| // Protocol Buffers - Google's data interchange format |
| // Copyright 2023 Google LLC. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| /* |
| * upb_table Implementation |
| * |
| * Implementation is heavily inspired by Lua's ltable.c. |
| */ |
| |
| #include "upb/hash/common.h" |
| |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include "upb/base/internal/log2.h" |
| #include "upb/base/string_view.h" |
| #include "upb/hash/int_table.h" |
| #include "upb/hash/str_table.h" |
| #include "upb/mem/arena.h" |
| |
| // Must be last. |
| #include "upb/port/def.inc" |
| |
| #define UPB_MAXARRSIZE 16 // 2**16 = 64k. |
| |
| // From Chromium. |
| #define ARRAY_SIZE(x) \ |
| ((sizeof(x) / sizeof(0 [x])) / ((size_t)(!(sizeof(x) % sizeof(0 [x]))))) |
| |
| /* The minimum utilization of the array part of a mixed hash/array table. This |
| * is a speed/memory-usage tradeoff (though it's not straightforward because of |
| * cache effects). The lower this is, the more memory we'll use. */ |
| static const double MIN_DENSITY = 0.1; |
| |
| #if defined(__has_builtin) |
| #if __has_builtin(__builtin_popcount) |
| #define UPB_FAST_POPCOUNT32(i) __builtin_popcount(i) |
| #endif |
| #elif defined(__GNUC__) |
| #define UPB_FAST_POPCOUNT32(i) __builtin_popcount(i) |
| #elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) |
| // Only use __popcnt on x86/x64 architectures for MSVC |
| #define UPB_FAST_POPCOUNT32(i) __popcnt(i) |
| #endif |
| |
| UPB_INLINE int _upb_popcnt32(uint32_t i) { |
| #ifdef UPB_FAST_POPCOUNT32 |
| return UPB_FAST_POPCOUNT32(i); |
| #else |
| int count = 0; |
| while (i != 0) { |
| count += i & 1; |
| i >>= 1; |
| } |
| return count; |
| #endif |
| } |
| |
| #undef UPB_FAST_POPCOUNT32 |
| |
| UPB_INLINE uint8_t _upb_log2_table_size(upb_table* t) { |
| return _upb_popcnt32(t->mask); |
| } |
| |
| static bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } |
| |
| static int log2ceil(uint64_t v) { |
| int ret = 0; |
| bool pow2 = is_pow2(v); |
| while (v >>= 1) ret++; |
| ret = pow2 ? ret : ret + 1; // Ceiling. |
| return UPB_MIN(UPB_MAXARRSIZE, ret); |
| } |
| |
| /* A type to represent the lookup key of either a strtable or an inttable. */ |
| typedef union { |
| uintptr_t num; |
| upb_StringView str; |
| } lookupkey_t; |
| |
| static lookupkey_t strkey2(const char* str, size_t len) { |
| return (lookupkey_t){.str = upb_StringView_FromDataAndSize(str, len)}; |
| } |
| |
| static lookupkey_t intkey(uintptr_t key) { return (lookupkey_t){.num = key}; } |
| |
| typedef uint32_t hashfunc_t(upb_key key); |
| typedef bool eqlfunc_t(upb_key k1, lookupkey_t k2); |
| |
| /* Base table (shared code) ***************************************************/ |
| |
| static uint32_t upb_inthash(uintptr_t key) { |
| if (sizeof(uintptr_t) == 8) { |
| return (uint32_t)key ^ (uint32_t)(key >> 32); |
| } else { |
| UPB_ASSERT(sizeof(uintptr_t) == 4); |
| return (uint32_t)key; |
| } |
| } |
| |
| static const upb_tabent* upb_getentry(const upb_table* t, uint32_t hash) { |
| return t->entries + (hash & t->mask); |
| } |
| |
| static bool isfull(upb_table* t) { |
| uint32_t size = upb_table_size(t); |
| // 0.875 load factor |
| return t->count == (size - (size >> 3)); |
| } |
| |
| static bool init(upb_table* t, uint8_t size_lg2, upb_Arena* a) { |
| if (size_lg2 >= 32) { |
| return false; |
| } |
| t->count = 0; |
| uint32_t size = 1 << size_lg2; |
| t->mask = size - 1; // 0 mask if size_lg2 is 0 |
| if (upb_table_size(t) > (SIZE_MAX / sizeof(upb_tabent))) { |
| return false; |
| } |
| size_t bytes = upb_table_size(t) * sizeof(upb_tabent); |
| if (bytes > 0) { |
| t->entries = upb_Arena_Malloc(a, bytes); |
| if (!t->entries) return false; |
| memset(t->entries, 0, bytes); |
| } else { |
