blob: f5a94da2063fdd4e77532a6a111abd91b8bfe3ca [file] [log] [blame]
/*
pybind11/cast.h: Partial template specializations to cast between
C++ and Python types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/argument_vector.h"
#include "detail/common.h"
#include "detail/descr.h"
#include "detail/holder_caster_foreign_helpers.h"
#include "detail/native_enum_data.h"
#include "detail/type_caster_base.h"
#include "detail/typeid.h"
#include "pytypes.h"
#include <array>
#include <cstring>
#include <functional>
#include <iosfwd>
#include <iterator>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_WARNING_DISABLE_MSVC(4127)
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename type, typename SFINAE = void>
class type_caster : public type_caster_base<type> {};
template <typename type>
using make_caster = type_caster<intrinsic_t<type>>;
// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
template <typename T>
typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
using result_t = typename make_caster<T>::template cast_op_type<T>; // See PR #4893
return caster.operator result_t();
}
template <typename T>
typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
cast_op(make_caster<T> &&caster) {
using result_t = typename make_caster<T>::template cast_op_type<
typename std::add_rvalue_reference<T>::type>; // See PR #4893
return std::move(caster).operator result_t();
}
template <typename EnumType>
class type_caster_enum_type {
private:
using Underlying = typename std::underlying_type<EnumType>::type;
public:
static constexpr auto name = const_name<EnumType>();
template <typename SrcType>
static handle cast(SrcType &&src, return_value_policy, handle parent) {
handle native_enum
= global_internals_native_enum_type_map_get_item(std::type_index(typeid(EnumType)));
if (native_enum) {
return native_enum(static_cast<Underlying>(src)).release();
}
return type_caster_base<EnumType>::cast(
std::forward<SrcType>(src),
// Fixes https://github.com/pybind/pybind11/pull/3643#issuecomment-1022987818:
return_value_policy::copy,
parent);
}
template <typename SrcType>
static handle cast(SrcType *src, return_value_policy policy, handle parent) {
return cast(*src, policy, parent);
}
bool load(handle src, bool convert) {
handle native_enum
= global_internals_native_enum_type_map_get_item(std::type_index(typeid(EnumType)));
if (native_enum) {
if (!isinstance(src, native_enum)) {
return false;
}
type_caster<Underlying> underlying_caster;
if (!underlying_caster.load(src.attr("value"), convert)) {
pybind11_fail("native_enum internal consistency failure.");
}
native_value = static_cast<EnumType>(static_cast<Underlying>(underlying_caster));
native_loaded = true;
return true;
}
type_caster_base<EnumType> legacy_caster;
if (legacy_caster.load(src, convert)) {
legacy_ptr = static_cast<EnumType *>(legacy_caster);
return true;
}
return false;
}
template <typename T>
using cast_op_type = detail::cast_op_type<T>;
// NOLINTNEXTLINE(google-explicit-constructor)
operator EnumType *() { return native_loaded ? &native_value : legacy_ptr; }
// NOLINTNEXTLINE(google-explicit-constructor)
operator EnumType &() {
if (!native_loaded && !legacy_ptr) {
throw reference_cast_error();
}
return native_loaded ? native_value : *legacy_ptr;
}
private:
EnumType native_value; // if loading a py::native_enum
bool native_loaded = false;
EnumType *legacy_ptr = nullptr; // if loading a py::enum_
};
template <typename EnumType, typename SFINAE = void>
struct type_caster_enum_type_enabled : std::true_type {};
template <typename T>
struct type_uses_type_caster_enum_type {
static constexpr bool value
= std::is_enum<T>::value && type_caster_enum_type_enabled<T>::value;
};
template <typename EnumType>
class type_caster<EnumType, detail::enable_if_t<type_uses_type_caster_enum_type<EnumType>::value>>
: public type_caster_enum_type<EnumType> {};
template <typename T, detail::enable_if_t<std::is_enum<T>::value, int> = 0>
bool isinstance_native_enum_impl(handle obj, const std::type_info &tp) {
handle native_enum = global_internals_native_enum_type_map_get_item(tp);
if (!native_enum) {
return false;
}
return isinstance(obj, native_enum);
}
template <typename T, detail::enable_if_t<!std::is_enum<T>::value, int> = 0>
bool isinstance_native_enum_impl(handle, const std::type_info &) {
return false;
}
template <typename T>
bool isinstance_native_enum(handle obj, const std::type_info &tp) {
return isinstance_native_enum_impl<intrinsic_t<T>>(obj, tp);
}
template <typename type>
class type_caster<std::reference_wrapper<type>> {
private:
using caster_t = make_caster<type>;
caster_t subcaster;
using reference_t = type &;
using subcaster_cast_op_type = typename caster_t::template cast_op_type<reference_t>;
static_assert(
std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value
|| std::is_same<reference_t, subcaster_cast_op_type>::value,
"std::reference_wrapper<T> caster requires T to have a caster with an "
"`operator T &()` or `operator const T &()`");
public:
bool load(handle src, bool convert) { return subcaster.load(src, convert); }
static constexpr auto name = caster_t::name;
static handle
cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
// It is definitely wrong to take ownership of this pointer, so mask that rvp
if (policy == return_value_policy::take_ownership
|| policy == return_value_policy::automatic) {
policy = return_value_policy::automatic_reference;
}
return caster_t::cast(&src.get(), policy, parent);
}
template <typename T>
using cast_op_type = std::reference_wrapper<type>;
explicit operator std::reference_wrapper<type>() { return cast_op<type &>(subcaster); }
};
#define PYBIND11_TYPE_CASTER(type, py_name) \
protected: \
type value; \
\
public: \
static constexpr auto name = py_name; \
template <typename T_, \
::pybind11::detail::enable_if_t< \
std::is_same<type, ::pybind11::detail::remove_cv_t<T_>>::value, \
int> \
= 0> \
static ::pybind11::handle cast( \
T_ *src, ::pybind11::return_value_policy policy, ::pybind11::handle parent) { \
if (!src) \
return ::pybind11::none().release(); \
if (policy == ::pybind11::return_value_policy::take_ownership) { \
auto h = cast(std::move(*src), policy, parent); \
delete src; \
return h; \
} \
return cast(*src, policy, parent); \
} \
operator type *() { return &value; } /* NOLINT(bugprone-macro-parentheses) */ \
operator type &() { return value; } /* NOLINT(bugprone-macro-parentheses) */ \
operator type &&() && { return std::move(value); } /* NOLINT(bugprone-macro-parentheses) */ \
template <typename T_> \
using cast_op_type = ::pybind11::detail::movable_cast_op_type<T_>
template <typename CharT>
using is_std_char_type = any_of<std::is_same<CharT, char>, /* std::string */
#if defined(PYBIND11_HAS_U8STRING)
std::is_same<CharT, char8_t>, /* std::u8string */
#endif
std::is_same<CharT, char16_t>, /* std::u16string */
std::is_same<CharT, char32_t>, /* std::u32string */
std::is_same<CharT, wchar_t> /* std::wstring */
>;
template <typename T>
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
using _py_type_1 = conditional_t<std::is_signed<T>::value,
_py_type_0,
typename std::make_unsigned<_py_type_0>::type>;
using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
public:
bool load(handle src, bool convert) {
py_type py_value;
if (!src) {
return false;
}
#if !defined(PYPY_VERSION)
auto index_check = [](PyObject *o) { return PyIndex_Check(o); };
#else
// In PyPy 7.3.3, `PyIndex_Check` is implemented by calling `__index__`,
// while CPython only considers the existence of `nb_index`/`__index__`.
auto index_check = [](PyObject *o) { return hasattr(o, "__index__"); };
#endif
if (std::is_floating_point<T>::value) {
if (convert || PyFloat_Check(src.ptr())) {
py_value = (py_type) PyFloat_AsDouble(src.ptr());
} else {
return false;
}
} else if (PyFloat_Check(src.ptr())
|| (!convert && !PYBIND11_LONG_CHECK(src.ptr()) && !index_check(src.ptr()))) {
return false;
} else {
handle src_or_index = src;
// PyPy: 7.3.7's 3.8 does not implement PyLong_*'s __index__ calls.
