byte of varint (-1) to 0xFF results in malformed wire.
data[data.size() - 2] = 0xFF;
EXPECT_FALSE(parsed.ParseFromString(data));
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfRepeatedGroupFieldMalformed) {
UNITTEST::TestMutualRecursionA original, parsed;
original.mutable_bb()
->mutable_a()
->add_subgroupr()
->mutable_payload()
->set_optional_int64(-1);
std::string data;
ASSERT_TRUE(original.SerializeToString(&data));
// Should parse correctly.
ASSERT_TRUE(parsed.ParseFromString(data));
// Overwriting the last byte of varint (-1) to 0xFF results in malformed wire.
data[data.size() - 2] = 0xFF;
EXPECT_FALSE(parsed.ParseFromString(data));
}
TEST(MESSAGE_TEST_NAME, UninitializedAndMalformed) {
UNITTEST::TestRequiredForeign o, p1, p2;
o.mutable_optional_message()->set_a(-1);
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
std::string serialized;
EXPECT_TRUE(o.SerializePartialToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p1.ParsePartialFromString(serialized));
EXPECT_FALSE(p1.IsInitialized());
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p2.ParseFromString(serialized));
EXPECT_FALSE(p2.IsInitialized());
}
// Parsing proto must not access beyond the bound.
TEST(MESSAGE_TEST_NAME, ParseStrictlyBoundedStream) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 2;
o = InitNestedProto(kDepth);
TestUtil::SetAllFields(o.mutable_child()->mutable_payload());
o.mutable_child()->mutable_child()->mutable_payload()->set_optional_string(
std::string(1024, 'a'));
std::string data;
EXPECT_TRUE(o.SerializeToString(&data));
TestUtil::BoundedArrayInputStream stream(data.data(), data.size());
EXPECT_TRUE(p.ParseFromBoundedZeroCopyStream(&stream, data.size()));
TestUtil::ExpectAllFieldsSet(p.child().payload());
}
// Helper functions to touch any nested lazy field
void TouchLazy(UNITTEST::NestedTestAllTypes* msg);
void TouchLazy(UNITTEST::TestAllTypes* msg);
void TouchLazy(UNITTEST::TestAllTypes::NestedMessage* msg) {}
void TouchLazy(UNITTEST::TestAllTypes* msg) {
if (msg->has_optional_lazy_message()) {
TouchLazy(msg->mutable_optional_lazy_message());
}
if (msg->has_optional_unverified_lazy_message()) {
TouchLazy(msg->mutable_optional_unverified_lazy_message());
}
for (auto& child : *msg->mutable_repeated_lazy_message()) {
TouchLazy(&child);
}
}
void TouchLazy(UNITTEST::NestedTestAllTypes* msg) {
if (msg->has_child()) TouchLazy(msg->mutable_child());
if (msg->has_payload()) TouchLazy(msg->mutable_payload());
for (auto& child : *msg->mutable_repeated_child()) {
TouchLazy(&child);
}
if (msg->has_lazy_child()) TouchLazy(msg->mutable_lazy_child());
if (msg->has_eager_child()) TouchLazy(msg->mutable_eager_child());
}
TEST(MESSAGE_TEST_NAME, SuccessAfterParsingFailure) {
UNITTEST::NestedTestAllTypes o, p, q;
constexpr int kDepth = 5;
o = InitNestedProto(kDepth);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p.ParseFromString(serialized));
// If the affected byte is inside a lazy message, we have no guarantee that it
// serializes into error free data because serialization needs to preserve
// const correctness on lazy fields: `touch` all lazy fields.
TouchLazy(&p);
EXPECT_TRUE(q.ParseFromString(p.SerializeAsString()));
}
TEST(MESSAGE_TEST_NAME, ExceedRecursionLimit) {
UNITTEST::NestedTestAllTypes o, p;
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
o = InitNestedProto(kDepth);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Recursion level deeper than the default.
EXPECT_FALSE(p.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME, SupportCustomRecursionLimitRead) {
UNITTEST::NestedTestAllTypes o, p;
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
o = InitNestedProto(kDepth);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should pass with custom limit + reads.
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
io::CodedInputStream input(&raw_input);
input.SetRecursionLimit(kDepth + 10);
EXPECT_TRUE(p.ParseFromCodedStream(&input));
EXPECT_EQ(p.child().payload().optional_int32(), 0);
EXPECT_EQ(p.child().child().payload().optional_int32(), 1);
// Verify p serializes successfully (survives VerifyConsistency).
std::string result;
EXPECT_TRUE(p.SerializeToString(&result));
}
TEST(MESSAGE_TEST_NAME, SupportCustomRecursionLimitWrite) {
UNITTEST::NestedTestAllTypes o, p;
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
o = InitNestedProto(kDepth);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should pass with custom limit + writes.
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
io::CodedInputStream input(&raw_input);
input.SetRecursionLimit(kDepth + 10);
EXPECT_TRUE(p.ParseFromCodedStream(&input));
EXPECT_EQ(p.mutable_child()->mutable_payload()->optional_int32(), 0);
EXPECT_EQ(
p.mutable_child()->mutable_child()->mutable_payload()->optional_int32(),
1);
}
// While deep recursion is never guaranteed, this test aims to catch potential
// issues with very deep recursion.
TEST(MESSAGE_TEST_NAME, SupportDeepRecursionLimit) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 1000;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
child->mutable_payload()->set_optional_int32(100);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
io::CodedInputStream input(&raw_input);
input.SetRecursionLimit(1100);
EXPECT_TRUE(p.ParseFromCodedStream(&input));
}
inline bool IsOptimizeForCodeSize(const Descriptor* descriptor) {
return descriptor->file()->options().optimize_for() == FileOptions::CODE_SIZE;
}
TEST(MESSAGE_TEST_NAME, Swap) {
UNITTEST::NestedTestAllTypes o;
constexpr int kDepth = 5;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
TestUtil::SetAllFields(child->mutable_payload());
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
{
Arena arena;
UNITTEST::NestedTestAllTypes* p1 =
Arena::Create<UNITTEST::NestedTestAllTypes>(&arena);
// Should parse correctly.