| t->entries = NULL; |
| } |
| return true; |
| } |
| |
| static upb_tabent* emptyent(upb_table* t, upb_tabent* e) { |
| upb_tabent* begin = t->entries; |
| upb_tabent* end = begin + upb_table_size(t); |
| for (e = e + 1; e < end; e++) { |
| if (upb_tabent_isempty(e)) return e; |
| } |
| for (e = begin; e < end; e++) { |
| if (upb_tabent_isempty(e)) return e; |
| } |
| UPB_ASSERT(false); |
| return NULL; |
| } |
| |
| static upb_tabent* getentry_mutable(upb_table* t, uint32_t hash) { |
| return (upb_tabent*)upb_getentry(t, hash); |
| } |
| |
| static const upb_tabent* findentry(const upb_table* t, lookupkey_t key, |
| uint32_t hash, eqlfunc_t* eql) { |
| const upb_tabent* e; |
| |
| if (t->count == 0) return NULL; |
| e = upb_getentry(t, hash); |
| if (upb_tabent_isempty(e)) return NULL; |
| while (1) { |
| if (eql(e->key, key)) return e; |
| if ((e = e->next) == NULL) return NULL; |
| } |
| } |
| |
| static upb_tabent* findentry_mutable(upb_table* t, lookupkey_t key, |
| uint32_t hash, eqlfunc_t* eql) { |
| return (upb_tabent*)findentry(t, key, hash, eql); |
| } |
| |
| static bool lookup(const upb_table* t, lookupkey_t key, upb_value* v, |
| uint32_t hash, eqlfunc_t* eql) { |
| const upb_tabent* e = findentry(t, key, hash, eql); |
| if (e) { |
| if (v) *v = e->val; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| /* The given key must not already exist in the table. */ |
| static void insert(upb_table* t, lookupkey_t key, upb_key tabkey, upb_value val, |
| uint32_t hash, hashfunc_t* hashfunc, eqlfunc_t* eql) { |
| upb_tabent* mainpos_e; |
| upb_tabent* our_e; |
| |
| UPB_ASSERT(findentry(t, key, hash, eql) == NULL); |
| |
| t->count++; |
| mainpos_e = getentry_mutable(t, hash); |
| our_e = mainpos_e; |
| |
| if (upb_tabent_isempty(mainpos_e)) { |
| /* Our main position is empty; use it. */ |
| our_e->next = NULL; |
| } else { |
| /* Collision. */ |
| upb_tabent* new_e = emptyent(t, mainpos_e); |
| /* Head of collider's chain. */ |
| upb_tabent* chain = getentry_mutable(t, hashfunc(mainpos_e->key)); |
| if (chain == mainpos_e) { |
| /* Existing ent is in its main position (it has the same hash as us, and |
| * is the head of our chain). Insert to new ent and append to this chain. |
| */ |
| new_e->next = mainpos_e->next; |
| mainpos_e->next = new_e; |
| our_e = new_e; |
| } else { |
| /* Existing ent is not in its main position (it is a node in some other |
| * chain). This implies that no existing ent in the table has our hash. |
| * Evict it (updating its chain) and use its ent for head of our chain. */ |
| *new_e = *mainpos_e; /* copies next. */ |
| while (chain->next != mainpos_e) { |
| chain = (upb_tabent*)chain->next; |
| UPB_ASSERT(chain); |
| } |
| chain->next = new_e; |
| our_e = mainpos_e; |
| our_e->next = NULL; |
| } |
| } |
| our_e->key = tabkey; |
| our_e->val = val; |
| UPB_ASSERT(findentry(t, key, hash, eql) == our_e); |
| } |
| |
| static bool rm(upb_table* t, lookupkey_t key, upb_value* val, uint32_t hash, |
| eqlfunc_t* eql) { |
| upb_tabent* chain = getentry_mutable(t, hash); |
| if (upb_tabent_isempty(chain)) return false; |
| if (eql(chain->key, key)) { |
| /* Element to remove is at the head of its chain. */ |
| t->count--; |
| if (val) *val = chain->val; |
| if (chain->next) { |
| upb_tabent* move = (upb_tabent*)chain->next; |
| *chain = *move; |
| move->key = upb_key_empty(); |
| } else { |
| chain->key = upb_key_empty(); |
| } |
| return true; |
| } else { |
| /* Element to remove is either in a non-head position or not in the |
| * table. */ |
| while (chain->next && !eql(chain->next->key, key)) { |
| chain = (upb_tabent*)chain->next; |
| } |
| if (chain->next) { |
| /* Found element to remove. */ |
| upb_tabent* rm = (upb_tabent*)chain->next; |