#if defined(PYPY_VERSION)
object index;
if (!PYBIND11_LONG_CHECK(src.ptr())) { // So: index_check(src.ptr())
index = reinterpret_steal<object>(PyNumber_Index(src.ptr()));
if (!index) {
PyErr_Clear();
if (!convert)
return false;
} else {
src_or_index = index;
}
}
#endif
if (std::is_unsigned<py_type>::value) {
py_value = as_unsigned<py_type>(src_or_index.ptr());
} else { // signed integer:
py_value = sizeof(T) <= sizeof(long)
? (py_type) PyLong_AsLong(src_or_index.ptr())
: (py_type) PYBIND11_LONG_AS_LONGLONG(src_or_index.ptr());
}
}
// Python API reported an error
bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
// Check to see if the conversion is valid (integers should match exactly)
// Signed/unsigned checks happen elsewhere
if (py_err
|| (std::is_integral<T>::value && sizeof(py_type) != sizeof(T)
&& py_value != (py_type) (T) py_value)) {
PyErr_Clear();
if (py_err && convert && (PyNumber_Check(src.ptr()) != 0)) {
auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
? PyNumber_Float(src.ptr())
: PyNumber_Long(src.ptr()));
PyErr_Clear();
return load(tmp, false);
}
return false;
}
value = (T) py_value;
return true;
}
template <typename U = T>
static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyFloat_FromDouble((double) src);
}
template <typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value
&& (sizeof(U) <= sizeof(long)),
handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PYBIND11_LONG_FROM_SIGNED((long) src);
}
template <typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value
&& (sizeof(U) <= sizeof(unsigned long)),
handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
}
template <typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value
&& (sizeof(U) > sizeof(long)),
handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromLongLong((long long) src);
}
template <typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value
&& (sizeof(U) > sizeof(unsigned long)),
handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromUnsignedLongLong((unsigned long long) src);
}
PYBIND11_TYPE_CASTER(
T,
io_name<std::is_integral<T>::value>("typing.SupportsInt | typing.SupportsIndex",
"int",
"typing.SupportsFloat | typing.SupportsIndex",
"float"));
};
template <typename T>
struct void_caster {
public:
bool load(handle src, bool) {
if (src && src.is_none()) {
return true;
}
return false;
}
static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
return none().release();
}
PYBIND11_TYPE_CASTER(T, const_name("None"));
};
template <>
class type_caster<void_type> : public void_caster<void_type> {};
template <>
class type_caster<void> : public type_caster<void_type> {
public:
using type_caster<void_type>::cast;
bool load(handle h, bool) {
if (!h) {
return false;
}
if (h.is_none()) {
value = nullptr;
return true;
}
/* Check if this is a capsule */
if (isinstance<capsule>(h)) {
value = reinterpret_borrow<capsule>(h);
return true;
}
/* Check if this is a C++ type */
const auto &bases
= all_type_info(reinterpret_cast<PyTypeObject *>(type::handle_of(h).ptr()));
if (bases.size() == 1) { // Only allowing loading from a single-value type
value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
return true;
}
/* Fail */
return false;
}
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
if (ptr) {
return capsule(ptr).release();
}
return none().release();
}
template <typename T>
using cast_op_type = void *&;
explicit operator void *&() { return value; }
static constexpr auto name = const_name(PYBIND11_CAPSULE_TYPE_TYPE_HINT);
private:
void *value = nullptr;
};
template <>
class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> {};
template <>
class type_caster<bool> {
public:
bool load(handle src, bool convert) {
if (!src) {
return false;
}
if (src.ptr() == Py_True) {
value = true;
return true;
}
if (src.ptr() == Py_False) {
value = false;
return true;
}
if (convert || is_numpy_bool(src)) {
// (allow non-implicit conversion for numpy booleans), use strncmp
// since NumPy 1.x had an additional trailing underscore.
Py_ssize_t res = -1;
if (src.is_none()) {
res = 0; // None is implicitly converted to False
}
#if defined(PYPY_VERSION)
// On PyPy, check that "__bool__" attr exists
else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
res = PyObject_IsTrue(src.ptr());
}
#else
// Alternate approach for CPython: this does the same as the above, but optimized
// using the CPython API so as to avoid an unneeded attribute lookup.
else if (auto *tp_as_number = Py_TYPE(src.ptr())->tp_as_number) {
if (PYBIND11_NB_BOOL(tp_as_number)) {
res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
}
}
#endif
if (res == 0 || res == 1) {
value = (res != 0);
return true;
}
PyErr_Clear();
}
return false;
}
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
return handle(src ? Py_True : Py_False).inc_ref();
}
PYBIND11_TYPE_CASTER(bool, const_name("bool"));
private:
// Test if an object is a NumPy boolean (without fetching the type).
static bool is_numpy_bool(handle object) {
const char *type_name = Py_TYPE(object.ptr())->tp_name;
// Name changed to `numpy.bool` in NumPy 2, `numpy.bool_` is needed for 1.x support
return std::strcmp("numpy.bool", type_name) == 0
|| std::strcmp("numpy.bool_", type_name) == 0;
}
};
// Helper class for UTF-{8,16,32} C++ stl strings:
template <typename StringType, bool IsView = false>
struct string_caster {
using CharT = typename StringType::value_type;
// Simplify life by being able to assume standard char sizes (the standard only guarantees
// minimums, but Python requires exact sizes)
static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1,
"Unsupported char size != 1");
#if defined(PYBIND11_HAS_U8STRING)
static_assert(!std::is_same<CharT, char8_t>::value || sizeof(CharT) == 1,
"Unsupported char8_t size != 1");
#endif
static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2,
"Unsupported char16_t size != 2");
static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4,
"Unsupported char32_t size != 4");
// wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
"Unsupported wchar_t size != 2/4");
static constexpr size_t UTF_N = 8 * sizeof(CharT);
bool load(handle src, bool) {
handle load_src = src;
if (!src) {
return false;
}
if (!PyUnicode_Check(load_src.ptr())) {
return load_raw(load_src);
}
// For UTF-8 we avoid the need for a temporary `bytes` object by using
// `PyUnicode_AsUTF8AndSize`.
if (UTF_N == 8) {
Py_ssize_t size = -1;
const auto *buffer
= reinterpret_cast<const CharT *>(PyUnicode_AsUTF8AndSize(load_src.ptr(), &size));
if (!buffer) {
PyErr_Clear();
return false;
}
value = StringType(buffer, static_cast<size_t>(size));
return true;
}
auto utfNbytes
= reinterpret_steal<object>(PyUnicode_AsEncodedString(load_src.ptr(),
UTF_N == 8 ? "utf-8"
: UTF_N == 16 ? "utf-16"
: "utf-32",
nullptr));
if (!utfNbytes) {
PyErr_Clear();
return false;
}
const auto *buffer
= reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
size_t length = static_cast<size_t>(PYBIND11_BYTES_SIZE(utfNbytes.ptr())) / sizeof(CharT);
// Skip BOM for UTF-16/32
if (UTF_N > 8) {
buffer++;
length--;
}
value = StringType(buffer, length);
// If we're loading a string_view we need to keep the encoded Python object alive:
if (IsView) {
loader_life_support::add_patient(utfNbytes);
}
return true;
}
static handle
cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
const char *buffer = reinterpret_cast<const char *>(src.data());
auto nbytes = ssize_t(src.size() * sizeof(CharT));
handle s = decode_utfN(buffer, nbytes);
if (!s) {
throw error_already_set();
}
return s;
}
PYBIND11_TYPE_CASTER(StringType, const_name(PYBIND11_STRING_NAME));
private:
static handle decode_utfN(const char *buffer, ssize_t nbytes) {
#if !defined(PYPY_VERSION)
return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr)
: UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr)
: PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
#else
// PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as
// well), so bypass the whole thing by just passing the encoding as a string value, which
// works properly:
return PyUnicode_Decode(buffer,
nbytes,
UTF_N == 8 ? "utf-8"
: UTF_N == 16 ? "utf-16"
: "utf-32",
nullptr);
#endif
}
// When loading into a std::string or char*, accept a bytes/bytearray object as-is (i.e.