EXPECT_TRUE(p1->ParseFromString(serialized));
UNITTEST::NestedTestAllTypes* p2 =
Arena::Create<UNITTEST::NestedTestAllTypes>(&arena);
p1->Swap(p2);
EXPECT_EQ(o.SerializeAsString(), p2->SerializeAsString());
}
}
TEST(MESSAGE_TEST_NAME, BypassInitializationCheckOnParse) {
UNITTEST::TestRequired message;
io::ArrayInputStream raw_input(nullptr, 0);
io::CodedInputStream input(&raw_input);
EXPECT_TRUE(message.MergePartialFromCodedStream(&input));
}
TEST(MESSAGE_TEST_NAME, InitializationErrorString) {
UNITTEST::TestRequired message;
EXPECT_EQ("a, b, c", message.InitializationErrorString());
}
TEST(MESSAGE_TEST_NAME, DynamicCastToGenerated) {
UNITTEST::TestAllTypes test_all_types;
MessageLite* test_all_types_pointer = &test_all_types;
EXPECT_EQ(&test_all_types, DynamicCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer));
EXPECT_EQ(nullptr, DynamicCastToGenerated<UNITTEST::TestRequired>(
test_all_types_pointer));
const MessageLite* test_all_types_pointer_const = &test_all_types;
EXPECT_EQ(&test_all_types,
DynamicCastToGenerated<const UNITTEST::TestAllTypes>(
test_all_types_pointer_const));
EXPECT_EQ(nullptr, DynamicCastToGenerated<const UNITTEST::TestRequired>(
test_all_types_pointer_const));
MessageLite* test_all_types_pointer_nullptr = nullptr;
EXPECT_EQ(nullptr, DynamicCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer_nullptr));
MessageLite& test_all_types_pointer_ref = test_all_types;
EXPECT_EQ(&test_all_types, &DynamicCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer_ref));
const MessageLite& test_all_types_pointer_const_ref = test_all_types;
EXPECT_EQ(&test_all_types, &DynamicCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer_const_ref));
}
TEST(MESSAGE_TEST_NAME, DynamicCastToGeneratedInvalidReferenceType) {
UNITTEST::TestAllTypes test_all_types;
const MessageLite& test_all_types_pointer_const_ref = test_all_types;
ASSERT_DEATH(DynamicCastToGenerated<UNITTEST::TestRequired>(
test_all_types_pointer_const_ref),
"Cannot downcast " + test_all_types.GetTypeName() + " to " +
UNITTEST::TestRequired::default_instance().GetTypeName());
}
TEST(MESSAGE_TEST_NAME, DownCastToGeneratedValidType) {
UNITTEST::TestAllTypes test_all_types;
MessageLite* test_all_types_pointer = &test_all_types;
EXPECT_EQ(&test_all_types, DownCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer));
const MessageLite* test_all_types_pointer_const = &test_all_types;
EXPECT_EQ(&test_all_types, DownCastToGenerated<const UNITTEST::TestAllTypes>(
test_all_types_pointer_const));
MessageLite* test_all_types_pointer_nullptr = nullptr;
EXPECT_EQ(nullptr, DownCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer_nullptr));
MessageLite& test_all_types_pointer_ref = test_all_types;
EXPECT_EQ(&test_all_types, &DownCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer_ref));
const MessageLite& test_all_types_pointer_const_ref = test_all_types;
EXPECT_EQ(&test_all_types, &DownCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer_const_ref));
}
TEST(MESSAGE_TEST_NAME, DownCastToGeneratedInvalidPointerType) {
UNITTEST::TestAllTypes test_all_types;
MessageLite* test_all_types_pointer = &test_all_types;
ASSERT_DEBUG_DEATH(
DownCastToGenerated<UNITTEST::TestRequired>(test_all_types_pointer),
"Cannot downcast " + test_all_types.GetTypeName() + " to " +
UNITTEST::TestRequired::default_instance().GetTypeName());
}
TEST(MESSAGE_TEST_NAME, DownCastToGeneratedInvalidReferenceType) {
UNITTEST::TestAllTypes test_all_types;
MessageLite& test_all_types_pointer = test_all_types;
ASSERT_DEBUG_DEATH(
DownCastToGenerated<UNITTEST::TestRequired>(test_all_types_pointer),
"Cannot downcast " + test_all_types.GetTypeName() + " to " +
UNITTEST::TestRequired::default_instance().GetTypeName());
}
#if GTEST_HAS_DEATH_TEST // death tests do not work on Windows yet.
TEST(MESSAGE_TEST_NAME, SerializeFailsIfNotInitialized) {
UNITTEST::TestRequired message;
std::string data;
EXPECT_DEBUG_DEATH(
EXPECT_TRUE(message.SerializeToString(&data)),
absl::StrCat("Can't serialize message of type \"", UNITTEST_PACKAGE_NAME,
".TestRequired\" because "
"it is missing required fields: a, b, c"));
}
TEST(MESSAGE_TEST_NAME, CheckInitialized) {
UNITTEST::TestRequired message;
EXPECT_DEATH(message.CheckInitialized(),
absl::StrCat("Message of type \"", UNITTEST_PACKAGE_NAME,
".TestRequired\" is missing required "
"fields: a, b, c"));
}
#endif // GTEST_HAS_DEATH_TEST
namespace {
// An input stream that repeats a std::string's content for a number of times.
// It helps us create a really large input without consuming too much memory.
// Used to test the parsing behavior when the input size exceeds 2G or close to
// it.
class RepeatedInputStream : public io::ZeroCopyInputStream {
public:
RepeatedInputStream(const std::string& data, size_t count)
: data_(data), count_(count), position_(0), total_byte_count_(0) {}
bool Next(const void** data, int* size) override {
if (position_ == data_.size()) {
if (--count_ == 0) {
return false;
}
position_ = 0;
}
*data = &data_[position_];
*size = static_cast<int>(data_.size() - position_);
position_ = data_.size();
total_byte_count_ += *size;
return true;
}
void BackUp(int count) override {
position_ -= static_cast<size_t>(count);
total_byte_count_ -= count;
}
bool Skip(int count) override {
while (count > 0) {
const void* data;
int size;
if (!Next(&data, &size)) {
break;
}
if (size >= count) {
BackUp(size - count);
return true;
} else {
count -= size;
}
}
return false;
}
int64_t ByteCount() const override { return total_byte_count_; }
private:
std::string data_;
size_t count_; // The number of strings that haven't been consumed.
size_t position_; // Position in the std::string for the next read.
int64_t total_byte_count_;
};
} // namespace
TEST(MESSAGE_TEST_NAME, TestParseMessagesCloseTo2G) {
constexpr int32_t kint32max = std::numeric_limits<int32_t>::max();
// Create a message with a large std::string field.
std::string value = std::string(64 * 1024 * 1024, 'x');
UNITTEST::TestAllTypes message;
message.set_optional_string(value);
// Repeat this message in the input stream to make the total input size
// close to 2G.
std::string data = message.SerializeAsString();
size_t count = static_cast<size_t>(kint32max) / data.size();
RepeatedInputStream input(data, count);
// The parsing should succeed.
UNITTEST::TestAllTypes result;
EXPECT_TRUE(result.ParseFromZeroCopyStream(&input));
// When there are multiple occurrences of a singular field, the last one
// should win.
