blob: d2299e67e9f328c1842fd806b7b3fa8a1bedd46d [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#ifndef GOOGLE_PROTOBUF_METADATA_LITE_H__
#define GOOGLE_PROTOBUF_METADATA_LITE_H__
#include <string>
#include "google/protobuf/arena.h"
#include "google/protobuf/port.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class UnknownFieldSet;
namespace internal {
// This is the representation for messages that support arena allocation. It
// uses a tagged pointer to either store the owning Arena pointer, if there are
// no unknown fields, or a pointer to a block of memory with both the owning
// Arena pointer and the UnknownFieldSet, if there are unknown fields. Besides,
// it also uses the tag to distinguish whether the owning Arena pointer is also
// used by sub-structure allocation. This optimization allows for
// "zero-overhead" storage of the Arena pointer, relative to the above baseline
// implementation.
//
// The tagged pointer uses the least two significant bits to disambiguate cases.
// It uses bit 0 == 0 to indicate an arena pointer and bit 0 == 1 to indicate a
// UFS+Arena-container pointer. Besides it uses bit 1 == 0 to indicate arena
// allocation and bit 1 == 1 to indicate heap allocation.
class PROTOBUF_EXPORT InternalMetadata {
public:
constexpr InternalMetadata() : ptr_(0) {}
explicit InternalMetadata(Arena* arena) {
ptr_ = reinterpret_cast<intptr_t>(arena);
}
// Delete will delete the unknown fields only if they weren't allocated on an
// arena. Then it updates the flags so that if you call
// have_unknown_fields(), it will return false.
//
// It is designed to be used as part of a Message class's destructor call, so
// that when control eventually gets to ~InternalMetadata(), we don't need to
// check for have_unknown_fields() again.
template <typename T>
void Delete() {
// Note that Delete<> should be called not more than once.
if (have_unknown_fields()) {
DeleteOutOfLineHelper<T>();
}
}
PROTOBUF_NDEBUG_INLINE Arena* arena() const {
if (PROTOBUF_PREDICT_FALSE(have_unknown_fields())) {
return PtrValue<ContainerBase>()->arena;
} else {
return PtrValue<Arena>();
}
}
PROTOBUF_NDEBUG_INLINE bool have_unknown_fields() const {
return HasUnknownFieldsTag();
}
PROTOBUF_NDEBUG_INLINE void* raw_arena_ptr() const {
return reinterpret_cast<void*>(ptr_);
}
template <typename T>
PROTOBUF_NDEBUG_INLINE const T& unknown_fields(
const T& (*default_instance)()) const {
if (PROTOBUF_PREDICT_FALSE(have_unknown_fields())) {
return PtrValue<Container<T>>()->unknown_fields;
} else {
return default_instance();
}
}
template <typename T>
PROTOBUF_NDEBUG_INLINE T* mutable_unknown_fields() {
if (PROTOBUF_PREDICT_TRUE(have_unknown_fields())) {
return &PtrValue<Container<T>>()->unknown_fields;
} else {
return mutable_unknown_fields_slow<T>();
}
}
template <typename T>
PROTOBUF_NDEBUG_INLINE void Swap(InternalMetadata* other) {
// Semantics here are that we swap only the unknown fields, not the arena
// pointer. We cannot simply swap ptr_ with other->ptr_ because we need to
// maintain our own arena ptr. Also, our ptr_ and other's ptr_ may be in
// different states (direct arena pointer vs. container with UFS) so we
// cannot simply swap ptr_ and then restore the arena pointers. We reuse
// UFS's swap implementation instead.
if (have_unknown_fields() || other->have_unknown_fields()) {
DoSwap<T>(other->mutable_unknown_fields<T>());
}
}
PROTOBUF_NDEBUG_INLINE void InternalSwap(
InternalMetadata* PROTOBUF_RESTRICT other) {
std::swap(ptr_, other->ptr_);
}
template <typename T>
PROTOBUF_NDEBUG_INLINE void MergeFrom(const InternalMetadata& other) {
if (other.have_unknown_fields()) {
DoMergeFrom<T>(other.unknown_fields<T>(nullptr));
}
}
template <typename T>
PROTOBUF_NDEBUG_INLINE void Clear() {
if (have_unknown_fields()) {
DoClear<T>();
}
}
private:
intptr_t ptr_;
// Tagged pointer implementation.
static constexpr intptr_t kUnknownFieldsTagMask = 1;
static constexpr intptr_t kPtrTagMask = kUnknownFieldsTagMask;
static constexpr intptr_t kPtrValueMask = ~kPtrTagMask;
// Accessors for pointer tag and pointer value.