// without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
// which supports loading a unicode from a str, doesn't take this path.
template <typename C = CharT>
bool load_raw(enable_if_t<std::is_same<C, char>::value, handle> src) {
if (PYBIND11_BYTES_CHECK(src.ptr())) {
// We were passed raw bytes; accept it into a std::string or char*
// without any encoding attempt.
const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
if (!bytes) {
pybind11_fail("Unexpected PYBIND11_BYTES_AS_STRING() failure.");
}
value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
return true;
}
if (PyByteArray_Check(src.ptr())) {
// We were passed a bytearray; accept it into a std::string or char*
// without any encoding attempt.
const char *bytearray = PyByteArray_AsString(src.ptr());
if (!bytearray) {
pybind11_fail("Unexpected PyByteArray_AsString() failure.");
}
value = StringType(bytearray, (size_t) PyByteArray_Size(src.ptr()));
return true;
}
return false;
}
template <typename C = CharT>
bool load_raw(enable_if_t<!std::is_same<C, char>::value, handle>) {
return false;
}
};
template <typename CharT, class Traits, class Allocator>
struct type_caster<std::basic_string<CharT, Traits, Allocator>,
enable_if_t<is_std_char_type<CharT>::value>>
: string_caster<std::basic_string<CharT, Traits, Allocator>> {};
#ifdef PYBIND11_HAS_STRING_VIEW
template <typename CharT, class Traits>
struct type_caster<std::basic_string_view<CharT, Traits>,
enable_if_t<is_std_char_type<CharT>::value>>
: string_caster<std::basic_string_view<CharT, Traits>, true> {};
#endif
// Type caster for C-style strings. We basically use a std::string type caster, but also add the
// ability to use None as a nullptr char* (which the string caster doesn't allow).
template <typename CharT>
struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
using StringType = std::basic_string<CharT>;
using StringCaster = make_caster<StringType>;
StringCaster str_caster;
bool none = false;
CharT one_char = 0;
public:
bool load(handle src, bool convert) {
if (!src) {
return false;
}
if (src.is_none()) {
// Defer accepting None to other overloads (if we aren't in convert mode):
if (!convert) {
return false;
}
none = true;
return true;
}
return str_caster.load(src, convert);
}
static handle cast(const CharT *src, return_value_policy policy, handle parent) {
if (src == nullptr) {
return pybind11::none().release();
}
return StringCaster::cast(StringType(src), policy, parent);
}
static handle cast(CharT src, return_value_policy policy, handle parent) {
if (std::is_same<char, CharT>::value) {
handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
if (!s) {
throw error_already_set();
}
return s;
}
return StringCaster::cast(StringType(1, src), policy, parent);
}
explicit operator CharT *() {
return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str());
}
explicit operator CharT &() {
if (none) {
throw value_error("Cannot convert None to a character");
}
auto &value = static_cast<StringType &>(str_caster);
size_t str_len = value.size();
if (str_len == 0) {
throw value_error("Cannot convert empty string to a character");
}
// If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
// is too high, and one for multiple unicode characters (caught later), so we need to
// figure out how long the first encoded character is in bytes to distinguish between these
// two errors. We also allow want to allow unicode characters U+0080 through U+00FF, as
// those can fit into a single char value.
if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
auto v0 = static_cast<unsigned char>(value[0]);
// low bits only: 0-127
// 0b110xxxxx - start of 2-byte sequence
// 0b1110xxxx - start of 3-byte sequence
// 0b11110xxx - start of 4-byte sequence
size_t char0_bytes = (v0 & 0x80) == 0 ? 1
: (v0 & 0xE0) == 0xC0 ? 2
: (v0 & 0xF0) == 0xE0 ? 3
: 4;
if (char0_bytes == str_len) {
// If we have a 128-255 value, we can decode it into a single char:
if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
one_char = static_cast<CharT>(((v0 & 3) << 6)
+ (static_cast<unsigned char>(value[1]) & 0x3F));
return one_char;
}
// Otherwise we have a single character, but it's > U+00FF
throw value_error("Character code point not in range(0x100)");
}
}
// UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
// surrogate pair with total length 2 instantly indicates a range error (but not a "your
// string was too long" error).
else if (StringCaster::UTF_N == 16 && str_len == 2) {
one_char = static_cast<CharT>(value[0]);
if (one_char >= 0xD800 && one_char < 0xE000) {
throw value_error("Character code point not in range(0x10000)");
}
}
if (str_len != 1) {
throw value_error("Expected a character, but multi-character string found");
}
one_char = value[0];
return one_char;
}
static constexpr auto name = const_name(PYBIND11_STRING_NAME);
template <typename _T>
using cast_op_type = pybind11::detail::cast_op_type<_T>;
};
// Base implementation for std::tuple and std::pair
template <template <typename...> class Tuple, typename... Ts>
class tuple_caster {
using type = Tuple<Ts...>;
static constexpr auto size = sizeof...(Ts);
using indices = make_index_sequence<size>;
public:
bool load(handle src, bool convert) {
if (!isinstance<sequence>(src)) {
return false;
}
const auto seq = reinterpret_borrow<sequence>(src);
if (seq.size() != size) {
return false;
}
return load_impl(seq, convert, indices{});
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
return cast_impl(std::forward<T>(src), policy, parent, indices{});
}
// copied from the PYBIND11_TYPE_CASTER macro
template <typename T>
static handle cast(T *src, return_value_policy policy, handle parent) {
if (!src) {
return none().release();
}
if (policy == return_value_policy::take_ownership) {
auto h = cast(std::move(*src), policy, parent);
delete src;
return h;
}
return cast(*src, policy, parent);
}
static constexpr auto name = const_name("tuple[")
+ ::pybind11::detail::concat(make_caster<Ts>::name...)
+ const_name("]");
template <typename T>
using cast_op_type = type;
explicit operator type() & { return implicit_cast(indices{}); }
explicit operator type() && { return std::move(*this).implicit_cast(indices{}); }
protected:
template <size_t... Is>
type implicit_cast(index_sequence<Is...>) & {
return type(cast_op<Ts>(std::get<Is>(subcasters))...);
}
template <size_t... Is>
type implicit_cast(index_sequence<Is...>) && {
return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...);
}
static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
template <size_t... Is>
bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
#ifdef __cpp_fold_expressions
if ((... || !std::get<Is>(subcasters).load(seq[Is], convert))) {
return false;
}
#else
for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...}) {
if (!r) {
return false;
}
}
#endif
return true;
}
/* Implementation: Convert a C++ tuple into a Python tuple */
template <typename T, size_t... Is>
static handle
cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(src, policy, parent);
PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(policy, parent);
std::array<object, size> entries{{reinterpret_steal<object>(
// NOLINTNEXTLINE(bugprone-use-after-move)
make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...}};
for (const auto &entry : entries) {
if (!entry) {
return handle();
}
}
tuple result(size);
int counter = 0;
for (auto &entry : entries) {
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
}
return result.release();
}
Tuple<make_caster<Ts>...> subcasters;
};
template <typename T1, typename T2>
class type_caster<std::pair<T1, T2>> : public tuple_caster<std::pair, T1, T2> {};
template <typename... Ts>
class type_caster<std::tuple<Ts...>> : public tuple_caster<std::tuple, Ts...> {};
template <>
class type_caster<std::tuple<>> : public tuple_caster<std::tuple> {
public:
// PEP 484 specifies this syntax for an empty tuple
static constexpr auto name = const_name("tuple[()]");
};
/// Helper class which abstracts away certain actions. Users can provide specializations for
/// custom holders, but it's only necessary if the type has a non-standard interface.
template <typename T>
struct holder_helper {
static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
};
// SMART_HOLDER_BAKEIN_FOLLOW_ON: Rewrite comment, with reference to shared_ptr specialization.
/// Type caster for holder types like std::shared_ptr, etc.
/// The SFINAE hook is provided to help work around the current lack of support
/// for smart-pointer interoperability. Please consider it an implementation
/// detail that may change in the future, as formal support for smart-pointer
/// interoperability is added into pybind11.
template <typename type, typename holder_type, typename SFINAE = void>
struct copyable_holder_caster : public type_caster_base<type> {
public:
using base = type_caster_base<type>;
static_assert(std::is_base_of<base, type_caster<type>>::value,
"Holder classes are only supported for custom types");
using base::base;
using base::cast;
using base::typeinfo;
using base::value;
bool load(handle src, bool convert) {
return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
}
explicit operator type *() { return this->value; }
// static_cast works around compiler error with MSVC 17 and CUDA 10.2
// see issue #2180
explicit operator type &() { return *(static_cast<type *>(this->value)); }
explicit operator holder_type *() { return std::addressof(holder); }
explicit operator holder_type &() { return holder; }
static handle cast(const holder_type &src, return_value_policy, handle) {
const auto *ptr = holder_helper<holder_type>::get(src);
return type_caster_base<type>::cast_holder(ptr, &src);
}
protected:
friend class type_caster_generic;
void check_holder_compat() {
// SMART_HOLDER_BAKEIN_FOLLOW_ON: Refine holder compatibility checks.
