blob: ca0e488689e9cc54d143f505484497654d0f8c03 [file] [log] [blame] [edit]
// Protocol Buffers - Google's data interchange format
// Copyright 2023 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
/*
* upb_table Implementation
*
* Implementation is heavily inspired by Lua's ltable.c.
*/
#include "upb/hash/common.h"
#include <stdint.h>
#include <string.h>
#include "upb/base/internal/log2.h"
#include "upb/base/string_view.h"
#include "upb/hash/int_table.h"
#include "upb/hash/str_table.h"
#include "upb/mem/arena.h"
// Must be last.
#include "upb/port/def.inc"
#define UPB_MAXARRSIZE 16 // 2**16 = 64k.
// From Chromium.
#define ARRAY_SIZE(x) \
((sizeof(x) / sizeof(0 [x])) / ((size_t)(!(sizeof(x) % sizeof(0 [x])))))
/* The minimum utilization of the array part of a mixed hash/array table. This
* is a speed/memory-usage tradeoff (though it's not straightforward because of
* cache effects). The lower this is, the more memory we'll use. */
static const double MIN_DENSITY = 0.1;
#if defined(__has_builtin)
#if __has_builtin(__builtin_popcount)
#define UPB_FAST_POPCOUNT32(i) __builtin_popcount(i)
#endif
#elif defined(__GNUC__)
#define UPB_FAST_POPCOUNT32(i) __builtin_popcount(i)
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
// Only use __popcnt on x86/x64 architectures for MSVC
#define UPB_FAST_POPCOUNT32(i) __popcnt(i)
#endif
UPB_INLINE int _upb_popcnt32(uint32_t i) {
#ifdef UPB_FAST_POPCOUNT32
return UPB_FAST_POPCOUNT32(i);
#else
int count = 0;
while (i != 0) {
count += i & 1;
i >>= 1;
}
return count;
#endif
}
#undef UPB_FAST_POPCOUNT32
UPB_INLINE uint8_t _upb_log2_table_size(upb_table* t) {
return _upb_popcnt32(t->mask);
}
static bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; }
static int log2ceil(uint64_t v) {
int ret = 0;
bool pow2 = is_pow2(v);
while (v >>= 1) ret++;
ret = pow2 ? ret : ret + 1; // Ceiling.
return UPB_MIN(UPB_MAXARRSIZE, ret);
}
/* A type to represent the lookup key of either a strtable or an inttable. */
typedef union {
uintptr_t num;
upb_StringView str;
} lookupkey_t;
static lookupkey_t strkey2(const char* str, size_t len) {
return (lookupkey_t){.str = upb_StringView_FromDataAndSize(str, len)};
}
static lookupkey_t intkey(uintptr_t key) { return (lookupkey_t){.num = key}; }
typedef uint32_t hashfunc_t(upb_key key);
typedef bool eqlfunc_t(upb_key k1, lookupkey_t k2);
/* Base table (shared code) ***************************************************/
static uint32_t upb_inthash(uintptr_t key) {
if (sizeof(uintptr_t) == 8) {
return (uint32_t)key ^ (uint32_t)(key >> 32);
} else {
UPB_ASSERT(sizeof(uintptr_t) == 4);
return (uint32_t)key;
}
}
static const upb_tabent* upb_getentry(const upb_table* t, uint32_t hash) {
return t->entries + (hash & t->mask);
}
static bool isfull(upb_table* t) {
uint32_t size = upb_table_size(t);
// 0.875 load factor
return t->count == (size - (size >> 3));
}
static bool init(upb_table* t, uint8_t size_lg2, upb_Arena* a) {
if (size_lg2 >= 32) {
return false;
}
t->count = 0;
uint32_t size = 1 << size_lg2;
t->mask = size - 1; // 0 mask if size_lg2 is 0
if (upb_table_size(t) > (SIZE_MAX / sizeof(upb_tabent))) {
return false;
}
size_t bytes = upb_table_size(t) * sizeof(upb_tabent);
if (bytes > 0) {
t->entries = upb_Arena_Malloc(a, bytes);
if (!t->entries) return false;
memset(t->entries, 0, bytes);
} else {
t->entries = NULL;
}
return true;
}
static upb_tabent* emptyent(upb_table* t, upb_tabent* e) {
upb_tabent* begin = t->entries;
upb_tabent* end = begin + upb_table_size(t);
for (e = e + 1; e < end; e++) {
if (upb_tabent_isempty(e)) return e;
}
for (e = begin; e < end; e++) {