EXPECT_EQ(value, result.optional_string());
}
TEST(MESSAGE_TEST_NAME, TestParseMessagesOver2G) {
constexpr int32_t kint32max = std::numeric_limits<int32_t>::max();
// Create a message with a large std::string field.
std::string value = std::string(64 * 1024 * 1024, 'x');
UNITTEST::TestAllTypes message;
message.set_optional_string(value);
// Repeat this message in the input stream to make the total input size
// larger than 2G.
std::string data = message.SerializeAsString();
size_t count = static_cast<size_t>(kint32max) / data.size() + 1;
RepeatedInputStream input(data, count);
// The parsing should fail.
UNITTEST::TestAllTypes result;
EXPECT_FALSE(result.ParseFromZeroCopyStream(&input));
}
TEST(MESSAGE_TEST_NAME, BypassInitializationCheckOnSerialize) {
UNITTEST::TestRequired message;
io::ArrayOutputStream raw_output(nullptr, 0);
io::CodedOutputStream output(&raw_output);
EXPECT_TRUE(message.SerializePartialToCodedStream(&output));
}
TEST(MESSAGE_TEST_NAME, FindInitializationErrors) {
UNITTEST::TestRequired message;
std::vector<std::string> errors;
message.FindInitializationErrors(&errors);
ASSERT_EQ(3, errors.size());
EXPECT_EQ("a", errors[0]);
EXPECT_EQ("b", errors[1]);
EXPECT_EQ("c", errors[2]);
}
TEST(MESSAGE_TEST_NAME, ReleaseMustUseResult) {
UNITTEST::TestAllTypes message;
auto* f = new UNITTEST::ForeignMessage();
f->set_c(1000);
message.set_allocated_optional_foreign_message(f);
auto* mf = message.mutable_optional_foreign_message();
EXPECT_EQ(mf, f);
std::unique_ptr<UNITTEST::ForeignMessage> rf(
message.release_optional_foreign_message());
EXPECT_NE(rf.get(), nullptr);
}
TEST(MESSAGE_TEST_NAME, ParseFailsOnInvalidMessageEnd) {
UNITTEST::TestAllTypes message;
// Control case.
EXPECT_TRUE(message.ParseFromArray("", 0));
// The byte is a valid varint, but not a valid tag (zero).
EXPECT_FALSE(message.ParseFromArray("\0", 1));
// The byte is a malformed varint.
EXPECT_FALSE(message.ParseFromArray("\200", 1));
// The byte is an endgroup tag, but we aren't parsing a group.
EXPECT_FALSE(message.ParseFromArray("\014", 1));
}
// Regression test for b/23630858
TEST(MESSAGE_TEST_NAME, MessageIsStillValidAfterParseFails) {
UNITTEST::TestAllTypes message;
// 9 0xFFs for the "optional_uint64" field.
std::string invalid_data = "\x20\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF";
EXPECT_FALSE(message.ParseFromString(invalid_data));
message.Clear();
EXPECT_EQ(0, message.optional_uint64());
// invalid data for field "optional_string". Length prefix is 1 but no
// payload.
std::string invalid_string_data = "\x72\x01";
{
Arena arena;
UNITTEST::TestAllTypes* arena_message =
Arena::Create<UNITTEST::TestAllTypes>(&arena);
EXPECT_FALSE(arena_message->ParseFromString(invalid_string_data));
arena_message->Clear();
EXPECT_EQ("", arena_message->optional_string());
}
}
TEST(MESSAGE_TEST_NAME, NonCanonicalTag) {
UNITTEST::TestAllTypes message;
// optional_lazy_message (27) LEN(3) with non canonical tag: (1).
const char encoded[] = {'\332', 1, 3, '\210', 0, 0};
EXPECT_TRUE(message.ParseFromArray(encoded, sizeof(encoded)));
}
TEST(MESSAGE_TEST_NAME, Zero5BTag) {
UNITTEST::TestAllTypes message;
// optional_nested_message (18) LEN(6) with 5B but zero tag.
const char encoded[] = {'\222', 1, 6, '\200', '\200',
'\200', '\200', '\020', 0};
EXPECT_FALSE(message.ParseFromArray(encoded, sizeof(encoded)));
}
TEST(MESSAGE_TEST_NAME, Zero5BTagLazy) {
UNITTEST::TestAllTypes message;
// optional_lazy_message (27) LEN(6) with 5B but zero tag.
const char encoded[] = {'\332', 1, 6, '\200', '\200',
'\200', '\200', '\020', 0};
EXPECT_FALSE(message.ParseFromArray(encoded, sizeof(encoded)));
}
namespace {
void ExpectMessageMerged(const UNITTEST::TestAllTypes& message) {
EXPECT_EQ(3, message.optional_int32());
EXPECT_EQ(2, message.optional_int64());
EXPECT_EQ("hello", message.optional_string());
}
void AssignParsingMergeMessages(UNITTEST::TestAllTypes* msg1,
UNITTEST::TestAllTypes* msg2,
UNITTEST::TestAllTypes* msg3) {
msg1->set_optional_int32(1);
msg2->set_optional_int64(2);
msg3->set_optional_int32(3);
msg3->set_optional_string("hello");
}
} // namespace
// Test that if an optional or required message/group field appears multiple
// times in the input, they need to be merged.
TEST(MESSAGE_TEST_NAME, ParsingMerge) {
UNITTEST::TestParsingMerge::RepeatedFieldsGenerator generator;
UNITTEST::TestAllTypes* msg1;
UNITTEST::TestAllTypes* msg2;
UNITTEST::TestAllTypes* msg3;
#define ASSIGN_REPEATED_FIELD(FIELD) \
msg1 = generator.add_##FIELD(); \
msg2 = generator.add_##FIELD(); \
msg3 = generator.add_##FIELD(); \
AssignParsingMergeMessages(msg1, msg2, msg3)
ASSIGN_REPEATED_FIELD(field1);
ASSIGN_REPEATED_FIELD(field2);
ASSIGN_REPEATED_FIELD(field3);
ASSIGN_REPEATED_FIELD(ext1);
ASSIGN_REPEATED_FIELD(ext2);
#undef ASSIGN_REPEATED_FIELD
#define ASSIGN_REPEATED_GROUP(FIELD) \
msg1 = generator.add_##FIELD()->mutable_field1(); \
msg2 = generator.add_##FIELD()->mutable_field1(); \
msg3 = generator.add_##FIELD()->mutable_field1(); \
AssignParsingMergeMessages(msg1, msg2, msg3)
ASSIGN_REPEATED_GROUP(group1);
ASSIGN_REPEATED_GROUP(group2);
#undef ASSIGN_REPEATED_GROUP
std::string buffer;
generator.SerializeToString(&buffer);
UNITTEST::TestParsingMerge parsing_merge;
parsing_merge.ParseFromString(buffer);
// Required and optional fields should be merged.