| t->count--; |
| if (val) *val = chain->next->val; |
| rm->key = upb_key_empty(); |
| chain->next = rm->next; |
| return true; |
| } else { |
| /* Element to remove is not in the table. */ |
| return false; |
| } |
| } |
| } |
| |
| static size_t next(const upb_table* t, size_t i) { |
| do { |
| if (++i >= upb_table_size(t)) return SIZE_MAX - 1; /* Distinct from -1. */ |
| } while (upb_tabent_isempty(&t->entries[i])); |
| |
| return i; |
| } |
| |
| static size_t begin(const upb_table* t) { return next(t, -1); } |
| |
| /* upb_strtable ***************************************************************/ |
| |
| // A simple "subclass" of upb_table that only adds a hash function for strings. |
| |
| static upb_SizePrefixString* upb_SizePrefixString_Copy(upb_StringView s, |
| upb_Arena* a) { |
| // A 2GB string will fail at serialization time, but we accept up to 4GB in |
| // memory here. |
| if (s.size > UINT32_MAX) return NULL; |
| upb_SizePrefixString* str = |
| upb_Arena_Malloc(a, sizeof(uint32_t) + s.size + 1); |
| if (str == NULL) return NULL; |
| str->size = s.size; |
| char* data = (char*)str->data; |
| if (s.size) memcpy(data, s.data, s.size); |
| data[s.size] = '\0'; |
| return str; |
| } |
| |
| /* Adapted from ABSL's wyhash. */ |
| |
| static uint64_t UnalignedLoad64(const void* p) { |
| uint64_t val; |
| memcpy(&val, p, 8); |
| return val; |
| } |
| |
| static uint32_t UnalignedLoad32(const void* p) { |
| uint32_t val; |
| memcpy(&val, p, 4); |
| return val; |
| } |
| |
| #if defined(_MSC_VER) && defined(_M_X64) |
| #include <intrin.h> |
| #endif |
| |
| /* Computes a * b, returning the low 64 bits of the result and storing the high |
| * 64 bits in |*high|. */ |
| static uint64_t upb_umul128(uint64_t v0, uint64_t v1, uint64_t* out_high) { |
| #ifdef __SIZEOF_INT128__ |
| __uint128_t p = v0; |
| p *= v1; |
| *out_high = (uint64_t)(p >> 64); |
| return (uint64_t)p; |
| #elif defined(_MSC_VER) && defined(_M_X64) |
| return _umul128(v0, v1, out_high); |
| #else |
| uint64_t a32 = v0 >> 32; |
| uint64_t a00 = v0 & 0xffffffff; |
| uint64_t b32 = v1 >> 32; |
| uint64_t b00 = v1 & 0xffffffff; |
| uint64_t high = a32 * b32; |
| uint64_t low = a00 * b00; |
| uint64_t mid1 = a32 * b00; |
| uint64_t mid2 = a00 * b32; |
| low += (mid1 << 32) + (mid2 << 32); |
| // Omit carry bit, for mixing we do not care about exact numerical precision. |
| high += (mid1 >> 32) + (mid2 >> 32); |
| *out_high = high; |
| return low; |
| #endif |
| } |
| |
| static uint64_t WyhashMix(uint64_t v0, uint64_t v1) { |
| uint64_t high; |
| uint64_t low = upb_umul128(v0, v1, &high); |
| return low ^ high; |
| } |
| |
| static uint64_t Wyhash(const void* data, size_t len, uint64_t seed, |
| const uint64_t salt[]) { |
| const uint8_t* ptr = (const uint8_t*)data; |
| uint64_t starting_length = (uint64_t)len; |
| uint64_t current_state = seed ^ salt[0]; |
| |
| if (len > 64) { |
| // If we have more than 64 bytes, we're going to handle chunks of 64 |
| // bytes at a time. We're going to build up two separate hash states |
| // which we will then hash together. |
| uint64_t duplicated_state = current_state; |
| |
| do { |
| uint64_t a = UnalignedLoad64(ptr); |
| uint64_t b = UnalignedLoad64(ptr + 8); |
| uint64_t c = UnalignedLoad64(ptr + 16); |
| uint64_t d = UnalignedLoad64(ptr + 24); |
| uint64_t e = UnalignedLoad64(ptr + 32); |
| uint64_t f = UnalignedLoad64(ptr + 40); |
| uint64_t g = UnalignedLoad64(ptr + 48); |
| uint64_t h = UnalignedLoad64(ptr + 56); |
| |
| uint64_t cs0 = WyhashMix(a ^ salt[1], b ^ current_state); |
| uint64_t cs1 = WyhashMix(c ^ salt[2], d ^ current_state); |
| current_state = (cs0 ^ cs1); |
| |
| uint64_t ds0 = WyhashMix(e ^ salt[3], f ^ duplicated_state); |