bool inst_has_unique_ptr_holder
= (typeinfo->holder_enum_v == holder_enum_t::std_unique_ptr);
if (inst_has_unique_ptr_holder) {
throw cast_error("Unable to load a custom holder type from a default-holder instance");
}
}
bool set_foreign_holder(handle src) {
return holder_caster_foreign_helpers::set_foreign_holder(src, (type *) value, &holder);
}
void load_value(value_and_holder &&v_h) {
if (v_h.holder_constructed()) {
value = v_h.value_ptr();
holder = v_h.template holder<holder_type>();
return;
}
throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
"(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for "
"type information)");
#else
"of type '"
+ type_id<holder_type>() + "''");
#endif
}
template <typename T = holder_type,
detail::enable_if_t<!std::is_constructible<T, const T &, type *>::value, int> = 0>
bool try_implicit_casts(handle, bool) {
return false;
}
template <typename T = holder_type,
detail::enable_if_t<std::is_constructible<T, const T &, type *>::value, int> = 0>
bool try_implicit_casts(handle src, bool convert) {
for (auto &cast : typeinfo->implicit_casts) {
copyable_holder_caster sub_caster(*cast.first);
if (sub_caster.load(src, convert)) {
value = cast.second(sub_caster.value);
holder = holder_type(sub_caster.holder, (type *) value);
return true;
}
}
return false;
}
static bool try_direct_conversions(handle) { return false; }
holder_type holder;
};
template <typename, typename SFINAE = void>
struct copyable_holder_caster_shared_ptr_with_smart_holder_support_enabled : std::true_type {};
// SMART_HOLDER_BAKEIN_FOLLOW_ON: Refactor copyable_holder_caster to reduce code duplication.
template <typename type>
struct copyable_holder_caster<
type,
std::shared_ptr<type>,
enable_if_t<copyable_holder_caster_shared_ptr_with_smart_holder_support_enabled<type>::value>>
: public type_caster_base<type> {
public:
using base = type_caster_base<type>;
static_assert(std::is_base_of<base, type_caster<type>>::value,
"Holder classes are only supported for custom types");
using base::base;
using base::cast;
using base::typeinfo;
using base::value;
bool load(handle src, bool convert) {
if (base::template load_impl<copyable_holder_caster<type, std::shared_ptr<type>>>(
src, convert)) {
sh_load_helper.maybe_set_python_instance_is_alias(src);
return true;
}
return false;
}
explicit operator std::shared_ptr<type> *() {
if (sh_load_helper.was_populated) {
pybind11_fail("Passing `std::shared_ptr<T> *` from Python to C++ is not supported "
"(inherently unsafe).");
}
return std::addressof(shared_ptr_storage);
}
explicit operator std::shared_ptr<type> &() {
if (sh_load_helper.was_populated) {
shared_ptr_storage = sh_load_helper.load_as_shared_ptr(typeinfo, value);
}
return shared_ptr_storage;
}
std::weak_ptr<type> potentially_slicing_weak_ptr() {
if (sh_load_helper.was_populated) {
// Reusing shared_ptr code to minimize code complexity.
shared_ptr_storage
= sh_load_helper.load_as_shared_ptr(typeinfo,
value,
/*responsible_parent=*/nullptr,
/*force_potentially_slicing_shared_ptr=*/true);
}
return shared_ptr_storage;
}
static handle
cast(const std::shared_ptr<type> &src, return_value_policy policy, handle parent) {
const auto *ptr = src.get();
typename type_caster_base<type>::cast_sources srcs{ptr};
if (srcs.creates_smart_holder()) {
return smart_holder_type_caster_support::smart_holder_from_shared_ptr(
src, policy, parent, srcs.result);
}
return type_caster_base<type>::cast_holder(srcs, &src);
}
// This function will succeed even if the `responsible_parent` does not own the
// wrapped C++ object directly.
// It is the responsibility of the caller to ensure that the `responsible_parent`
// has a `keep_alive` relationship with the owner of the wrapped C++ object, or
// that the wrapped C++ object lives for the duration of the process.
static std::shared_ptr<type> shared_ptr_with_responsible_parent(handle responsible_parent) {
copyable_holder_caster loader;
loader.load(responsible_parent, /*convert=*/false);
assert(loader.typeinfo->holder_enum_v == detail::holder_enum_t::smart_holder);
return loader.sh_load_helper.load_as_shared_ptr(
loader.typeinfo, loader.value, responsible_parent);
}
protected:
friend class type_caster_generic;
void check_holder_compat() {
// SMART_HOLDER_BAKEIN_FOLLOW_ON: Refine holder compatibility checks.
bool inst_has_unique_ptr_holder
= (typeinfo->holder_enum_v == holder_enum_t::std_unique_ptr);
if (inst_has_unique_ptr_holder) {
throw cast_error("Unable to load a custom holder type from a default-holder instance");
}
}
bool set_foreign_holder(handle src) {
return holder_caster_foreign_helpers::set_foreign_holder(
src, (type *) value, &shared_ptr_storage);
}
void load_value(value_and_holder &&v_h) {
if (typeinfo->holder_enum_v == detail::holder_enum_t::smart_holder) {
sh_load_helper.loaded_v_h = v_h;
sh_load_helper.was_populated = true;
value = sh_load_helper.get_void_ptr_or_nullptr();
return;
}
if (v_h.holder_constructed()) {
value = v_h.value_ptr();
shared_ptr_storage = v_h.template holder<std::shared_ptr<type>>();
return;
}
throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
"(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for "
"type information)");
#else
"of type '"
+ type_id<std::shared_ptr<type>>() + "''");
#endif
}
template <typename T = std::shared_ptr<type>,
detail::enable_if_t<!std::is_constructible<T, const T &, type *>::value, int> = 0>
bool try_implicit_casts(handle, bool) {
return false;
}
template <typename T = std::shared_ptr<type>,
detail::enable_if_t<std::is_constructible<T, const T &, type *>::value, int> = 0>
bool try_implicit_casts(handle src, bool convert) {
for (auto &cast : typeinfo->implicit_casts) {
copyable_holder_caster sub_caster(*cast.first);
if (sub_caster.load(src, convert)) {
value = cast.second(sub_caster.value);
if (typeinfo->holder_enum_v == detail::holder_enum_t::smart_holder) {
sh_load_helper.loaded_v_h = sub_caster.sh_load_helper.loaded_v_h;
sh_load_helper.was_populated = true;
} else {
shared_ptr_storage
= std::shared_ptr<type>(sub_caster.shared_ptr_storage, (type *) value);
}
return true;
}
}
return false;
}
static bool try_direct_conversions(handle) { return false; }
smart_holder_type_caster_support::load_helper<remove_cv_t<type>> sh_load_helper; // Const2Mutbl
std::shared_ptr<type> shared_ptr_storage;
};
/// Specialize for the common std::shared_ptr, so users don't need to
template <typename T>
class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> {};
PYBIND11_NAMESPACE_END(detail)
/// Return a std::shared_ptr with the SAME CONTROL BLOCK as the std::shared_ptr owned by the
/// class_ holder. For class_-wrapped types with trampolines, the returned std::shared_ptr
/// does NOT keep any derived Python objects alive (see issue #1333).
///
/// For class_-wrapped types using std::shared_ptr as the holder, the following expressions
/// produce equivalent results (see tests/test_potentially_slicing_weak_ptr.cpp,py):
///
/// - obj.cast<std::shared_ptr<T>>()
/// - py::potentially_slicing_weak_ptr<T>(obj).lock()
///
/// For class_-wrapped types with trampolines and using py::smart_holder, obj.cast<>()
/// produces a std::shared_ptr that keeps any derived Python objects alive for its own lifetime,
/// but this is achieved by introducing a std::shared_ptr control block that is independent of
/// the one owned by the py::smart_holder. This can lead to surprising std::weak_ptr behavior
/// (see issue #5623). An easy solution is to use py::potentially_slicing_weak_ptr<>(obj),
/// as exercised in tests/test_potentially_slicing_weak_ptr.cpp,py (look for
/// "set_wp_potentially_slicing"). Note, however, that this reintroduces the inheritance
/// slicing issue (see issue #1333). The ideal — but usually more involved — solution is to use
/// a Python weakref to the derived Python object, instead of a C++ base-class std::weak_ptr.