ExpectMessageMerged(parsing_merge.required_all_types());
ExpectMessageMerged(parsing_merge.optional_all_types());
ExpectMessageMerged(parsing_merge.optionalgroup().optional_group_all_types());
ExpectMessageMerged(
parsing_merge.GetExtension(UNITTEST::TestParsingMerge::optional_ext));
// Repeated fields should not be merged.
EXPECT_EQ(3, parsing_merge.repeated_all_types_size());
EXPECT_EQ(3, parsing_merge.repeatedgroup_size());
EXPECT_EQ(
3, parsing_merge.ExtensionSize(UNITTEST::TestParsingMerge::repeated_ext));
}
TEST(MESSAGE_TEST_NAME, MergeFrom) {
UNITTEST::TestAllTypes source, dest;
// Optional fields
source.set_optional_int32(1); // only source
source.set_optional_int64(2); // both source and dest
dest.set_optional_int64(3);
dest.set_optional_uint32(4); // only dest
// Optional fields with defaults
source.set_default_int32(13); // only source
source.set_default_int64(14); // both source and dest
dest.set_default_int64(15);
dest.set_default_uint32(16); // only dest
// Repeated fields
source.add_repeated_int32(5); // only source
source.add_repeated_int32(6);
source.add_repeated_int64(7); // both source and dest
source.add_repeated_int64(8);
dest.add_repeated_int64(9);
dest.add_repeated_int64(10);
dest.add_repeated_uint32(11); // only dest
dest.add_repeated_uint32(12);
dest.MergeFrom(source);
// Optional fields: source overwrites dest if source is specified
EXPECT_EQ(1, dest.optional_int32()); // only source: use source
EXPECT_EQ(2, dest.optional_int64()); // source and dest: use source
EXPECT_EQ(4, dest.optional_uint32()); // only dest: use dest
EXPECT_EQ(0, dest.optional_uint64()); // neither: use default
// Optional fields with defaults
EXPECT_EQ(13, dest.default_int32()); // only source: use source
EXPECT_EQ(14, dest.default_int64()); // source and dest: use source
EXPECT_EQ(16, dest.default_uint32()); // only dest: use dest
EXPECT_EQ(44, dest.default_uint64()); // neither: use default
// Repeated fields: concatenate source onto the end of dest
ASSERT_EQ(2, dest.repeated_int32_size());
EXPECT_EQ(5, dest.repeated_int32(0));
EXPECT_EQ(6, dest.repeated_int32(1));
ASSERT_EQ(4, dest.repeated_int64_size());
EXPECT_EQ(9, dest.repeated_int64(0));
EXPECT_EQ(10, dest.repeated_int64(1));
EXPECT_EQ(7, dest.repeated_int64(2));
EXPECT_EQ(8, dest.repeated_int64(3));
ASSERT_EQ(2, dest.repeated_uint32_size());
EXPECT_EQ(11, dest.repeated_uint32(0));
EXPECT_EQ(12, dest.repeated_uint32(1));
ASSERT_EQ(0, dest.repeated_uint64_size());
}
TEST(MESSAGE_TEST_NAME, IsInitialized) {
UNITTEST::TestIsInitialized msg;
EXPECT_TRUE(msg.IsInitialized());
UNITTEST::TestIsInitialized::SubMessage* sub_message =
msg.mutable_sub_message();
EXPECT_TRUE(msg.IsInitialized());
UNITTEST::TestIsInitialized::SubMessage::SubGroup* sub_group =
sub_message->mutable_subgroup();
EXPECT_FALSE(msg.IsInitialized());
sub_group->set_i(1);
EXPECT_TRUE(msg.IsInitialized());
}
TEST(MESSAGE_TEST_NAME, IsInitializedSplitBytestream) {
UNITTEST::TestRequired ab, c;
ab.set_a(1);
ab.set_b(2);
c.set_c(3);
// The protobuf represented by the concatenated string has all required
// fields (a,b,c) set.
std::string bytes =
ab.SerializePartialAsString() + c.SerializePartialAsString();
UNITTEST::TestRequired concatenated;
EXPECT_TRUE(concatenated.ParsePartialFromString(bytes));
EXPECT_TRUE(concatenated.IsInitialized());
UNITTEST::TestRequiredForeign fab, fc;
fab.mutable_optional_message()->set_a(1);
fab.mutable_optional_message()->set_b(2);
fc.mutable_optional_message()->set_c(3);
bytes = fab.SerializePartialAsString() + fc.SerializePartialAsString();
UNITTEST::TestRequiredForeign fconcatenated;
EXPECT_TRUE(fconcatenated.ParsePartialFromString(bytes));
EXPECT_TRUE(fconcatenated.IsInitialized());
}
TEST(MESSAGE_FACTORY_TEST_NAME, GeneratedFactoryLookup) {
EXPECT_EQ(MessageFactory::generated_factory()->GetPrototype(
UNITTEST::TestAllTypes::descriptor()),
&UNITTEST::TestAllTypes::default_instance());
}
TEST(MESSAGE_FACTORY_TEST_NAME, GeneratedFactoryUnknownType) {
// Construct a new descriptor.
DescriptorPool pool;
FileDescriptorProto file;
file.set_name("foo.proto");
file.add_message_type()->set_name("Foo");
const Descriptor* descriptor = pool.BuildFile(file)->message_type(0);
// Trying to construct it should return nullptr.
EXPECT_TRUE(MessageFactory::generated_factory()->GetPrototype(descriptor) ==
nullptr);
}
TEST(MESSAGE_TEST_NAME, MOMIParserEdgeCases) {
{
UNITTEST::TestAllTypes msg;
// Parser ends in last 16 bytes of buffer due to a 0.
std::string data;
// 12 bytes of data
for (int i = 0; i < 4; i++) absl::StrAppend(&data, "\370\1\1");
// 13 byte is terminator
data += '\0'; // Terminator
// followed by the rest of the stream
// space is ascii 32 so no end group
data += std::string(30, ' ');
io::ArrayInputStream zcis(data.data(), data.size(), 17);
io::CodedInputStream cis(&zcis);
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
EXPECT_EQ(cis.CurrentPosition(), 3 * 4 + 1);
}
{
// Parser ends in last 16 bytes of buffer due to a end-group.
// Must use a message that is a group. Otherwise ending on a group end is
// a failure.
UNITTEST::TestAllTypes::OptionalGroup msg;
std::string data;
for (int i = 0; i < 3; i++) absl::StrAppend(&data, "\370\1\1");
data += '\14'; // Octal end-group tag 12 (1 * 8 + 4(
data += std::string(30, ' ');
io::ArrayInputStream zcis(data.data(), data.size(), 17);
io::CodedInputStream cis(&zcis);
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
EXPECT_EQ(cis.CurrentPosition(), 3 * 3 + 1);
EXPECT_TRUE(cis.LastTagWas(12));
}
{
// Parser ends in last 16 bytes of buffer due to a end-group. But is inside
// a length delimited field.