if (upb_tabent_isempty(e)) return e;
}
UPB_ASSERT(false);
return NULL;
}
static upb_tabent* getentry_mutable(upb_table* t, uint32_t hash) {
return (upb_tabent*)upb_getentry(t, hash);
}
static const upb_tabent* findentry(const upb_table* t, lookupkey_t key,
uint32_t hash, eqlfunc_t* eql) {
const upb_tabent* e;
if (t->count == 0) return NULL;
e = upb_getentry(t, hash);
if (upb_tabent_isempty(e)) return NULL;
while (1) {
if (eql(e->key, key)) return e;
if ((e = e->next) == NULL) return NULL;
}
}
static upb_tabent* findentry_mutable(upb_table* t, lookupkey_t key,
uint32_t hash, eqlfunc_t* eql) {
return (upb_tabent*)findentry(t, key, hash, eql);
}
static bool lookup(const upb_table* t, lookupkey_t key, upb_value* v,
uint32_t hash, eqlfunc_t* eql) {
const upb_tabent* e = findentry(t, key, hash, eql);
if (e) {
if (v) *v = e->val;
return true;
} else {
return false;
}
}
/* The given key must not already exist in the table. */
static void insert(upb_table* t, lookupkey_t key, upb_key tabkey, upb_value val,
uint32_t hash, hashfunc_t* hashfunc, eqlfunc_t* eql) {
upb_tabent* mainpos_e;
upb_tabent* our_e;
UPB_ASSERT(findentry(t, key, hash, eql) == NULL);
t->count++;
mainpos_e = getentry_mutable(t, hash);
our_e = mainpos_e;
if (upb_tabent_isempty(mainpos_e)) {
/* Our main position is empty; use it. */
our_e->next = NULL;
} else {
/* Collision. */
upb_tabent* new_e = emptyent(t, mainpos_e);
/* Head of collider's chain. */
upb_tabent* chain = getentry_mutable(t, hashfunc(mainpos_e->key));
if (chain == mainpos_e) {
/* Existing ent is in its main position (it has the same hash as us, and
* is the head of our chain). Insert to new ent and append to this chain.
*/
new_e->next = mainpos_e->next;
mainpos_e->next = new_e;
our_e = new_e;
} else {
/* Existing ent is not in its main position (it is a node in some other
* chain). This implies that no existing ent in the table has our hash.
* Evict it (updating its chain) and use its ent for head of our chain. */
*new_e = *mainpos_e; /* copies next. */
while (chain->next != mainpos_e) {
chain = (upb_tabent*)chain->next;
UPB_ASSERT(chain);
}
chain->next = new_e;
our_e = mainpos_e;
our_e->next = NULL;
}
}
our_e->key = tabkey;
our_e->val = val;
UPB_ASSERT(findentry(t, key, hash, eql) == our_e);
}
static bool rm(upb_table* t, lookupkey_t key, upb_value* val, uint32_t hash,
eqlfunc_t* eql) {
upb_tabent* chain = getentry_mutable(t, hash);
if (upb_tabent_isempty(chain)) return false;
if (eql(chain->key, key)) {
/* Element to remove is at the head of its chain. */
t->count--;
if (val) *val = chain->val;
if (chain->next) {
upb_tabent* move = (upb_tabent*)chain->next;
*chain = *move;
move->key = upb_key_empty();
} else {
chain->key = upb_key_empty();
}
return true;
} else {
/* Element to remove is either in a non-head position or not in the
* table. */
while (chain->next && !eql(chain->next->key, key)) {
chain = (upb_tabent*)chain->next;
}
if (chain->next) {
/* Found element to remove. */
upb_tabent* rm = (upb_tabent*)chain->next;
t->count--;
if (val) *val = chain->next->val;
rm->key = upb_key_empty();
chain->next = rm->next;
return true;
} else {
/* Element to remove is not in the table. */
return false;
}
}
}
static size_t next(const upb_table* t, size_t i) {
do {
if (++i >= upb_table_size(t)) return SIZE_MAX - 1; /* Distinct from -1. */
} while (upb_tabent_isempty(&t->entries[i]));
return i;
}
static size_t begin(const upb_table* t) { return next(t, -1); }
/* upb_strtable ***************************************************************/
// A simple "subclass" of upb_table that only adds a hash function for strings.