PROTOBUF_ALWAYS_INLINE bool HasUnknownFieldsTag() const {
return ptr_ & kUnknownFieldsTagMask;
}
template <typename U>
U* PtrValue() const {
return reinterpret_cast<U*>(ptr_ & kPtrValueMask);
}
// If ptr_'s tag is kTagContainer, it points to an instance of this struct.
struct ContainerBase {
Arena* arena;
};
template <typename T>
struct Container : public ContainerBase {
T unknown_fields;
};
template <typename T>
PROTOBUF_NOINLINE void DeleteOutOfLineHelper() {
delete PtrValue<Container<T>>();
// TODO: This store is load-bearing. Since we are destructing
// the message at this point, see if we can eliminate it.
ptr_ = 0;
}
template <typename T>
PROTOBUF_NOINLINE T* mutable_unknown_fields_slow() {
Arena* my_arena = arena();
Container<T>* container = Arena::Create<Container<T>>(my_arena);
// Two-step assignment works around a bug in clang's static analyzer:
// https://bugs.llvm.org/show_bug.cgi?id=34198.
ptr_ = reinterpret_cast<intptr_t>(container);
ptr_ |= kUnknownFieldsTagMask;
container->arena = my_arena;
return &(container->unknown_fields);
}
// Templated functions.
template <typename T>
PROTOBUF_NOINLINE void DoClear() {
mutable_unknown_fields<T>()->Clear();
}
template <typename T>
PROTOBUF_NOINLINE void DoMergeFrom(const T& other) {
mutable_unknown_fields<T>()->MergeFrom(other);
}
template <typename T>
PROTOBUF_NOINLINE void DoSwap(T* other) {
mutable_unknown_fields<T>()->Swap(other);
}
// Private helper with debug checks for ~InternalMetadata()
void CheckedDestruct();
};
// String Template specializations.
template <>
PROTOBUF_EXPORT void InternalMetadata::DoClear<std::string>();
template <>
PROTOBUF_EXPORT void InternalMetadata::DoMergeFrom<std::string>(
const std::string& other);
template <>
PROTOBUF_EXPORT void InternalMetadata::DoSwap<std::string>(std::string* other);
// Instantiated once in message.cc (where the definition of UnknownFieldSet is
// known) to prevent much duplication across translation units of a large build.
extern template PROTOBUF_EXPORT void
InternalMetadata::DoClear<UnknownFieldSet>();
extern template PROTOBUF_EXPORT void
InternalMetadata::DoMergeFrom<UnknownFieldSet>(const UnknownFieldSet& other);
extern template PROTOBUF_EXPORT void
InternalMetadata::DoSwap<UnknownFieldSet>(UnknownFieldSet* other);
extern template PROTOBUF_EXPORT void
InternalMetadata::DeleteOutOfLineHelper<UnknownFieldSet>();
extern template PROTOBUF_EXPORT UnknownFieldSet*
InternalMetadata::mutable_unknown_fields_slow<UnknownFieldSet>();
// This helper RAII class is needed to efficiently parse unknown fields. We
// should only call mutable_unknown_fields if there are actual unknown fields.
// The obvious thing to just use a stack string and swap it at the end of
// the parse won't work, because the destructor of StringOutputStream needs to
// be called before we can modify the string (it check-fails). Using
// LiteUnknownFieldSetter setter(&_internal_metadata_);
// StringOutputStream stream(setter.buffer());
// guarantees that the string is only swapped after stream is destroyed.
class PROTOBUF_EXPORT LiteUnknownFieldSetter {
public:
explicit LiteUnknownFieldSetter(InternalMetadata* metadata)
: metadata_(metadata) {
if (metadata->have_unknown_fields()) {
buffer_.swap(*metadata->mutable_unknown_fields<std::string>());
}
}
~LiteUnknownFieldSetter() {
if (!buffer_.empty())
metadata_->mutable_unknown_fields<std::string>()->swap(buffer_);
}
std::string* buffer() { return &buffer_; }
private:
InternalMetadata* metadata_;
std::string buffer_;
};
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_METADATA_LITE_H__