// a failure.
UNITTEST::TestAllTypes::OptionalGroup msg;
std::string data = "\22\3foo";
data += '\14'; // Octal end-group tag 12 (1 * 8 + 4(
data += std::string(30, ' ');
io::ArrayInputStream zcis(data.data(), data.size(), 17);
io::CodedInputStream cis(&zcis);
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
EXPECT_EQ(cis.CurrentPosition(), 6);
EXPECT_TRUE(cis.LastTagWas(12));
}
{
// Parser fails when ending on 0 if from ZeroCopyInputStream
UNITTEST::TestAllTypes msg;
std::string data;
// 12 bytes of data
for (int i = 0; i < 4; i++) absl::StrAppend(&data, "\370\1\1");
// 13 byte is terminator
data += '\0'; // Terminator
data += std::string(30, ' ');
io::ArrayInputStream zcis(data.data(), data.size(), 17);
EXPECT_FALSE(msg.ParsePartialFromZeroCopyStream(&zcis));
}
}
TEST(MESSAGE_TEST_NAME, CheckSerializationWhenInterleavedExtensions) {
UNITTEST::TestExtensionRangeSerialize in_message;
in_message.set_foo_one(1);
in_message.set_foo_two(2);
in_message.set_foo_three(3);
in_message.set_foo_four(4);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_one, 1);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_two, 2);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_three, 3);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_four, 4);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_five, 5);
std::string buffer;
in_message.SerializeToString(&buffer);
UNITTEST::TestExtensionRangeSerialize out_message;
out_message.ParseFromString(buffer);
EXPECT_EQ(1, out_message.foo_one());
EXPECT_EQ(2, out_message.foo_two());
EXPECT_EQ(3, out_message.foo_three());
EXPECT_EQ(4, out_message.foo_four());
EXPECT_EQ(1, out_message.GetExtension(
UNITTEST::TestExtensionRangeSerialize::bar_one));
EXPECT_EQ(2, out_message.GetExtension(
UNITTEST::TestExtensionRangeSerialize::bar_two));
EXPECT_EQ(3, out_message.GetExtension(
UNITTEST::TestExtensionRangeSerialize::bar_three));
EXPECT_EQ(4, out_message.GetExtension(
UNITTEST::TestExtensionRangeSerialize::bar_four));
EXPECT_EQ(5, out_message.GetExtension(
UNITTEST::TestExtensionRangeSerialize::bar_five));
}
TEST(MESSAGE_TEST_NAME, PreservesFloatingPointNegative0) {
UNITTEST::TestAllTypes in_message;
in_message.set_optional_float(-0.0f);
in_message.set_optional_double(-0.0);
std::string serialized;
EXPECT_TRUE(in_message.SerializeToString(&serialized));
UNITTEST::TestAllTypes out_message;
EXPECT_TRUE(out_message.ParseFromString(serialized));
EXPECT_EQ(in_message.optional_float(), out_message.optional_float());
EXPECT_EQ(std::signbit(in_message.optional_float()),
std::signbit(out_message.optional_float()));
EXPECT_EQ(in_message.optional_double(), out_message.optional_double());
EXPECT_EQ(std::signbit(in_message.optional_double()),
std::signbit(out_message.optional_double()));
}
TEST(MESSAGE_TEST_NAME,
RegressionTestForParseMessageReadingUninitializedLimit) {
UNITTEST::TestAllTypes in_message;
in_message.mutable_optional_nested_message();
std::string serialized = in_message.SerializeAsString();
// We expect this to have 3 bytes: two for the tag, and one for the zero size.
// Break the size by making it overlong.
ASSERT_EQ(serialized.size(), 3);
serialized.back() = '\200';
serialized += std::string(10, '\200');
EXPECT_FALSE(in_message.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME,
RegressionTestForParseMessageWithSizeBeyondInputFailsToPopLimit) {
UNITTEST::TestAllTypes in_message;
in_message.mutable_optional_nested_message();
std::string serialized = in_message.SerializeAsString();
// We expect this to have 3 bytes: two for the tag, and one for the zero size.
// Make the size a valid varint, but it overflows in the input.
ASSERT_EQ(serialized.size(), 3);
serialized.back() = 10;
EXPECT_FALSE(in_message.ParseFromString(serialized));
}
namespace {
const uint8_t* SkipTag(const uint8_t* buf) {
while (*buf & 0x80) ++buf;
++buf;
return buf;
}
// Adds `non_canonical_bytes` bytes to the varint representation at the tail of
// the buffer.
// `buf` points to the start of the buffer, `p` points to one-past-the-end.
// Returns the new one-past-the-end pointer.
uint8_t* AddNonCanonicalBytes(const uint8_t* buf, uint8_t* p,
int non_canonical_bytes) {
// varint can have a max of 10 bytes.
while (non_canonical_bytes-- > 0 && p - buf < 10) {
// Add a dummy byte at the end.
p[-1] |= 0x80;
p[0] = 0;
++p;
}
return p;
}
std::string EncodeBoolValue(int number, bool value, int non_canonical_bytes) {
uint8_t buf[100];
uint8_t* p = buf;
p = internal::WireFormatLite::WriteBoolToArray(number, value, p);
p = AddNonCanonicalBytes(SkipTag(buf), p, non_canonical_bytes);
return std::string(buf, p);
}
std::string EncodeEnumValue(int number, int value, int non_canonical_bytes,
bool use_packed) {
uint8_t buf[100];
uint8_t* p = buf;
if (use_packed) {
p = internal::WireFormatLite::WriteEnumNoTagToArray(value, p);
p = AddNonCanonicalBytes(buf, p, non_canonical_bytes);
std::string payload(buf, p);
p = buf;
p = internal::WireFormatLite::WriteStringToArray(number, payload, p);
return std::string(buf, p);
} else {
p = internal::WireFormatLite::WriteEnumToArray(number, value, p);
p = AddNonCanonicalBytes(SkipTag(buf), p, non_canonical_bytes);
return std::string(buf, p);
}
}
std::string EncodeOverlongEnum(int number, bool use_packed) {
uint8_t buf[100];
uint8_t* p = buf;
std::string overlong(16, static_cast<char>(0x80));
if (use_packed) {
p = internal::WireFormatLite::WriteStringToArray(number, overlong, p);
return std::string(buf, p);
} else {
p = internal::WireFormatLite::WriteTagToArray(
number, internal::WireFormatLite::WIRETYPE_VARINT, p);
p = std::copy(overlong.begin(), overlong.end(), p);
return std::string(buf, p);
}
}
std::string EncodeInt32Value(int number, int32_t value,
int non_canonical_bytes) {
uint8_t buf[100];
uint8_t* p = buf;
p = internal::WireFormatLite::WriteInt32ToArray(number, value, p);
p = AddNonCanonicalBytes(SkipTag(buf), p, non_canonical_bytes);
return std::string(buf, p);
}
std::string EncodeInt64Value(int number, int64_t value, int non_canonical_bytes,
bool use_packed = false) {
uint8_t buf[100];
uint8_t* p = buf;
if (use_packed) {
p = internal::WireFormatLite::WriteInt64NoTagToArray(value, p);
p = AddNonCanonicalBytes(buf, p, non_canonical_bytes);
std::string payload(buf, p);
p = buf;
p = internal::WireFormatLite::WriteStringToArray(number, payload, p);
return std::string(buf, p);
} else {
p = internal::WireFormatLite::WriteInt64ToArray(number, value, p);
p = AddNonCanonicalBytes(SkipTag(buf), p, non_canonical_bytes);
return std::string(buf, p);
}
}
std::string EncodeOtherField() {
UNITTEST::EnumParseTester obj;
obj.set_other_field(1);
return obj.SerializeAsString();
}
template <typename T>
static std::vector<const FieldDescriptor*> GetFields() {
auto* descriptor = T::descriptor();
std::vector<const FieldDescriptor*> fields;
for (int i = 0; i < descriptor->field_count(); ++i) {
fields.push_back(descriptor->field(i));
}
for (int i = 0; i < descriptor->extension_count(); ++i) {
fields.push_back(descriptor->extension(i));
}
return fields;
}
} // namespace
TEST(MESSAGE_TEST_NAME, TestEnumParsers) {
UNITTEST::EnumParseTester obj;
const auto other_field = EncodeOtherField();
// Encode an enum field for many different cases and verify that it can be
// parsed as expected.