static upb_SizePrefixString* upb_SizePrefixString_Copy(upb_StringView s,
upb_Arena* a) {
// A 2GB string will fail at serialization time, but we accept up to 4GB in
// memory here.
if (s.size > UINT32_MAX) return NULL;
upb_SizePrefixString* str =
upb_Arena_Malloc(a, sizeof(uint32_t) + s.size + 1);
if (str == NULL) return NULL;
str->size = s.size;
char* data = (char*)str->data;
if (s.size) memcpy(data, s.data, s.size);
data[s.size] = '\0';
return str;
}
/* Adapted from ABSL's wyhash. */
static uint64_t UnalignedLoad64(const void* p) {
uint64_t val;
memcpy(&val, p, 8);
return val;
}
static uint32_t UnalignedLoad32(const void* p) {
uint32_t val;
memcpy(&val, p, 4);
return val;
}
#if defined(_MSC_VER) && defined(_M_X64)
#include <intrin.h>
#endif
/* Computes a * b, returning the low 64 bits of the result and storing the high
* 64 bits in |*high|. */
static uint64_t upb_umul128(uint64_t v0, uint64_t v1, uint64_t* out_high) {
#ifdef __SIZEOF_INT128__
__uint128_t p = v0;
p *= v1;
*out_high = (uint64_t)(p >> 64);
return (uint64_t)p;
#elif defined(_MSC_VER) && defined(_M_X64)
return _umul128(v0, v1, out_high);
#else
uint64_t a32 = v0 >> 32;
uint64_t a00 = v0 & 0xffffffff;
uint64_t b32 = v1 >> 32;
uint64_t b00 = v1 & 0xffffffff;
uint64_t high = a32 * b32;
uint64_t low = a00 * b00;
uint64_t mid1 = a32 * b00;
uint64_t mid2 = a00 * b32;
low += (mid1 << 32) + (mid2 << 32);
// Omit carry bit, for mixing we do not care about exact numerical precision.
high += (mid1 >> 32) + (mid2 >> 32);
*out_high = high;
return low;
#endif
}
static uint64_t WyhashMix(uint64_t v0, uint64_t v1) {
uint64_t high;
uint64_t low = upb_umul128(v0, v1, &high);
return low ^ high;
}
static uint64_t Wyhash(const void* data, size_t len, uint64_t seed,
const uint64_t salt[]) {
const uint8_t* ptr = (const uint8_t*)data;
uint64_t starting_length = (uint64_t)len;
uint64_t current_state = seed ^ salt[0];
if (len > 64) {
// If we have more than 64 bytes, we're going to handle chunks of 64
// bytes at a time. We're going to build up two separate hash states
// which we will then hash together.