///
/// It is not possible (at least no known approach exists at the time of this writing) to
/// simultaneously achieve both desirable properties:
///
/// - the same std::shared_ptr control block as the class_ holder
/// - automatic lifetime extension of any derived Python objects
///
/// The reason is that this would introduce a reference cycle that cannot be garbage collected:
///
/// - the derived Python object owns the class_ holder
/// - the class_ holder owns the std::shared_ptr
/// - the std::shared_ptr would own a reference to the derived Python object,
/// completing the cycle
template <typename T>
std::weak_ptr<T> potentially_slicing_weak_ptr(handle obj) {
detail::make_caster<std::shared_ptr<T>> caster;
if (caster.load(obj, /*convert=*/true)) {
return caster.potentially_slicing_weak_ptr();
}
const char *obj_type_name = detail::obj_class_name(obj.ptr());
throw type_error("\"" + std::string(obj_type_name)
+ "\" object is not convertible to std::weak_ptr<T> (with T = " + type_id<T>()
+ ")");
}
PYBIND11_NAMESPACE_BEGIN(detail)
// SMART_HOLDER_BAKEIN_FOLLOW_ON: Rewrite comment, with reference to unique_ptr specialization.
/// Type caster for holder types like std::unique_ptr.
/// Please consider the SFINAE hook an implementation detail, as explained
/// in the comment for the copyable_holder_caster.
template <typename type, typename holder_type, typename SFINAE = void>
struct move_only_holder_caster {
static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
"Holder classes are only supported for custom types");
static handle cast(holder_type &&src, return_value_policy, handle) {
auto *ptr = holder_helper<holder_type>::get(src);
return type_caster_base<type>::cast_holder(ptr, std::addressof(src));
}
static constexpr auto name = type_caster_base<type>::name;
};
template <typename, typename SFINAE = void>
struct move_only_holder_caster_unique_ptr_with_smart_holder_support_enabled : std::true_type {};
// SMART_HOLDER_BAKEIN_FOLLOW_ON: Refactor move_only_holder_caster to reduce code duplication.
template <typename type, typename deleter>
struct move_only_holder_caster<
type,
std::unique_ptr<type, deleter>,
enable_if_t<move_only_holder_caster_unique_ptr_with_smart_holder_support_enabled<type>::value>>
: public type_caster_base<type> {
public:
using base = type_caster_base<type>;
static_assert(std::is_base_of<base, type_caster<type>>::value,
"Holder classes are only supported for custom types");
using base::base;
using base::cast;
using base::typeinfo;
using base::value;
static handle
cast(std::unique_ptr<type, deleter> &&src, return_value_policy policy, handle parent) {
auto *ptr = src.get();
typename type_caster_base<type>::cast_sources srcs{ptr};
if (srcs.creates_smart_holder()) {
return smart_holder_type_caster_support::smart_holder_from_unique_ptr(
std::move(src), policy, parent, srcs.result);
}
return type_caster_base<type>::cast_holder(srcs, &src);
}
static handle
cast(const std::unique_ptr<type, deleter> &src, return_value_policy policy, handle parent) {
if (!src) {
return none().release();
}
if (policy == return_value_policy::automatic) {
policy = return_value_policy::reference_internal;
}
if (policy != return_value_policy::reference_internal) {
throw cast_error("Invalid return_value_policy for const unique_ptr&");
}
return type_caster_base<type>::cast(src.get(), policy, parent);
}
bool load(handle src, bool convert) {
if (base::template load_impl<
move_only_holder_caster<type, std::unique_ptr<type, deleter>>>(src, convert)) {
sh_load_helper.maybe_set_python_instance_is_alias(src);
return true;
}
return false;
}
bool set_foreign_holder(handle) {
throw cast_error("Foreign instance cannot be converted to std::unique_ptr "
"because we don't know how to make it relinquish "
"ownership");
}
void load_value(value_and_holder &&v_h) {
if (typeinfo->holder_enum_v == detail::holder_enum_t::smart_holder) {
sh_load_helper.loaded_v_h = v_h;
sh_load_helper.loaded_v_h.type = typeinfo;
sh_load_helper.was_populated = true;
value = sh_load_helper.get_void_ptr_or_nullptr();
return;
}
pybind11_fail("Passing `std::unique_ptr<T>` from Python to C++ requires `py::class_<T, "
"py::smart_holder>` (with T = "
+ clean_type_id(typeinfo->cpptype->name()) + ")");
}
template <typename T_>
using cast_op_type
= conditional_t<std::is_same<typename std::remove_volatile<T_>::type,
const std::unique_ptr<type, deleter> &>::value
|| std::is_same<typename std::remove_volatile<T_>::type,
const std::unique_ptr<const type, deleter> &>::value,
const std::unique_ptr<type, deleter> &,
std::unique_ptr<type, deleter>>;
explicit operator std::unique_ptr<type, deleter>() {
if (typeinfo->holder_enum_v == detail::holder_enum_t::smart_holder) {
return sh_load_helper.template load_as_unique_ptr<deleter>(typeinfo, value);
}
pybind11_fail("Expected to be UNREACHABLE: " __FILE__ ":" PYBIND11_TOSTRING(__LINE__));
}
explicit operator const std::unique_ptr<type, deleter> &() {
if (typeinfo->holder_enum_v == detail::holder_enum_t::smart_holder) {
// Get shared_ptr to ensure that the Python object is not disowned elsewhere.
shared_ptr_storage = sh_load_helper.load_as_shared_ptr(typeinfo, value);
// Build a temporary unique_ptr that is meant to never expire.
unique_ptr_storage = std::shared_ptr<std::unique_ptr<type, deleter>>(
new std::unique_ptr<type, deleter>{
sh_load_helper.template load_as_const_unique_ptr<deleter>(
typeinfo, shared_ptr_storage.get())},
[](std::unique_ptr<type, deleter> *ptr) {
if (!ptr) {
pybind11_fail("FATAL: `const std::unique_ptr<T, D> &` was disowned "
"(EXPECT UNDEFINED BEHAVIOR).");
}
(void) ptr->release();
delete ptr;
});
return *unique_ptr_storage;
}
pybind11_fail("Expected to be UNREACHABLE: " __FILE__ ":" PYBIND11_TOSTRING(__LINE__));
}
bool try_implicit_casts(handle src, bool convert) {
for (auto &cast : typeinfo->implicit_casts) {
move_only_holder_caster sub_caster(*cast.first);
if (sub_caster.load(src, convert)) {
value = cast.second(sub_caster.value);
if (typeinfo->holder_enum_v == detail::holder_enum_t::smart_holder) {
sh_load_helper.loaded_v_h = sub_caster.sh_load_helper.loaded_v_h;
sh_load_helper.was_populated = true;
} else {
pybind11_fail("Expected to be UNREACHABLE: " __FILE__
":" PYBIND11_TOSTRING(__LINE__));
}
return true;
}
}
return false;
}
static bool try_direct_conversions(handle) { return false; }
smart_holder_type_caster_support::load_helper<remove_cv_t<type>> sh_load_helper; // Const2Mutbl
std::shared_ptr<type> shared_ptr_storage; // Serves as a pseudo lock.
std::shared_ptr<std::unique_ptr<type, deleter>> unique_ptr_storage;
};
template <typename type, typename deleter>
class type_caster<std::unique_ptr<type, deleter>>
: public move_only_holder_caster<type, std::unique_ptr<type, deleter>> {};
template <typename type, typename holder_type>
using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
copyable_holder_caster<type, holder_type>,
move_only_holder_caster<type, holder_type>>;
template <bool Value = false>
struct always_construct_holder_value {
static constexpr bool value = Value;
};
template <typename T, bool Value = false>
struct always_construct_holder : always_construct_holder_value<Value> {};
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) \
namespace detail { \
template <typename type> \
struct always_construct_holder<holder_type> : always_construct_holder_value<__VA_ARGS__> {}; \
template <typename type> \
class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
: public type_caster_holder<type, holder_type> {}; \
} \
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
template <typename base, typename holder>
struct is_holder_type
: std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
// Specializations for always-supported holders:
template <typename base, typename deleter>
struct is_holder_type<base, std::unique_ptr<base, deleter>> : std::true_type {};
template <typename base>
struct is_holder_type<base, smart_holder> : std::true_type {};
#ifdef PYBIND11_DISABLE_HANDLE_TYPE_NAME_DEFAULT_IMPLEMENTATION // See PR #4888
// This leads to compilation errors if a specialization is missing.