| uint64_t ds1 = WyhashMix(g ^ salt[4], h ^ duplicated_state); |
| duplicated_state = (ds0 ^ ds1); |
| |
| ptr += 64; |
| len -= 64; |
| } while (len > 64); |
| |
| current_state = current_state ^ duplicated_state; |
| } |
| |
| // We now have a data `ptr` with at most 64 bytes and the current state |
| // of the hashing state machine stored in current_state. |
| while (len > 16) { |
| uint64_t a = UnalignedLoad64(ptr); |
| uint64_t b = UnalignedLoad64(ptr + 8); |
| |
| current_state = WyhashMix(a ^ salt[1], b ^ current_state); |
| |
| ptr += 16; |
| len -= 16; |
| } |
| |
| // We now have a data `ptr` with at most 16 bytes. |
| uint64_t a = 0; |
| uint64_t b = 0; |
| if (len > 8) { |
| // When we have at least 9 and at most 16 bytes, set A to the first 64 |
| // bits of the input and B to the last 64 bits of the input. Yes, they will |
| // overlap in the middle if we are working with less than the full 16 |
| // bytes. |
| a = UnalignedLoad64(ptr); |
| b = UnalignedLoad64(ptr + len - 8); |
| } else if (len > 3) { |
| // If we have at least 4 and at most 8 bytes, set A to the first 32 |
| // bits and B to the last 32 bits. |
| a = UnalignedLoad32(ptr); |
| b = UnalignedLoad32(ptr + len - 4); |
| } else if (len > 0) { |
| // If we have at least 1 and at most 3 bytes, read all of the provided |
| // bits into A, with some adjustments. |
| a = ((ptr[0] << 16) | (ptr[len >> 1] << 8) | ptr[len - 1]); |
| b = 0; |
| } else { |
| a = 0; |
| b = 0; |
| } |
| |
| uint64_t w = WyhashMix(a ^ salt[1], b ^ current_state); |
| uint64_t z = salt[1] ^ starting_length; |
| return WyhashMix(w, z); |
| } |
| |
| const uint64_t kWyhashSalt[5] = { |
| 0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL, 0xA4093822299F31D0ULL, |
| 0x082EFA98EC4E6C89ULL, 0x452821E638D01377ULL, |
| }; |
| |
| uint32_t _upb_Hash(const void* p, size_t n, uint64_t seed) { |
| return Wyhash(p, n, seed, kWyhashSalt); |
| } |
| |
| static const void* const _upb_seed; |
| |
| // Returns a random seed for upb's hash function. This does not provide |
| // high-quality randomness, but it should be enough to prevent unit tests from |
| // relying on a deterministic map ordering. By returning the address of a |
| // variable, we are able to get some randomness for free provided that ASLR is |
| // enabled. |
| static uint64_t _upb_Seed(void) { return (uint64_t)&_upb_seed; } |
| |
| static uint32_t _upb_Hash_NoSeed(const char* p, size_t n) { |
| return _upb_Hash(p, n, _upb_Seed()); |
| } |
| |
| static uint32_t strhash(upb_key key) { |
| return _upb_Hash_NoSeed(key.str->data, key.str->size); |
| } |
| |
| static bool streql(upb_key k1, lookupkey_t k2) { |
| const upb_SizePrefixString* k1s = k1.str; |
| const upb_StringView k2s = k2.str; |
| return k1s->size == k2s.size && |
| (k1s->size == 0 || memcmp(k1s->data, k2s.data, k1s->size) == 0); |
| } |
| |
| /** Calculates the number of entries required to hold an expected number of |
| * values, within the table's load factor. */ |
| static size_t _upb_entries_needed_for(size_t expected_size) { |
| size_t need_entries = expected_size + 1 + expected_size / 7; |
| UPB_ASSERT(need_entries - (need_entries >> 3) >= expected_size); |
| return need_entries; |
| } |
| |
| bool upb_strtable_init(upb_strtable* t, size_t expected_size, upb_Arena* a) { |
| int size_lg2 = upb_Log2Ceiling(_upb_entries_needed_for(expected_size)); |
| return init(&t->t, size_lg2, a); |
| } |
| |
| void upb_strtable_clear(upb_strtable* t) { |
| size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent); |
| t->t.count = 0; |
| memset((char*)t->t.entries, 0, bytes); |
| } |
| |
| bool upb_strtable_resize(upb_strtable* t, size_t size_lg2, upb_Arena* a) { |
| upb_strtable new_table; |
| if (!init(&new_table.t, size_lg2, a)) return false; |