// There are:
// - optional/repeated/packed fields
// - field tags that encode in 1/2/3 bytes
// - canonical and non-canonical encodings of the varint
// - last vs not last field
// - label combinations to trigger different parsers: sequential, small
// sequential, non-validated.
const std::vector<const FieldDescriptor*> fields =
GetFields<UNITTEST::EnumParseTester>();
constexpr int kInvalidValue = 0x900913;
auto* ref = obj.GetReflection();
PROTOBUF_UNUSED auto* descriptor = obj.descriptor();
for (bool use_packed : {false, true}) {
SCOPED_TRACE(use_packed);
for (bool use_tail_field : {false, true}) {
SCOPED_TRACE(use_tail_field);
for (int non_canonical_bytes = 0; non_canonical_bytes < 9;
++non_canonical_bytes) {
SCOPED_TRACE(non_canonical_bytes);
for (bool add_garbage_bits : {false, true}) {
if (add_garbage_bits && non_canonical_bytes != 9) {
// We only add garbage on the 10th byte.
continue;
}
SCOPED_TRACE(add_garbage_bits);
for (auto field : fields) {
if (field->name() == "other_field") continue;
if (!field->is_repeated() && use_packed) continue;
SCOPED_TRACE(field->full_name());
const auto* enum_desc = field->enum_type();
for (int e = 0; e < enum_desc->value_count(); ++e) {
const auto* value_desc = enum_desc->value(e);
if (value_desc->number() < 0 && non_canonical_bytes > 0) {
// Negative numbers only have a canonical representation.
continue;
}
SCOPED_TRACE(value_desc->number());
ABSL_CHECK_NE(value_desc->number(), kInvalidValue)
<< "Invalid value is a real label.";
auto encoded =
EncodeEnumValue(field->number(), value_desc->number(),
non_canonical_bytes, use_packed);
if (add_garbage_bits) {
// These bits should be discarded even in the `false` case.
encoded.back() |= 0b0111'1110;
}
if (use_tail_field) {
// Make sure that fields after this one can be parsed too. ie
// test that the "next" jump is correct too.
encoded += other_field;
}
EXPECT_TRUE(obj.ParseFromString(encoded));
if (field->is_repeated()) {
ASSERT_EQ(ref->FieldSize(obj, field), 1);
EXPECT_EQ(ref->GetRepeatedEnumValue(obj, field, 0),
value_desc->number());
} else {
EXPECT_TRUE(ref->HasField(obj, field));
EXPECT_EQ(ref->GetEnumValue(obj, field), value_desc->number());
}
auto& unknown = ref->GetUnknownFields(obj);
ASSERT_EQ(unknown.field_count(), 0);
}
{
SCOPED_TRACE("Invalid value");
// Try an invalid value, which should go to the unknown fields.
EXPECT_TRUE(obj.ParseFromString(
EncodeEnumValue(field->number(), kInvalidValue,
non_canonical_bytes, use_packed)));
if (field->is_repeated()) {
ASSERT_EQ(ref->FieldSize(obj, field), 0);
} else {
EXPECT_FALSE(ref->HasField(obj, field));
EXPECT_EQ(ref->GetEnumValue(obj, field),
enum_desc->value(0)->number());
}
auto& unknown = ref->GetUnknownFields(obj);
ASSERT_EQ(unknown.field_count(), 1);
EXPECT_EQ(unknown.field(0).number(), field->number());
EXPECT_EQ(unknown.field(0).type(), unknown.field(0).TYPE_VARINT);
EXPECT_EQ(unknown.field(0).varint(), kInvalidValue);
}
{
SCOPED_TRACE("Overlong varint");
// Try an overlong varint. It should fail parsing, but not trigger
// any sanitizer warning.
EXPECT_FALSE(obj.ParseFromString(
EncodeOverlongEnum(field->number(), use_packed)));
}
}
}
}
}
}
}
TEST(MESSAGE_TEST_NAME, TestEnumParserForUnknownEnumValue) {
DynamicMessageFactory factory;
std::unique_ptr<Message> dynamic(
factory.GetPrototype(UNITTEST::EnumParseTester::descriptor())->New());
UNITTEST::EnumParseTester non_dynamic;
// For unknown enum values, for consistency we must include the
// int32_t enum value in the unknown field set, which might not be exactly the
// same as the input.
PROTOBUF_UNUSED auto* descriptor = non_dynamic.descriptor();
const std::vector<const FieldDescriptor*> fields =
GetFields<UNITTEST::EnumParseTester>();
for (bool use_dynamic : {false, true}) {
SCOPED_TRACE(use_dynamic);
for (auto field : fields) {
if (field->name() == "other_field") continue;
SCOPED_TRACE(field->full_name());
for (bool use_packed : {false, true}) {
SCOPED_TRACE(use_packed);
if (!field->is_repeated() && use_packed) continue;
// -2 is an invalid enum value on all the tests here.