uint64_t duplicated_state = current_state;
do {
uint64_t a = UnalignedLoad64(ptr);
uint64_t b = UnalignedLoad64(ptr + 8);
uint64_t c = UnalignedLoad64(ptr + 16);
uint64_t d = UnalignedLoad64(ptr + 24);
uint64_t e = UnalignedLoad64(ptr + 32);
uint64_t f = UnalignedLoad64(ptr + 40);
uint64_t g = UnalignedLoad64(ptr + 48);
uint64_t h = UnalignedLoad64(ptr + 56);
uint64_t cs0 = WyhashMix(a ^ salt[1], b ^ current_state);
uint64_t cs1 = WyhashMix(c ^ salt[2], d ^ current_state);
current_state = (cs0 ^ cs1);
uint64_t ds0 = WyhashMix(e ^ salt[3], f ^ duplicated_state);
uint64_t ds1 = WyhashMix(g ^ salt[4], h ^ duplicated_state);
duplicated_state = (ds0 ^ ds1);
ptr += 64;
len -= 64;
} while (len > 64);
current_state = current_state ^ duplicated_state;
}
// We now have a data `ptr` with at most 64 bytes and the current state
// of the hashing state machine stored in current_state.
while (len > 16) {
uint64_t a = UnalignedLoad64(ptr);
uint64_t b = UnalignedLoad64(ptr + 8);
current_state = WyhashMix(a ^ salt[1], b ^ current_state);
ptr += 16;
len -= 16;
}
// We now have a data `ptr` with at most 16 bytes.
uint64_t a = 0;
uint64_t b = 0;
if (len > 8) {
// When we have at least 9 and at most 16 bytes, set A to the first 64
// bits of the input and B to the last 64 bits of the input. Yes, they will
// overlap in the middle if we are working with less than the full 16
// bytes.
a = UnalignedLoad64(ptr);
b = UnalignedLoad64(ptr + len - 8);
} else if (len > 3) {
// If we have at least 4 and at most 8 bytes, set A to the first 32
// bits and B to the last 32 bits.
a = UnalignedLoad32(ptr);
b = UnalignedLoad32(ptr + len - 4);
} else if (len > 0) {
// If we have at least 1 and at most 3 bytes, read all of the provided
// bits into A, with some adjustments.
a = ((ptr[0] << 16) | (ptr[len >> 1] << 8) | ptr[len - 1]);
b = 0;
} else {
a = 0;
b = 0;
}
uint64_t w = WyhashMix(a ^ salt[1], b ^ current_state);
uint64_t z = salt[1] ^ starting_length;
return WyhashMix(w, z);
}
const uint64_t kWyhashSalt[5] = {
0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL, 0xA4093822299F31D0ULL,
0x082EFA98EC4E6C89ULL, 0x452821E638D01377ULL,
};
uint32_t _upb_Hash(const void* p, size_t n, uint64_t seed) {
return Wyhash(p, n, seed, kWyhashSalt);
}
static const void* const _upb_seed;
// Returns a random seed for upb's hash function. This does not provide
// high-quality randomness, but it should be enough to prevent unit tests from
// relying on a deterministic map ordering. By returning the address of a
// variable, we are able to get some randomness for free provided that ASLR is
// enabled.
static uint64_t _upb_Seed(void) { return (uint64_t)&_upb_seed; }
static uint32_t _upb_Hash_NoSeed(const char* p, size_t n) {
return _upb_Hash(p, n, _upb_Seed());
}
static uint32_t strhash(upb_key key) {
return _upb_Hash_NoSeed(key.str->data, key.str->size);
}
static bool streql(upb_key k1, lookupkey_t k2) {
const upb_SizePrefixString* k1s = k1.str;
const upb_StringView k2s = k2.str;
return k1s->size == k2s.size &&
(k1s->size == 0 || memcmp(k1s->data, k2s.data, k1s->size) == 0);
}
/** Calculates the number of entries required to hold an expected number of
* values, within the table's load factor. */
static size_t _upb_entries_needed_for(size_t expected_size) {
size_t need_entries = expected_size + 1 + expected_size / 7;
UPB_ASSERT(need_entries - (need_entries >> 3) >= expected_size);
return need_entries;
}
bool upb_strtable_init(upb_strtable* t, size_t expected_size, upb_Arena* a) {
int size_lg2 = upb_Log2Ceiling(_upb_entries_needed_for(expected_size));
return init(&t->t, size_lg2, a);
}
void upb_strtable_clear(upb_strtable* t) {
size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent);
t->t.count = 0;
memset((char*)t->t.entries, 0, bytes);
}
bool upb_strtable_resize(upb_strtable* t, size_t size_lg2, upb_Arena* a) {
upb_strtable new_table;
if (!init(&new_table.t, size_lg2, a)) return false;
intptr_t iter = UPB_STRTABLE_BEGIN;
upb_StringView sv;
upb_value val;
while (upb_strtable_next2(t, &sv, &val, &iter)) {
// Unlike normal insert, does not copy string data or possibly reallocate
// the table
// The data pointer used in the table is guaranteed to point at a
// upb_SizePrefixString, we just need to back up by the size of the uint32_t
// length prefix.