| |
| intptr_t iter = UPB_STRTABLE_BEGIN; |
| upb_StringView sv; |
| upb_value val; |
| while (upb_strtable_next2(t, &sv, &val, &iter)) { |
| // Unlike normal insert, does not copy string data or possibly reallocate |
| // the table |
| // The data pointer used in the table is guaranteed to point at a |
| // upb_SizePrefixString, we just need to back up by the size of the uint32_t |
| // length prefix. |
| const upb_SizePrefixString* keystr = |
| (const upb_SizePrefixString*)(sv.data - sizeof(uint32_t)); |
| UPB_ASSERT(keystr->data == sv.data); |
| UPB_ASSERT(keystr->size == sv.size); |
| |
| lookupkey_t lookupkey = {.str = sv}; |
| upb_key tabkey = {.str = keystr}; |
| uint32_t hash = _upb_Hash_NoSeed(sv.data, sv.size); |
| insert(&new_table.t, lookupkey, tabkey, val, hash, &strhash, &streql); |
| } |
| *t = new_table; |
| return true; |
| } |
| |
| bool upb_strtable_insert(upb_strtable* t, const char* k, size_t len, |
| upb_value v, upb_Arena* a) { |
| if (isfull(&t->t)) { |
| /* Need to resize. New table of double the size, add old elements to it. */ |
| if (!upb_strtable_resize(t, _upb_log2_table_size(&t->t) + 1, a)) { |
| return false; |
| } |
| } |
| |
| upb_StringView sv = upb_StringView_FromDataAndSize(k, len); |
| upb_SizePrefixString* size_prefix_string = upb_SizePrefixString_Copy(sv, a); |
| if (!size_prefix_string) return false; |
| |
| lookupkey_t lookupkey = {.str = sv}; |
| upb_key key = {.str = size_prefix_string}; |
| uint32_t hash = _upb_Hash_NoSeed(k, len); |
| insert(&t->t, lookupkey, key, v, hash, &strhash, &streql); |
| return true; |
| } |
| |
| bool upb_strtable_lookup2(const upb_strtable* t, const char* key, size_t len, |
| upb_value* v) { |
| uint32_t hash = _upb_Hash_NoSeed(key, len); |
| return lookup(&t->t, strkey2(key, len), v, hash, &streql); |
| } |
| |
| bool upb_strtable_remove2(upb_strtable* t, const char* key, size_t len, |
| upb_value* val) { |
| uint32_t hash = _upb_Hash_NoSeed(key, len); |
| return rm(&t->t, strkey2(key, len), val, hash, &streql); |
| } |
| |
| /* Iteration */ |
| |
| void upb_strtable_begin(upb_strtable_iter* i, const upb_strtable* t) { |
| i->t = t; |
| i->index = begin(&t->t); |
| } |
| |
| void upb_strtable_next(upb_strtable_iter* i) { |
| i->index = next(&i->t->t, i->index); |
| } |
| |
| bool upb_strtable_done(const upb_strtable_iter* i) { |
| if (!i->t) return true; |
| return i->index >= upb_table_size(&i->t->t) || |
| upb_tabent_isempty(str_tabent(i)); |
| } |
| |
| upb_StringView upb_strtable_iter_key(const upb_strtable_iter* i) { |
| UPB_ASSERT(!upb_strtable_done(i)); |
| return upb_key_strview(str_tabent(i)->key); |
| } |
| |
| upb_value upb_strtable_iter_value(const upb_strtable_iter* i) { |
| UPB_ASSERT(!upb_strtable_done(i)); |
| return str_tabent(i)->val; |
| } |
| |
| void upb_strtable_iter_setdone(upb_strtable_iter* i) { |
| i->t = NULL; |
| i->index = SIZE_MAX; |
| } |
| |
| bool upb_strtable_iter_isequal(const upb_strtable_iter* i1, |
| const upb_strtable_iter* i2) { |
| if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true; |
| return i1->t == i2->t && i1->index == i2->index; |
| } |
| |
| bool upb_strtable_next2(const upb_strtable* t, upb_StringView* key, |
| upb_value* val, intptr_t* iter) { |
| size_t tab_idx = next(&t->t, *iter); |
| if (tab_idx < upb_table_size(&t->t)) { |
| upb_tabent* ent = &t->t.entries[tab_idx]; |
| *key = upb_key_strview(ent->key); |
| *val = ent->val; |
| *iter = tab_idx; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void upb_strtable_removeiter(upb_strtable* t, intptr_t* iter) { |
| intptr_t i = *iter; |
| upb_tabent* ent = &t->t.entries[i]; |
| upb_tabent* prev = NULL; |
| |
| // Linear search, not great. |
| upb_tabent* end = &t->t.entries[upb_table_size(&t->t)]; |