template <typename T>
struct handle_type_name;
#else
template <typename T>
struct handle_type_name {
static constexpr auto name = const_name<T>();
};
#endif
template <>
struct handle_type_name<object> {
static constexpr auto name = const_name("object");
};
template <>
struct handle_type_name<list> {
static constexpr auto name = const_name("list");
};
template <>
struct handle_type_name<dict> {
static constexpr auto name = const_name("dict");
};
template <>
struct handle_type_name<anyset> {
static constexpr auto name = const_name("set | frozenset");
};
template <>
struct handle_type_name<set> {
static constexpr auto name = const_name("set");
};
template <>
struct handle_type_name<frozenset> {
static constexpr auto name = const_name("frozenset");
};
template <>
struct handle_type_name<str> {
static constexpr auto name = const_name("str");
};
template <>
struct handle_type_name<tuple> {
static constexpr auto name = const_name("tuple");
};
template <>
struct handle_type_name<bool_> {
static constexpr auto name = const_name("bool");
};
template <>
struct handle_type_name<bytes> {
static constexpr auto name = const_name(PYBIND11_BYTES_NAME);
};
template <>
struct handle_type_name<buffer> {
static constexpr auto name = const_name(PYBIND11_BUFFER_TYPE_HINT);
};
template <>
struct handle_type_name<int_> {
static constexpr auto name = const_name("int");
};
template <>
struct handle_type_name<iterable> {
static constexpr auto name = const_name("collections.abc.Iterable");
};
template <>
struct handle_type_name<iterator> {
static constexpr auto name = const_name("collections.abc.Iterator");
};
template <>
struct handle_type_name<float_> {
static constexpr auto name = const_name("float");
};
template <>
struct handle_type_name<function> {
static constexpr auto name = const_name("collections.abc.Callable");
};
template <>
struct handle_type_name<handle> {
static constexpr auto name = handle_type_name<object>::name;
};
template <>
struct handle_type_name<none> {
static constexpr auto name = const_name("None");
};
template <>
struct handle_type_name<sequence> {
static constexpr auto name = const_name("collections.abc.Sequence");
};
template <>
struct handle_type_name<bytearray> {
static constexpr auto name = const_name("bytearray");
};
template <>
struct handle_type_name<memoryview> {
static constexpr auto name = const_name("memoryview");
};
template <>
struct handle_type_name<slice> {
static constexpr auto name = const_name("slice");
};
template <>
struct handle_type_name<type> {
static constexpr auto name = const_name("type");
};
template <>
struct handle_type_name<capsule> {
static constexpr auto name = const_name(PYBIND11_CAPSULE_TYPE_TYPE_HINT);
};
template <>
struct handle_type_name<ellipsis> {
static constexpr auto name = const_name("ellipsis");
};
template <>
struct handle_type_name<weakref> {
static constexpr auto name = const_name("weakref.ReferenceType");
};
// args/Args/kwargs/KWArgs have name as well as typehint included
template <>
struct handle_type_name<args> {
static constexpr auto name = io_name("*args", "tuple");
};
template <typename T>
struct handle_type_name<Args<T>> {
static constexpr auto name
= io_name("*args: ", "tuple[") + make_caster<T>::name + io_name("", ", ...]");
};
template <>
struct handle_type_name<kwargs> {
static constexpr auto name = io_name("**kwargs", "dict[str, typing.Any]");
};
template <typename T>
struct handle_type_name<KWArgs<T>> {
static constexpr auto name
= io_name("**kwargs: ", "dict[str, ") + make_caster<T>::name + io_name("", "]");
};
template <>
struct handle_type_name<obj_attr_accessor> {
static constexpr auto name = const_name<obj_attr_accessor>();
};
template <>
struct handle_type_name<str_attr_accessor> {
static constexpr auto name = const_name<str_attr_accessor>();
};
template <>
struct handle_type_name<item_accessor> {
static constexpr auto name = const_name<item_accessor>();
};
template <>
struct handle_type_name<sequence_accessor> {
static constexpr auto name = const_name<sequence_accessor>();
};
template <>
struct handle_type_name<list_accessor> {
static constexpr auto name = const_name<list_accessor>();
};
template <>
struct handle_type_name<tuple_accessor> {
static constexpr auto name = const_name<tuple_accessor>();
};
template <typename type>
struct pyobject_caster {
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
pyobject_caster() : value() {}
// `type` may not be default constructible (e.g. frozenset, anyset). Initializing `value`
// to a nil handle is safe since it will only be accessed if `load` succeeds.
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
pyobject_caster() : value(reinterpret_steal<type>(handle())) {}
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
bool load(handle src, bool /* convert */) {
value = src;
return static_cast<bool>(value);
}
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
bool load(handle src, bool /* convert */) {
if (!isinstance<type>(src)) {
return false;
}
value = reinterpret_borrow<type>(src);
return true;
}
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
return src.inc_ref();
}
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
};
template <typename T>
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> {};
template <>
class type_caster<float_> : public pyobject_caster<float_> {
public:
bool load(handle src, bool /* convert */) {
if (isinstance<float_>(src)) {
value = reinterpret_borrow<float_>(src);
} else if (isinstance<int_>(src)) {
value = float_(reinterpret_borrow<int_>(src));
} else {
return false;
}
return true;
}
};
// Our conditions for enabling moving are quite restrictive:
// At compile time:
// - T needs to be a non-const, non-pointer, non-reference type
// - type_caster<T>::operator T&() must exist
// - the type must be move constructible (obviously)
// At run-time:
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
// must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
template <typename T>
using move_is_plain_type
= satisfies_none_of<T, std::is_void, std::is_pointer, std::is_reference, std::is_const>;
template <typename T, typename SFINAE = void>
struct move_always : std::false_type {};
template <typename T>
struct move_always<
T,
enable_if_t<
all_of<move_is_plain_type<T>,
negation<is_copy_constructible<T>>,
is_move_constructible<T>,
std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>>
: std::true_type {};
template <typename T, typename SFINAE = void>
struct move_if_unreferenced : std::false_type {};
template <typename T>
struct move_if_unreferenced<
T,
enable_if_t<
all_of<move_is_plain_type<T>,
negation<move_always<T>>,
is_move_constructible<T>,
std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>>
: std::true_type {};
template <typename T>
using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
// reference or pointer to a local variable of the type_caster. Basically, only
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
// everything else returns a reference/pointer to a local variable.
template <typename type>
using cast_is_temporary_value_reference
= bool_constant<(std::is_reference<type>::value || std::is_pointer<type>::value)
&& !std::is_base_of<type_caster_generic, make_caster<type>>::value
&& !std::is_same<intrinsic_t<type>, void>::value>;
// When a value returned from a C++ function is being cast back to Python, we almost always want to
// force `policy = move`, regardless of the return value policy the function/method was declared
// with.
template <typename Return, typename SFINAE = void>
struct return_value_policy_override {
static return_value_policy policy(return_value_policy p) { return p; }
};
template <typename Return>
struct return_value_policy_override<
Return,
detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
static return_value_policy policy(return_value_policy p) {
return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
? return_value_policy::move
: p;
}
};
// Basic python -> C++ casting; throws if casting fails
template <typename T, typename SFINAE>
type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
static_assert(!detail::is_pyobject<T>::value,
"Internal error: type_caster should only be used for C++ types");
if (!conv.load(handle, true)) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error(
"Unable to cast Python instance of type "
+ str(type::handle_of(handle)).cast<std::string>()
+ " to C++ type '?' (#define "
"PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
#else
throw cast_error("Unable to cast Python instance of type "
+ str(type::handle_of(handle)).cast<std::string>() + " to C++ type '"
+ type_id<T>() + "'");
#endif
}
return conv;
}
// Wrapper around the above that also constructs and returns a type_caster
template <typename T>
make_caster<T> load_type(const handle &handle) {
make_caster<T> conv;
load_type(conv, handle);
return conv;
}
PYBIND11_NAMESPACE_END(detail)
// pytype -> C++ type
template <typename T,
detail::enable_if_t<!detail::is_pyobject<T>::value
&& !detail::is_same_ignoring_cvref<T, PyObject *>::value,
int>
= 0>
T cast(const handle &handle) {
using namespace detail;
constexpr bool is_enum_cast = type_uses_type_caster_enum_type<intrinsic_t<T>>::value;
static_assert(!cast_is_temporary_value_reference<T>::value || is_enum_cast,
"Unable to cast type to reference: value is local to type caster");
#ifndef NDEBUG
if (is_enum_cast && cast_is_temporary_value_reference<T>::value) {
if (detail::global_internals_native_enum_type_map_contains(
std::type_index(typeid(intrinsic_t<T>)))) {
pybind11_fail("Unable to cast native enum type to reference");
}
}
#endif
return cast_op<T>(load_type<T>(handle));
}
// pytype -> pytype (calls converting constructor)
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) {
return T(reinterpret_borrow<object>(handle));
}
// Note that `cast<PyObject *>(obj)` increments the reference count of `obj`.