const upb_SizePrefixString* keystr =
(const upb_SizePrefixString*)(sv.data - sizeof(uint32_t));
UPB_ASSERT(keystr->data == sv.data);
UPB_ASSERT(keystr->size == sv.size);
lookupkey_t lookupkey = {.str = sv};
upb_key tabkey = {.str = keystr};
uint32_t hash = _upb_Hash_NoSeed(sv.data, sv.size);
insert(&new_table.t, lookupkey, tabkey, val, hash, &strhash, &streql);
}
*t = new_table;
return true;
}
bool upb_strtable_insert(upb_strtable* t, const char* k, size_t len,
upb_value v, upb_Arena* a) {
if (isfull(&t->t)) {
/* Need to resize. New table of double the size, add old elements to it. */
if (!upb_strtable_resize(t, _upb_log2_table_size(&t->t) + 1, a)) {
return false;
}
}
upb_StringView sv = upb_StringView_FromDataAndSize(k, len);
upb_SizePrefixString* size_prefix_string = upb_SizePrefixString_Copy(sv, a);
if (!size_prefix_string) return false;
lookupkey_t lookupkey = {.str = sv};
upb_key key = {.str = size_prefix_string};
uint32_t hash = _upb_Hash_NoSeed(k, len);
insert(&t->t, lookupkey, key, v, hash, &strhash, &streql);
return true;
}
bool upb_strtable_lookup2(const upb_strtable* t, const char* key, size_t len,
upb_value* v) {
uint32_t hash = _upb_Hash_NoSeed(key, len);
return lookup(&t->t, strkey2(key, len), v, hash, &streql);
}
bool upb_strtable_remove2(upb_strtable* t, const char* key, size_t len,
upb_value* val) {
uint32_t hash = _upb_Hash_NoSeed(key, len);
return rm(&t->t, strkey2(key, len), val, hash, &streql);
}
/* Iteration */
void upb_strtable_begin(upb_strtable_iter* i, const upb_strtable* t) {
i->t = t;
i->index = begin(&t->t);
}
void upb_strtable_next(upb_strtable_iter* i) {
i->index = next(&i->t->t, i->index);
}
bool upb_strtable_done(const upb_strtable_iter* i) {
if (!i->t) return true;
return i->index >= upb_table_size(&i->t->t) ||
upb_tabent_isempty(str_tabent(i));
}
upb_StringView upb_strtable_iter_key(const upb_strtable_iter* i) {
UPB_ASSERT(!upb_strtable_done(i));
return upb_key_strview(str_tabent(i)->key);
}
upb_value upb_strtable_iter_value(const upb_strtable_iter* i) {
UPB_ASSERT(!upb_strtable_done(i));
return str_tabent(i)->val;
}
void upb_strtable_iter_setdone(upb_strtable_iter* i) {
i->t = NULL;
i->index = SIZE_MAX;
}
bool upb_strtable_iter_isequal(const upb_strtable_iter* i1,
const upb_strtable_iter* i2) {
if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true;
return i1->t == i2->t && i1->index == i2->index;
}
bool upb_strtable_next2(const upb_strtable* t, upb_StringView* key,
upb_value* val, intptr_t* iter) {
size_t tab_idx = next(&t->t, *iter);
if (tab_idx < upb_table_size(&t->t)) {
upb_tabent* ent = &t->t.entries[tab_idx];
*key = upb_key_strview(ent->key);
*val = ent->val;
*iter = tab_idx;
return true;
}
return false;
}
void upb_strtable_removeiter(upb_strtable* t, intptr_t* iter) {
intptr_t i = *iter;
upb_tabent* ent = &t->t.entries[i];
upb_tabent* prev = NULL;
// Linear search, not great.