| for (upb_tabent* e = t->t.entries; e != end; e++) { |
| if (e->next == ent) { |
| prev = e; |
| break; |
| } |
| } |
| |
| if (prev) { |
| prev->next = ent->next; |
| } |
| |
| t->t.count--; |
| ent->key = upb_key_empty(); |
| ent->next = NULL; |
| } |
| |
| void upb_strtable_setentryvalue(upb_strtable* t, intptr_t iter, upb_value v) { |
| t->t.entries[iter].val = v; |
| } |
| |
| /* upb_inttable ***************************************************************/ |
| |
| /* For inttables we use a hybrid structure where small keys are kept in an |
| * array and large keys are put in the hash table. */ |
| |
| // The sentinel value used in the dense array part. Note that callers must |
| // ensure that inttable is never used with a value of this sentinel type |
| // (pointers and u32 values will never be; i32 needs to be handled carefully |
| // to avoid sign-extending into this value). |
| static const upb_value kInttableSentinel = {.val = UINT64_MAX}; |
| static uint32_t presence_mask_arr_size(uint32_t array_size) { |
| return (array_size + 7) / 8; // sizeof(uint8_t) is always 1. |
| } |
| |
| static uint32_t inthash(upb_key key) { return upb_inthash(key.num); } |
| |
| static bool inteql(upb_key k1, lookupkey_t k2) { return k1.num == k2.num; } |
| |
| static upb_value* mutable_array(upb_inttable* t) { |
| return (upb_value*)t->array; |
| } |
| |
| static const upb_value* inttable_array_get(const upb_inttable* t, |
| uintptr_t key) { |
| UPB_ASSERT(key < t->array_size); |
| const upb_value* val = &t->array[key]; |
| return upb_inttable_arrhas(t, key) ? val : NULL; |
| } |
| |
| static upb_value* inttable_val(upb_inttable* t, uintptr_t key) { |
| if (key < t->array_size) { |
| return (upb_value*)inttable_array_get(t, key); |
| } else { |
| upb_tabent* e = |
| findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); |
| return e ? &e->val : NULL; |
| } |
| } |
| |
| static const upb_value* inttable_val_const(const upb_inttable* t, |
| uintptr_t key) { |
| return inttable_val((upb_inttable*)t, key); |
| } |
| |
| size_t upb_inttable_count(const upb_inttable* t) { |
| return t->t.count + t->array_count; |
| } |
| |
| static void check(upb_inttable* t) { |
| UPB_UNUSED(t); |
| #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) |
| { |
| // This check is very expensive (makes inserts/deletes O(N)). |
| size_t count = 0; |
| intptr_t iter = UPB_INTTABLE_BEGIN; |
| uintptr_t key; |
| upb_value val; |
| while (upb_inttable_next(t, &key, &val, &iter)) { |
| UPB_ASSERT(upb_inttable_lookup(t, key, NULL)); |
| } |
| UPB_ASSERT(count == upb_inttable_count(t)); |
| } |
| #endif |
| } |
| |
| bool upb_inttable_sizedinit(upb_inttable* t, uint32_t asize, int hsize_lg2, |
| upb_Arena* a) { |
| if (!init(&t->t, hsize_lg2, a)) return false; |
| /* Always make the array part at least 1 long, so that we know key 0 |
| * won't be in the hash part, which simplifies things. */ |
| t->array_size = UPB_MAX(1, asize); |
| t->array_count = 0; |
| #if UINT32_MAX >= SIZE_MAX |
| if (UPB_UNLIKELY(SIZE_MAX / sizeof(upb_value) < t->array_size)) { |
| return false; |
| } |
| #endif |
| |
| // Allocate the array part and the presence mask array in one allocation. |
| size_t array_bytes = t->array_size * sizeof(upb_value); |
| uint32_t presence_bytes = presence_mask_arr_size(t->array_size); |
| uintptr_t total_bytes = array_bytes + presence_bytes; |
| if (UPB_UNLIKELY(total_bytes > SIZE_MAX)) { |
| return false; |
| } |
| void* alloc = upb_Arena_Malloc(a, total_bytes); |
| if (!alloc) { |
| return false; |
| } |
| t->array = alloc; |
| memset(mutable_array(t), 0xff, array_bytes); |
| t->presence_mask = (uint8_t*)alloc + array_bytes; |
| memset((uint8_t*)t->presence_mask, 0, presence_bytes); |