// We will encode -2 as a positive int64 that is equivalent to
// int32_t{-2} when truncated.
constexpr int64_t minus_2_non_canonical =
static_cast<int64_t>(static_cast<uint32_t>(int32_t{-2}));
static_assert(minus_2_non_canonical != -2, "");
std::string encoded = EncodeInt64Value(
field->number(), minus_2_non_canonical, 0, use_packed);
auto& obj = use_dynamic ? *dynamic : non_dynamic;
ASSERT_TRUE(obj.ParseFromString(encoded));
auto& unknown = obj.GetReflection()->GetUnknownFields(obj);
ASSERT_EQ(unknown.field_count(), 1);
EXPECT_EQ(unknown.field(0).number(), field->number());
EXPECT_EQ(unknown.field(0).type(), unknown.field(0).TYPE_VARINT);
EXPECT_EQ(unknown.field(0).varint(), int64_t{-2});
}
}
}
}
TEST(MESSAGE_TEST_NAME, TestBoolParsers) {
UNITTEST::BoolParseTester obj;
const auto other_field = EncodeOtherField();
// Encode a boolean field for many different cases and verify that it can be
// parsed as expected.
// There are:
// - optional/repeated/packed fields
// - field tags that encode in 1/2/3 bytes
// - canonical and non-canonical encodings of the varint
// - last vs not last field
const std::vector<const FieldDescriptor*> fields =
GetFields<UNITTEST::BoolParseTester>();
auto* ref = obj.GetReflection();
PROTOBUF_UNUSED auto* descriptor = obj.descriptor();
for (bool use_tail_field : {false, true}) {
SCOPED_TRACE(use_tail_field);
for (int non_canonical_bytes = 0; non_canonical_bytes < 10;
++non_canonical_bytes) {
SCOPED_TRACE(non_canonical_bytes);
for (bool add_garbage_bits : {false, true}) {
if (add_garbage_bits && non_canonical_bytes != 9) {
// We only add garbage on the 10th byte.
continue;
}
SCOPED_TRACE(add_garbage_bits);
for (auto field : fields) {
if (field->name() == "other_field") continue;
SCOPED_TRACE(field->full_name());
for (bool value : {false, true}) {
SCOPED_TRACE(value);
auto encoded =
EncodeBoolValue(field->number(), value, non_canonical_bytes);
if (add_garbage_bits) {
// These bits should be discarded even in the `false` case.
encoded.back() |= 0b0111'1110;
}
if (use_tail_field) {
// Make sure that fields after this one can be parsed too. ie test
// that the "next" jump is correct too.
encoded += other_field;
}
EXPECT_TRUE(obj.ParseFromString(encoded));
if (field->is_repeated()) {
ASSERT_EQ(ref->FieldSize(obj, field), 1);
EXPECT_EQ(ref->GetRepeatedBool(obj, field, 0), value);
} else {
EXPECT_TRUE(ref->HasField(obj, field));
EXPECT_EQ(ref->GetBool(obj, field), value)
<< testing::PrintToString(encoded);
}
auto& unknown = ref->GetUnknownFields(obj);
ASSERT_EQ(unknown.field_count(), 0);
}
}
}
}
}
}
TEST(MESSAGE_TEST_NAME, TestInt32Parsers) {
UNITTEST::Int32ParseTester obj;
const auto other_field = EncodeOtherField();
// Encode an int32 field for many different cases and verify that it can be
// parsed as expected.
// There are:
// - optional/repeated/packed fields
// - field tags that encode in 1/2/3 bytes
// - canonical and non-canonical encodings of the varint
// - last vs not last field
const std::vector<const FieldDescriptor*> fields =
GetFields<UNITTEST::Int32ParseTester>();
auto* ref = obj.GetReflection();
PROTOBUF_UNUSED auto* descriptor = obj.descriptor();
for (bool use_tail_field : {false, true}) {
SCOPED_TRACE(use_tail_field);
for (int non_canonical_bytes = 0; non_canonical_bytes < 10;
++non_canonical_bytes) {
SCOPED_TRACE(non_canonical_bytes);
for (bool add_garbage_bits : {false, true}) {
if (add_garbage_bits && non_canonical_bytes != 9) {
// We only add garbage on the 10th byte.
continue;
}
SCOPED_TRACE(add_garbage_bits);
for (auto field : fields) {
if (field->name() == "other_field") continue;
SCOPED_TRACE(field->full_name());
for (int32_t value : {1, 0, -1, (std::numeric_limits<int32_t>::min)(),
(std::numeric_limits<int32_t>::max)()}) {
SCOPED_TRACE(value);
auto encoded =
EncodeInt32Value(field->number(), value, non_canonical_bytes);
if (add_garbage_bits) {
// These bits should be discarded even in the `false` case.
encoded.back() |= 0b0111'1110;
}
if (use_tail_field) {
// Make sure that fields after this one can be parsed too. ie test
// that the "next" jump is correct too.
encoded += other_field;
}
EXPECT_TRUE(obj.ParseFromString(encoded));
if (field->is_repeated()) {
ASSERT_EQ(ref->FieldSize(obj, field), 1);
EXPECT_EQ(ref->GetRepeatedInt32(obj, field, 0), value);
} else {
EXPECT_TRUE(ref->HasField(obj, field));
EXPECT_EQ(ref->GetInt32(obj, field), value)
<< testing::PrintToString(encoded);
}
auto& unknown = ref->GetUnknownFields(obj);
ASSERT_EQ(unknown.field_count(), 0);
}
}
}
}
}
}
TEST(MESSAGE_TEST_NAME, TestInt64Parsers) {
UNITTEST::Int64ParseTester obj;
const auto other_field = EncodeOtherField();
// Encode an int64 field for many different cases and verify that it can be
// parsed as expected.
// There are:
// - optional/repeated/packed fields
// - field tags that encode in 1/2/3 bytes
// - canonical and non-canonical encodings of the varint
// - last vs not last field
const std::vector<const FieldDescriptor*> fields =
GetFields<UNITTEST::Int64ParseTester>();
auto* ref = obj.GetReflection();
PROTOBUF_UNUSED auto* descriptor = obj.descriptor();
for (bool use_tail_field : {false, true}) {
SCOPED_TRACE(use_tail_field);
for (int non_canonical_bytes = 0; non_canonical_bytes < 10;
++non_canonical_bytes) {
SCOPED_TRACE(non_canonical_bytes);
for (bool add_garbage_bits : {false, true}) {
if (add_garbage_bits && non_canonical_bytes != 9) {
// We only add garbage on the 10th byte.
continue;
}
SCOPED_TRACE(add_garbage_bits);
for (auto field : fields) {
if (field->name() == "other_field") continue;
SCOPED_TRACE(field->full_name());
for (int64_t value : {int64_t{1}, int64_t{0}, int64_t{-1},
(std::numeric_limits<int64_t>::min)(),
(std::numeric_limits<int64_t>::max)()}) {
SCOPED_TRACE(value);
auto encoded =
EncodeInt64Value(field->number(), value, non_canonical_bytes);
if (add_garbage_bits) {
// These bits should be discarded even in the `false` case.