// This is necessary for the case that `obj` is a temporary, and could
// not possibly be different, given
// 1. the established convention that the passed `handle` is borrowed, and
// 2. we don't want to force all generic code using `cast<T>()` to special-case
// handling of `T` = `PyObject *` (to increment the reference count there).
// It is the responsibility of the caller to ensure that the reference count
// is decremented.
template <typename T,
typename Handle,
detail::enable_if_t<detail::is_same_ignoring_cvref<T, PyObject *>::value
&& detail::is_same_ignoring_cvref<Handle, handle>::value,
int>
= 0>
T cast(Handle &&handle) {
return handle.inc_ref().ptr();
}
// To optimize way an inc_ref/dec_ref cycle:
template <typename T,
typename Object,
detail::enable_if_t<detail::is_same_ignoring_cvref<T, PyObject *>::value
&& detail::is_same_ignoring_cvref<Object, object>::value,
int>
= 0>
T cast(Object &&obj) {
return obj.release().ptr();
}
// C++ type -> py::object
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
object cast(T &&value,
return_value_policy policy = return_value_policy::automatic_reference,
handle parent = handle()) {
using no_ref_T = typename std::remove_reference<T>::type;
if (policy == return_value_policy::automatic) {
policy = std::is_pointer<no_ref_T>::value ? return_value_policy::take_ownership
: std::is_lvalue_reference<T>::value ? return_value_policy::copy
: return_value_policy::move;
} else if (policy == return_value_policy::automatic_reference) {
policy = std::is_pointer<no_ref_T>::value ? return_value_policy::reference
: std::is_lvalue_reference<T>::value ? return_value_policy::copy
: return_value_policy::move;
}
return reinterpret_steal<object>(
detail::make_caster<T>::cast(std::forward<T>(value), policy, parent));
}
template <typename T>
T handle::cast() const {
return pybind11::cast<T>(*this);
}
template <>
inline void handle::cast() const {
return;
}
template <typename T>
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
if (obj.ref_count() > 1) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error(
"Unable to cast Python " + str(type::handle_of(obj)).cast<std::string>()
+ " instance to C++ rvalue: instance has multiple references"
" (#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
#else
throw cast_error("Unable to move from Python "
+ str(type::handle_of(obj)).cast<std::string>() + " instance to C++ "
+ type_id<T>() + " instance: instance has multiple references");
#endif
}
// Move into a temporary and return that, because the reference may be a local value of `conv`
T ret = std::move(detail::load_type<T>(obj).operator T &());
return ret;
}
// Calling cast() on an rvalue calls pybind11::cast with the object rvalue, which does:
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
// object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
template <typename T>
detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_always<T>::value, T>
cast(object &&object) {
return move<T>(std::move(object));
}
template <typename T>
detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_if_unreferenced<T>::value, T>
cast(object &&object) {
if (object.ref_count() > 1) {
return cast<T>(object);
}
return move<T>(std::move(object));
}
template <typename T>
detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_never<T>::value, T>
cast(object &&object) {
return cast<T>(object);
}
// pytype rvalue -> pytype (calls converting constructor)
template <typename T>
detail::enable_if_t<detail::is_pyobject<T>::value, T> cast(object &&object) {
return T(std::move(object));
}
template <typename T>
T object::cast() const & {
return pybind11::cast<T>(*this);
}
template <typename T>
T object::cast() && {
return pybind11::cast<T>(std::move(*this));
}
template <>
inline void object::cast() const & {
return;
}
template <>
inline void object::cast() && {
return;
}
PYBIND11_NAMESPACE_BEGIN(detail)
// forward declaration (definition in pybind11.h)
template <typename T>
std::string generate_type_signature();
// Declared in pytypes.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
object object_or_cast(T &&o) {
return pybind11::cast(std::forward<T>(o));
}
// Declared in pytypes.h:
// Implemented here so that make_caster<T> can be used.
template <typename D>
template <typename T>
str_attr_accessor object_api<D>::attr_with_type_hint(const char *key) const {
#if !defined(__cpp_inline_variables)
static_assert(always_false<T>::value,
"C++17 feature __cpp_inline_variables not available: "
"https://en.cppreference.com/w/cpp/language/static#Static_data_members");
#endif
object ann = annotations();
if (ann.contains(key)) {
throw std::runtime_error("__annotations__[\"" + std::string(key) + "\"] was set already.");
}
ann[key] = generate_type_signature<T>();
return {derived(), key};
}
template <typename D>
template <typename T>
obj_attr_accessor object_api<D>::attr_with_type_hint(handle key) const {
(void) attr_with_type_hint<T>(key.cast<std::string>().c_str());
return {derived(), reinterpret_borrow<object>(key)};
}
// Placeholder type for the unneeded (and dead code) static variable in the
// PYBIND11_OVERRIDE_OVERRIDE macro
struct override_unused {};
template <typename ret_type>
using override_caster_t = conditional_t<cast_is_temporary_value_reference<ret_type>::value,
make_caster<ret_type>,
override_unused>;
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
// store the result in the given variable. For other types, this is a no-op.
template <typename T>
enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o,
make_caster<T> &caster) {
return cast_op<T>(load_type(caster, o));
}
template <typename T>
enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&,
override_unused &) {
pybind11_fail("Internal error: cast_ref fallback invoked");
}
// Trampoline use: Having a pybind11::cast with an invalid reference type is going to
// static_assert, even though if it's in dead code, so we provide a "trampoline" to pybind11::cast
// that only does anything in cases where pybind11::cast is valid.
template <typename T>
enable_if_t<cast_is_temporary_value_reference<T>::value
&& !detail::is_same_ignoring_cvref<T, PyObject *>::value,
T>
cast_safe(object &&) {
pybind11_fail("Internal error: cast_safe fallback invoked");
}
template <typename T>
enable_if_t<std::is_void<T>::value, void> cast_safe(object &&) {}
template <typename T>
enable_if_t<detail::is_same_ignoring_cvref<T, PyObject *>::value, PyObject *>
cast_safe(object &&o) {
return o.release().ptr();
}
template <typename T>
enable_if_t<detail::none_of<cast_is_temporary_value_reference<T>,
detail::is_same_ignoring_cvref<T, PyObject *>,
std::is_void<T>>::value,
T>
cast_safe(object &&o) {
return pybind11::cast<T>(std::move(o));
}
PYBIND11_NAMESPACE_END(detail)
// The overloads could coexist, i.e. the #if is not strictly speaking needed,
// but it is an easy minor optimization.
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name) {
return cast_error("Unable to convert call argument '" + name
+ "' to Python object (#define "
"PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
}
#else
inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name,
const std::string &type) {
return cast_error("Unable to convert call argument '" + name + "' of type '" + type
+ "' to Python object");
}
#endif
namespace typing {
template <typename... Types>
class Tuple : public tuple {
using tuple::tuple;
};
} // namespace typing
template <return_value_policy policy = return_value_policy::automatic_reference>
typing::Tuple<> make_tuple() {
return tuple(0);
}
template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
typing::Tuple<Args...> make_tuple(Args &&...args_) {
constexpr size_t size = sizeof...(Args);
std::array<object, size> args{{reinterpret_steal<object>(
detail::make_caster<Args>::cast(std::forward<Args>(args_), policy, nullptr))...}};
for (size_t i = 0; i < args.size(); i++) {
if (!args[i]) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error_unable_to_convert_call_arg(std::to_string(i));
#else
std::array<std::string, size> argtypes{{type_id<Args>()...}};
throw cast_error_unable_to_convert_call_arg(std::to_string(i), argtypes[i]);
#endif
}
}
tuple result(size);
int counter = 0;
for (auto &arg_value : args) {
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
}
PYBIND11_WARNING_PUSH
#ifdef PYBIND11_DETECTED_CLANG_WITH_MISLEADING_CALL_STD_MOVE_EXPLICITLY_WARNING
PYBIND11_WARNING_DISABLE_CLANG("-Wreturn-std-move")
#endif
return result;
PYBIND11_WARNING_POP
}
/// \ingroup annotations
/// Annotation for arguments
struct arg {
/// Constructs an argument with the name of the argument; if null or omitted, this is a
/// positional argument.