upb_tabent* end = &t->t.entries[upb_table_size(&t->t)];
for (upb_tabent* e = t->t.entries; e != end; e++) {
if (e->next == ent) {
prev = e;
break;
}
}
if (prev) {
prev->next = ent->next;
}
t->t.count--;
ent->key = upb_key_empty();
ent->next = NULL;
}
void upb_strtable_setentryvalue(upb_strtable* t, intptr_t iter, upb_value v) {
t->t.entries[iter].val = v;
}
/* upb_inttable ***************************************************************/
/* For inttables we use a hybrid structure where small keys are kept in an
* array and large keys are put in the hash table. */
// The sentinel value used in the dense array part. Note that callers must
// ensure that inttable is never used with a value of this sentinel type
// (pointers and u32 values will never be; i32 needs to be handled carefully
// to avoid sign-extending into this value).
static const upb_value kInttableSentinel = {.val = UINT64_MAX};
static uint32_t presence_mask_arr_size(uint32_t array_size) {
return (array_size + 7) / 8; // sizeof(uint8_t) is always 1.
}
static uint32_t inthash(upb_key key) { return upb_inthash(key.num); }
static bool inteql(upb_key k1, lookupkey_t k2) { return k1.num == k2.num; }
static upb_value* mutable_array(upb_inttable* t) {
return (upb_value*)t->array;
}
static const upb_value* inttable_array_get(const upb_inttable* t,
uintptr_t key) {
UPB_ASSERT(key < t->array_size);
const upb_value* val = &t->array[key];
return upb_inttable_arrhas(t, key) ? val : NULL;
}
static upb_value* inttable_val(upb_inttable* t, uintptr_t key) {
if (key < t->array_size) {
return (upb_value*)inttable_array_get(t, key);
} else {
upb_tabent* e =
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql);
return e ? &e->val : NULL;
}
}
static const upb_value* inttable_val_const(const upb_inttable* t,
uintptr_t key) {
return inttable_val((upb_inttable*)t, key);
}
size_t upb_inttable_count(const upb_inttable* t) {
return t->t.count + t->array_count;
}
static void check(upb_inttable* t) {
UPB_UNUSED(t);
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
{
// This check is very expensive (makes inserts/deletes O(N)).
size_t count = 0;
intptr_t iter = UPB_INTTABLE_BEGIN;
uintptr_t key;
upb_value val;
while (upb_inttable_next(t, &key, &val, &iter)) {
UPB_ASSERT(upb_inttable_lookup(t, key, NULL));
}
UPB_ASSERT(count == upb_inttable_count(t));
}
#endif
}
bool upb_inttable_sizedinit(upb_inttable* t, uint32_t asize, int hsize_lg2,
upb_Arena* a) {
if (!init(&t->t, hsize_lg2, a)) return false;
/* Always make the array part at least 1 long, so that we know key 0
* won't be in the hash part, which simplifies things. */
t->array_size = UPB_MAX(1, asize);
t->array_count = 0;
#if UINT32_MAX >= SIZE_MAX
if (UPB_UNLIKELY(SIZE_MAX / sizeof(upb_value) < t->array_size)) {
return false;
}
#endif
// Allocate the array part and the presence mask array in one allocation.
size_t array_bytes = t->array_size * sizeof(upb_value);
uint32_t presence_bytes = presence_mask_arr_size(t->array_size);
uintptr_t total_bytes = array_bytes + presence_bytes;
if (UPB_UNLIKELY(total_bytes > SIZE_MAX)) {
return false;
}
void* alloc = upb_Arena_Malloc(a, total_bytes);
if (!alloc) {
return false;
}
t->array = alloc;
memset(mutable_array(t), 0xff, array_bytes);
t->presence_mask = (uint8_t*)alloc + array_bytes;
memset((uint8_t*)t->presence_mask, 0, presence_bytes);
check(t);
return true;
}
bool upb_inttable_init(upb_inttable* t, upb_Arena* a) {
// The init size of the table part to match that of strtable.