encoded.back() |= 0b0111'1110;
}
if (use_tail_field) {
// Make sure that fields after this one can be parsed too. ie test
// that the "next" jump is correct too.
encoded += other_field;
}
EXPECT_TRUE(obj.ParseFromString(encoded));
if (field->is_repeated()) {
ASSERT_EQ(ref->FieldSize(obj, field), 1);
EXPECT_EQ(ref->GetRepeatedInt64(obj, field, 0), value);
} else {
EXPECT_TRUE(ref->HasField(obj, field));
EXPECT_EQ(ref->GetInt64(obj, field), value)
<< testing::PrintToString(encoded);
}
auto& unknown = ref->GetUnknownFields(obj);
ASSERT_EQ(unknown.field_count(), 0);
}
}
}
}
}
}
TEST(MESSAGE_TEST_NAME, IsDefaultInstance) {
UNITTEST::TestAllTypes msg;
const auto& default_msg = UNITTEST::TestAllTypes::default_instance();
const auto* r = msg.GetReflection();
EXPECT_TRUE(r->IsDefaultInstance(default_msg));
EXPECT_FALSE(r->IsDefaultInstance(msg));
}
namespace {
std::string EncodeStringValue(int number, const std::string& value) {
uint8_t buf[100];
return std::string(
buf, internal::WireFormatLite::WriteStringToArray(number, value, buf));
}
class TestInputStream final : public io::ZeroCopyInputStream {
public:
explicit TestInputStream(absl::string_view payload, size_t break_pos)
: payload_(payload), break_pos_(break_pos) {}
bool Next(const void** data, int* size) override {
if (payload_.empty()) return false;
const auto to_consume = payload_.substr(0, break_pos_);
*data = to_consume.data();
*size = to_consume.size();
payload_.remove_prefix(to_consume.size());
// The next time will consume the rest.
break_pos_ = payload_.npos;
return true;
}
void BackUp(int) override { ABSL_CHECK(false); }
bool Skip(int) override {
ABSL_CHECK(false);
return false;
}
int64_t ByteCount() const override {
ABSL_CHECK(false);
return 0;
}
private:
absl::string_view payload_;
size_t break_pos_;
};
} // namespace
TEST(MESSAGE_TEST_NAME, TestRepeatedStringParsers) {
google::protobuf::Arena arena;
const std::string sample =
"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
PROTOBUF_UNUSED const auto* const descriptor =
UNITTEST::StringParseTester::descriptor();
const std::vector<const FieldDescriptor*> fields =
GetFields<UNITTEST::StringParseTester>();
static const size_t sso_capacity = std::string().capacity();
if (sso_capacity == 0) GTEST_SKIP();
// SSO, !SSO, and off-by-one just in case
for (size_t size :
{sso_capacity - 1, sso_capacity, sso_capacity + 1, sso_capacity + 2}) {
SCOPED_TRACE(size);
const std::string value = sample.substr(0, size);
for (auto field : fields) {
SCOPED_TRACE(field->full_name());
const auto encoded = EncodeStringValue(field->number(), sample) +
EncodeStringValue(field->number(), value);
// Check for different breaks in the input stream to test cases where
// the payload can be read and can't be read in one go.
for (size_t i = 1; i <= encoded.size(); ++i) {
TestInputStream input_stream(encoded, i);
auto& obj = *arena.Create<UNITTEST::StringParseTester>(&arena);
auto* ref = obj.GetReflection();
EXPECT_TRUE(obj.ParseFromZeroCopyStream(&input_stream));
if (field->is_repeated()) {
ASSERT_EQ(ref->FieldSize(obj, field), 2);
EXPECT_EQ(ref->GetRepeatedString(obj, field, 0), sample);
EXPECT_EQ(ref->GetRepeatedString(obj, field, 1), value);
} else {
EXPECT_EQ(ref->GetString(obj, field), value);
}
}
}
}
}
TEST(MESSAGE_TEST_NAME, TestRegressionOnParseFailureNotSettingHasBits) {
std::string single_field;
// We use blocks because we want fully new instances of the proto. We are
// testing .Clear(), so we can't use it to set up the test.
{
UNITTEST::TestAllTypes message;
message.set_optional_int32(17);
single_field = message.SerializeAsString();
}
const auto validate_message = [](auto& message) {
if (!message.has_optional_int32()) {
EXPECT_EQ(message.optional_int32(), 0);
}
message.Clear();
EXPECT_FALSE(message.has_optional_int32());
EXPECT_EQ(message.optional_int32(), 0);
};
{
// Verify the setup is correct.
UNITTEST::TestAllTypes message;
EXPECT_FALSE(message.has_optional_int32());
EXPECT_EQ(message.optional_int32(), 0);
EXPECT_TRUE(message.ParseFromString(single_field));
validate_message(message);
}
{
// Run the regression.
// These are the steps:
// - The stream contains a fast field, and then a failure in MiniParse
// - The parsing fails.
// - We call clear.
// - The fast field should be reset.
UNITTEST::TestAllTypes message;
EXPECT_FALSE(message.has_optional_int32());
EXPECT_EQ(message.optional_int32(), 0);
// The second tag will fail to parse because it has too many continuation
// bits.
auto with_error =
absl::StrCat(single_field, std::string(100, static_cast<char>(0x80)));
EXPECT_FALSE(message.ParseFromString(with_error));
validate_message(message);
}
}
TEST(MESSAGE_TEST_NAME, TestRegressionOverwrittenLazyOneofDoesNotLeak) {
UNITTEST::TestAllTypes message;
auto* lazy = message.mutable_oneof_lazy_nested_message();
// We need to add enough payload to make the lazy field overflow the SSO of
// Cord. However, NestedMessage does not have enough fields for that. Just add
// some unknown payload to it. Use something that the validator will allow to
// stay as lazy.
lazy->GetReflection()->MutableUnknownFields(lazy)->AddFixed64(10, 10);
lazy->GetReflection()->MutableUnknownFields(lazy)->AddFixed64(11, 10);
// Validate that the size is large enough.
ASSERT_GT(lazy->ByteSizeLong(), 15);
// Append two instances of the oneof: first the lazy field, then any other to
// cause a switch during parsing.
std::string str;
ASSERT_TRUE(message.AppendToString(&str));
message.set_oneof_uint32(7);
ASSERT_TRUE(message.AppendToString(&str));
EXPECT_TRUE(UNITTEST::TestAllTypes().ParseFromString(str));
Arena arena;
// This call had a bug where the LazyField was not destroyed in any way
// causing the Cord inside it to leak its contents.
EXPECT_TRUE(
Arena::Create<UNITTEST::TestAllTypes>(&arena)->ParseFromString(str));
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"