| |
| check(t); |
| return true; |
| } |
| |
| bool upb_inttable_init(upb_inttable* t, upb_Arena* a) { |
| // The init size of the table part to match that of strtable. |
| return upb_inttable_sizedinit(t, 0, 3, a); |
| } |
| |
| bool upb_inttable_insert(upb_inttable* t, uintptr_t key, upb_value val, |
| upb_Arena* a) { |
| if (key < t->array_size) { |
| UPB_ASSERT(!upb_inttable_arrhas(t, key)); |
| t->array_count++; |
| mutable_array(t)[key] = val; |
| ((uint8_t*)t->presence_mask)[key / 8] |= (1 << (key % 8)); |
| } else { |
| if (isfull(&t->t)) { |
| /* Need to resize the hash part, but we re-use the array part. */ |
| size_t i; |
| upb_table new_table; |
| |
| if (!init(&new_table, _upb_log2_table_size(&t->t) + 1, a)) { |
| return false; |
| } |
| |
| for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { |
| const upb_tabent* e = &t->t.entries[i]; |
| insert(&new_table, intkey(e->key.num), e->key, e->val, inthash(e->key), |
| &inthash, &inteql); |
| } |
| |
| UPB_ASSERT(t->t.count == new_table.count); |
| |
| t->t = new_table; |
| } |
| upb_key tabkey = {.num = key}; |
| insert(&t->t, intkey(key), tabkey, val, upb_inthash(key), &inthash, |
| &inteql); |
| } |
| check(t); |
| return true; |
| } |
| |
| bool upb_inttable_lookup(const upb_inttable* t, uintptr_t key, upb_value* v) { |
| const upb_value* table_v = inttable_val_const(t, key); |
| if (!table_v) return false; |
| if (v) *v = *table_v; |
| return true; |
| } |
| |
| bool upb_inttable_replace(upb_inttable* t, uintptr_t key, upb_value val) { |
| upb_value* table_v = inttable_val(t, key); |
| if (!table_v) return false; |
| *table_v = val; |
| return true; |
| } |
| |
| bool upb_inttable_remove(upb_inttable* t, uintptr_t key, upb_value* val) { |
| bool success; |
| if (key < t->array_size) { |
| if (upb_inttable_arrhas(t, key)) { |
| t->array_count--; |
| if (val) { |
| *val = t->array[key]; |
| } |
| mutable_array(t)[key] = kInttableSentinel; |
| ((uint8_t*)t->presence_mask)[key / 8] &= ~(1 << (key % 8)); |
| success = true; |
| } else { |
| success = false; |
| } |
| } else { |
| success = rm(&t->t, intkey(key), val, upb_inthash(key), &inteql); |
| } |
| check(t); |
| return success; |
| } |
| |
| bool upb_inttable_compact(upb_inttable* t, upb_Arena* a) { |
| /* A power-of-two histogram of the table keys. */ |
| uint32_t counts[UPB_MAXARRSIZE + 1] = {0}; |
| |
| /* The max key in each bucket. */ |
| uintptr_t max[UPB_MAXARRSIZE + 1] = {0}; |
| |
| { |
| intptr_t iter = UPB_INTTABLE_BEGIN; |
| uintptr_t key; |
| upb_value val; |
| while (upb_inttable_next(t, &key, &val, &iter)) { |
| int bucket = log2ceil(key); |
| max[bucket] = UPB_MAX(max[bucket], key); |
| counts[bucket]++; |
| } |
| } |
| |
| /* Find the largest power of two that satisfies the MIN_DENSITY |
| * definition (while actually having some keys). */ |
| uint32_t arr_count = upb_inttable_count(t); |
| |
| // Scan all buckets except capped bucket |
| int size_lg2 = ARRAY_SIZE(counts) - 1; |
| for (; size_lg2 > 0; size_lg2--) { |
| if (counts[size_lg2] == 0) { |
| /* We can halve again without losing any entries. */ |
| continue; |
| } else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) { |
| break; |
| } |
| |
| arr_count -= counts[size_lg2]; |
| } |
| |
| UPB_ASSERT(arr_count <= upb_inttable_count(t)); |
| |
| upb_inttable new_t; |
| { |
| /* Insert all elements into new, perfectly-sized table. */ |
| uintptr_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */ |
| uint32_t hash_count = upb_inttable_count(t) - arr_count; |
| size_t hash_size = hash_count ? _upb_entries_needed_for(hash_count) : 0; |
| int hashsize_lg2 = log2ceil(hash_size); |
| |
| if (!upb_inttable_sizedinit(&new_t, arr_size, hashsize_lg2, a)) { |
| return false; |