return upb_inttable_sizedinit(t, 0, 3, a);
}
bool upb_inttable_insert(upb_inttable* t, uintptr_t key, upb_value val,
upb_Arena* a) {
if (key < t->array_size) {
UPB_ASSERT(!upb_inttable_arrhas(t, key));
t->array_count++;
mutable_array(t)[key] = val;
((uint8_t*)t->presence_mask)[key / 8] |= (1 << (key % 8));
} else {
if (isfull(&t->t)) {
/* Need to resize the hash part, but we re-use the array part. */
size_t i;
upb_table new_table;
if (!init(&new_table, _upb_log2_table_size(&t->t) + 1, a)) {
return false;
}
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) {
const upb_tabent* e = &t->t.entries[i];
insert(&new_table, intkey(e->key.num), e->key, e->val, inthash(e->key),
&inthash, &inteql);
}
UPB_ASSERT(t->t.count == new_table.count);
t->t = new_table;
}
upb_key tabkey = {.num = key};
insert(&t->t, intkey(key), tabkey, val, upb_inthash(key), &inthash,
&inteql);
}
check(t);
return true;
}
bool upb_inttable_lookup(const upb_inttable* t, uintptr_t key, upb_value* v) {
const upb_value* table_v = inttable_val_const(t, key);
if (!table_v) return false;
if (v) *v = *table_v;
return true;
}
bool upb_inttable_replace(upb_inttable* t, uintptr_t key, upb_value val) {
upb_value* table_v = inttable_val(t, key);
if (!table_v) return false;
*table_v = val;
return true;
}
bool upb_inttable_remove(upb_inttable* t, uintptr_t key, upb_value* val) {
bool success;
if (key < t->array_size) {
if (upb_inttable_arrhas(t, key)) {
t->array_count--;
if (val) {
*val = t->array[key];
}
mutable_array(t)[key] = kInttableSentinel;
((uint8_t*)t->presence_mask)[key / 8] &= ~(1 << (key % 8));
success = true;
} else {
success = false;
}
} else {
success = rm(&t->t, intkey(key), val, upb_inthash(key), &inteql);
}
check(t);
return success;
}
bool upb_inttable_compact(upb_inttable* t, upb_Arena* a) {
/* A power-of-two histogram of the table keys. */
uint32_t counts[UPB_MAXARRSIZE + 1] = {0};
/* The max key in each bucket. */
uintptr_t max[UPB_MAXARRSIZE + 1] = {0};
{
intptr_t iter = UPB_INTTABLE_BEGIN;
uintptr_t key;
upb_value val;
while (upb_inttable_next(t, &key, &val, &iter)) {
int bucket = log2ceil(key);
max[bucket] = UPB_MAX(max[bucket], key);
counts[bucket]++;
}
}
/* Find the largest power of two that satisfies the MIN_DENSITY
* definition (while actually having some keys). */
uint32_t arr_count = upb_inttable_count(t);
// Scan all buckets except capped bucket
int size_lg2 = ARRAY_SIZE(counts) - 1;
for (; size_lg2 > 0; size_lg2--) {
if (counts[size_lg2] == 0) {
/* We can halve again without losing any entries. */
continue;
} else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) {
break;
}
arr_count -= counts[size_lg2];
}
UPB_ASSERT(arr_count <= upb_inttable_count(t));
upb_inttable new_t;
{
/* Insert all elements into new, perfectly-sized table. */
uintptr_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */
uint32_t hash_count = upb_inttable_count(t) - arr_count;
size_t hash_size = hash_count ? _upb_entries_needed_for(hash_count) : 0;
int hashsize_lg2 = log2ceil(hash_size);
if (!upb_inttable_sizedinit(&new_t, arr_size, hashsize_lg2, a)) {
return false;
}
{
intptr_t iter = UPB_INTTABLE_BEGIN;
uintptr_t key;
upb_value val;
while (upb_inttable_next(t, &key, &val, &iter)) {
upb_inttable_insert(&new_t, key, val, a);
}
}
UPB_ASSERT(new_t.array_size == arr_size);
}
*t = new_t;
return true;
}
void upb_inttable_clear(upb_inttable* t) {
// Clear the array part.
size_t array_bytes = t->array_size * sizeof(upb_value);
t->array_count = 0;
// Clear the array by setting all bits to 1, as UINT64_MAX is the sentinel
// value for an empty array.
memset(mutable_array(t), 0xff, array_bytes);
// Clear the presence mask array.
memset((uint8_t*)t->presence_mask, 0, presence_mask_arr_size(t->array_size));
// Clear the table part.
size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent);
t->t.count = 0;
memset((char*)t->t.entries, 0, bytes);
}
// Iteration.
bool upb_inttable_next(const upb_inttable* t, uintptr_t* key, upb_value* val,
intptr_t* iter) {
intptr_t i = *iter;
if ((size_t)(i + 1) <= t->array_size) {
while ((size_t)++i < t->array_size) {
const upb_value* ent = inttable_array_get(t, i);
if (ent) {
*key = i;
*val = *ent;
*iter = i;
return true;
}
}
i--; // Back up to exactly one position before the start of the table.
}
size_t tab_idx = next(&t->t, i - t->array_size);
if (tab_idx < upb_table_size(&t->t)) {
upb_tabent* ent = &t->t.entries[tab_idx];
*key = ent->key.num;
*val = ent->val;
*iter = tab_idx + t->array_size;
return true;
} else {
// We should set the iterator any way. When we are done, the iterator value
// is invalidated. `upb_inttable_done` will check on the iterator value to
// determine if the iteration is done.
*iter = INTPTR_MAX - 1; // To disambiguate from UPB_INTTABLE_BEGIN, to
// match the behavior of `upb_strtable_iter`.
return false;
}
}
void upb_inttable_removeiter(upb_inttable* t, intptr_t* iter) {
intptr_t i = *iter;
if ((size_t)i < t->array_size) {
t->array_count--;
mutable_array(t)[i].val = -1;
} else {
upb_tabent* ent = &t->t.entries[i - t->array_size];
upb_tabent* prev = NULL;
// Linear search, not great.
upb_tabent* end = &t->t.entries[upb_table_size(&t->t)];
for (upb_tabent* e = t->t.entries; e != end; e++) {
if (e->next == ent) {
prev = e;
break;
}
}
if (prev) {
prev->next = ent->next;
}
t->t.count--;
ent->key = upb_key_empty();
ent->next = NULL;
}
}
void upb_inttable_setentryvalue(upb_inttable* t, intptr_t iter, upb_value v) {
if ((size_t)iter < t->array_size) {
mutable_array(t)[iter] = v;
} else {
upb_tabent* ent = &t->t.entries[iter - t->array_size];
ent->val = v;
}
}
bool upb_inttable_done(const upb_inttable* t, intptr_t iter) {
if ((uintptr_t)iter >= t->array_size + upb_table_size(&t->t)) {
return true;
} else if ((size_t)iter < t->array_size) {
return !upb_inttable_arrhas(t, iter);
} else {
return upb_tabent_isempty(&t->t.entries[iter - t->array_size]);
}
}
uintptr_t upb_inttable_iter_key(const upb_inttable* t, intptr_t iter) {
UPB_ASSERT(!upb_inttable_done(t, iter));
return (size_t)iter < t->array_size
? iter
: t->t.entries[iter - t->array_size].key.num;
}
upb_value upb_inttable_iter_value(const upb_inttable* t, intptr_t iter) {
UPB_ASSERT(!upb_inttable_done(t, iter));
if ((size_t)iter < t->array_size) {
return t->array[iter];
} else {
return t->t.entries[iter - t->array_size].val;
}
}