| } |
| |
| { |
| intptr_t iter = UPB_INTTABLE_BEGIN; |
| uintptr_t key; |
| upb_value val; |
| while (upb_inttable_next(t, &key, &val, &iter)) { |
| upb_inttable_insert(&new_t, key, val, a); |
| } |
| } |
| |
| UPB_ASSERT(new_t.array_size == arr_size); |
| } |
| *t = new_t; |
| return true; |
| } |
| |
| void upb_inttable_clear(upb_inttable* t) { |
| // Clear the array part. |
| size_t array_bytes = t->array_size * sizeof(upb_value); |
| t->array_count = 0; |
| // Clear the array by setting all bits to 1, as UINT64_MAX is the sentinel |
| // value for an empty array. |
| memset(mutable_array(t), 0xff, array_bytes); |
| // Clear the presence mask array. |
| memset((uint8_t*)t->presence_mask, 0, presence_mask_arr_size(t->array_size)); |
| // Clear the table part. |
| size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent); |
| t->t.count = 0; |
| memset((char*)t->t.entries, 0, bytes); |
| } |
| |
| // Iteration. |
| |
| bool upb_inttable_next(const upb_inttable* t, uintptr_t* key, upb_value* val, |
| intptr_t* iter) { |
| intptr_t i = *iter; |
| if ((size_t)(i + 1) <= t->array_size) { |
| while ((size_t)++i < t->array_size) { |
| const upb_value* ent = inttable_array_get(t, i); |
| if (ent) { |
| *key = i; |
| *val = *ent; |
| *iter = i; |
| return true; |
| } |
| } |
| i--; // Back up to exactly one position before the start of the table. |
| } |
| |
| size_t tab_idx = next(&t->t, i - t->array_size); |
| if (tab_idx < upb_table_size(&t->t)) { |
| upb_tabent* ent = &t->t.entries[tab_idx]; |
| *key = ent->key.num; |
| *val = ent->val; |
| *iter = tab_idx + t->array_size; |
| return true; |
| } else { |
| // We should set the iterator any way. When we are done, the iterator value |
| // is invalidated. `upb_inttable_done` will check on the iterator value to |
| // determine if the iteration is done. |
| *iter = INTPTR_MAX - 1; // To disambiguate from UPB_INTTABLE_BEGIN, to |
| // match the behavior of `upb_strtable_iter`. |
| return false; |
| } |
| } |
| |
| void upb_inttable_removeiter(upb_inttable* t, intptr_t* iter) { |
| intptr_t i = *iter; |
| if ((size_t)i < t->array_size) { |
| t->array_count--; |
| mutable_array(t)[i].val = -1; |
| } else { |
| upb_tabent* ent = &t->t.entries[i - t->array_size]; |
| upb_tabent* prev = NULL; |
| |
| // Linear search, not great. |
| upb_tabent* end = &t->t.entries[upb_table_size(&t->t)]; |
| for (upb_tabent* e = t->t.entries; e != end; e++) { |
| if (e->next == ent) { |
| prev = e; |
| break; |
| } |
| } |
| |
| if (prev) { |
| prev->next = ent->next; |
| } |
| |
| t->t.count--; |
| ent->key = upb_key_empty(); |
| ent->next = NULL; |
| } |
| } |
| |
| void upb_inttable_setentryvalue(upb_inttable* t, intptr_t iter, upb_value v) { |
| if ((size_t)iter < t->array_size) { |
| mutable_array(t)[iter] = v; |
| } else { |
| upb_tabent* ent = &t->t.entries[iter - t->array_size]; |
| ent->val = v; |
| } |
| } |
| |
| bool upb_inttable_done(const upb_inttable* t, intptr_t iter) { |
| if ((uintptr_t)iter >= t->array_size + upb_table_size(&t->t)) { |
| return true; |
| } else if ((size_t)iter < t->array_size) { |
| return !upb_inttable_arrhas(t, iter); |
| } else { |
| return upb_tabent_isempty(&t->t.entries[iter - t->array_size]); |
| } |
| } |
| |
| uintptr_t upb_inttable_iter_key(const upb_inttable* t, intptr_t iter) { |
| UPB_ASSERT(!upb_inttable_done(t, iter)); |
| return (size_t)iter < t->array_size |
| ? iter |
| : t->t.entries[iter - t->array_size].key.num; |
| } |
| |
| upb_value upb_inttable_iter_value(const upb_inttable* t, intptr_t iter) { |
| UPB_ASSERT(!upb_inttable_done(t, iter)); |
| if ((size_t)iter < t->array_size) { |
| return t->array[iter]; |
| } else { |
| return t->t.entries[iter - t->array_size].val; |
| } |
| } |