constexpr explicit arg(const char *name = nullptr)
: name(name), flag_noconvert(false), flag_none(true) {}
/// Assign a value to this argument
template <typename T>
arg_v operator=(T &&value) const;
/// Indicate that the type should not be converted in the type caster
arg &noconvert(bool flag = true) {
flag_noconvert = flag;
return *this;
}
/// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
arg &none(bool flag = true) {
flag_none = flag;
return *this;
}
const char *name; ///< If non-null, this is a named kwargs argument
bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type
///< caster!)
bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
};
/// \ingroup annotations
/// Annotation for arguments with values
struct arg_v : arg {
private:
template <typename T>
arg_v(arg &&base, T &&x, const char *descr = nullptr)
: arg(base), value(reinterpret_steal<object>(detail::make_caster<T>::cast(
std::forward<T>(x), return_value_policy::automatic, {}))),
descr(descr)
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
,
type(type_id<T>())
#endif
{
// Workaround! See:
// https://github.com/pybind/pybind11/issues/2336
// https://github.com/pybind/pybind11/pull/2685#issuecomment-731286700
if (PyErr_Occurred()) {
PyErr_Clear();
}
}
public:
/// Direct construction with name, default, and description
template <typename T>
arg_v(const char *name, T &&x, const char *descr = nullptr)
: arg_v(arg(name), std::forward<T>(x), descr) {}
/// Called internally when invoking `py::arg("a") = value`
template <typename T>
arg_v(const arg &base, T &&x, const char *descr = nullptr)
: arg_v(arg(base), std::forward<T>(x), descr) {}
/// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
arg_v &noconvert(bool flag = true) {
arg::noconvert(flag);
return *this;
}
/// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
arg_v &none(bool flag = true) {
arg::none(flag);
return *this;
}
/// The default value
object value;
/// The (optional) description of the default value
const char *descr;
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
/// The C++ type name of the default value (only available when compiled in debug mode)
std::string type;
#endif
};
/// \ingroup annotations
/// Annotation indicating that all following arguments are keyword-only; the is the equivalent of
/// an unnamed '*' argument
struct kw_only {};
/// \ingroup annotations
/// Annotation indicating that all previous arguments are positional-only; the is the equivalent of
/// an unnamed '/' argument
struct pos_only {};
template <typename T>
arg_v arg::operator=(T &&value) const {
return {*this, std::forward<T>(value)};
}
/// Alias for backward compatibility -- to be removed in version 2.0
template <typename /*unused*/>
using arg_t = arg_v;
inline namespace literals {
/** \rst
String literal version of `arg`
\endrst */
constexpr arg
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 5
operator"" _a // gcc 4.8.5 insists on having a space (hard error).
#else
operator""_a // clang 17 generates a deprecation warning if there is a space.
#endif
(const char *name, size_t) {
return arg(name);
}
} // namespace literals
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename T>
using is_kw_only = std::is_same<intrinsic_t<T>, kw_only>;
template <typename T>
using is_pos_only = std::is_same<intrinsic_t<T>, pos_only>;
// forward declaration (definition in attr.h)
struct function_record;
/// Inline size chosen mostly arbitrarily.
constexpr std::size_t arg_vector_small_size = 6;
/// Internal data associated with a single function call
struct function_call {
function_call(const function_record &f, handle p); // Implementation in attr.h
/// The function data:
const function_record &func;
/// Arguments passed to the function:
argument_vector<arg_vector_small_size> args;
/// The `convert` value the arguments should be loaded with
args_convert_vector<arg_vector_small_size> args_convert;
/// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
/// present, are also in `args` but without a reference).
object args_ref, kwargs_ref;
/// The parent, if any
handle parent;
/// If this is a call to an initializer, this argument contains `self`
handle init_self;
};
// See PR #5396 for the discussion that led to this
template <typename Base, typename Derived, typename = void>
struct is_same_or_base_of : std::is_same<Base, Derived> {};
// Only evaluate is_base_of if Derived is complete.
// is_base_of raises a compiler error if Derived is incomplete.
template <typename Base, typename Derived>
struct is_same_or_base_of<Base, Derived, decltype(void(sizeof(Derived)))>
: any_of<std::is_same<Base, Derived>, std::is_base_of<Base, Derived>> {};
/// Helper class which loads arguments for C++ functions called from Python
template <typename... Args>
class argument_loader {
using indices = make_index_sequence<sizeof...(Args)>;
template <typename Arg>
using argument_is_args = is_same_or_base_of<args, intrinsic_t<Arg>>;
template <typename Arg>
using argument_is_kwargs = is_same_or_base_of<kwargs, intrinsic_t<Arg>>;
// Get kwargs argument position, or -1 if not present:
static constexpr auto kwargs_pos = constexpr_last<argument_is_kwargs, Args...>();
static_assert(kwargs_pos == -1 || kwargs_pos == (int) sizeof...(Args) - 1,
"py::kwargs is only permitted as the last argument of a function");
public:
static constexpr bool has_kwargs = kwargs_pos != -1;
// py::args argument position; -1 if not present.
static constexpr int args_pos = constexpr_last<argument_is_args, Args...>();
static_assert(args_pos == -1 || args_pos == constexpr_first<argument_is_args, Args...>(),
"py::args cannot be specified more than once");
static constexpr auto arg_names
= ::pybind11::detail::concat(type_descr(make_caster<Args>::name)...);
bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); }
template <typename Return, typename Guard, typename Func>
// NOLINTNEXTLINE(readability-const-return-type)
enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
return std::move(*this).template call_impl<remove_cv_t<Return>>(
std::forward<Func>(f), indices{}, Guard{});
}
template <typename Return, typename Guard, typename Func>
enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
std::move(*this).template call_impl<remove_cv_t<Return>>(
std::forward<Func>(f), indices{}, Guard{});
return void_type();
}
private:
static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
template <size_t... Is>
bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
PYBIND11_WARNING_PUSH
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 13
// Work around a GCC -Warray-bounds false positive in argument_vector usage.
PYBIND11_WARNING_DISABLE_GCC("-Warray-bounds")
#endif
#ifdef __cpp_fold_expressions
if ((... || !std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is]))) {
return false;
}
#else
for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...}) {
if (!r) {
return false;
}
}
#endif
PYBIND11_WARNING_POP
return true;
}
template <typename Return, typename Func, size_t... Is, typename Guard>
Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) && {
return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
}
std::tuple<make_caster<Args>...> argcasters;
};
// [workaround(intel)] Separate function required here
// We need to put this into a separate function because the Intel compiler
// fails to compile enable_if_t<!all_of<is_positional<Args>...>::value>
// (tested with ICC 2021.1 Beta 20200827).
template <typename... Args>
constexpr bool args_has_keyword_or_ds() {
return any_of<is_keyword_or_ds<Args>...>::value;
}
/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
template <return_value_policy policy>
class unpacking_collector {
public:
template <typename... Ts>
explicit unpacking_collector(Ts &&...values)
: m_names(reinterpret_steal<tuple>(
handle())) // initialize to null to avoid useless allocation of 0-length tuple
{
/*
Python can sometimes utilize an extra space before the arguments to prepend `self`.
This is important enough that there is a special flag for it:
PY_VECTORCALL_ARGUMENTS_OFFSET.
All we have to do is allocate an extra space at the beginning of this array, and set the
flag. Note that the extra space is not passed directly in to vectorcall.
*/
m_args.reserve(sizeof...(values) + 1);
m_args.push_back_null();
if (args_has_keyword_or_ds<Ts...>()) {
list names_list;
// collect_arguments guarantees this can't be constructed with kwargs before the last
// positional so we don't need to worry about Ts... being in anything but normal python
// order.
using expander = int[];
(void) expander{0, (process(names_list, std::forward<Ts>(values)), 0)...};
m_names = reinterpret_steal<tuple>(PyList_AsTuple(names_list.ptr()));
} else {
auto not_used
= reinterpret_steal<list>(handle()); // initialize as null (to avoid an allocation)
using expander = int[];
(void) expander{0, (process(not_used, std::forward<Ts>(values)), 0)...};
}
}
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const {
size_t nargs = m_args.size() - 1; // -1 for PY_VECTORCALL_ARGUMENTS_OFFSET (see ctor)
if (m_names) {
nargs -= m_names.size();
}
PyObject *result = _PyObject_Vectorcall(
ptr, m_args.data() + 1, nargs | PY_VECTORCALL_ARGUMENTS_OFFSET, m_names.ptr());
if (!result) {
throw error_already_set();
}
return reinterpret_steal<object>(result);
}
tuple args() const {
size_t nargs = m_args.size() - 1; // -1 for PY_VECTORCALL_ARGUMENTS_OFFSET (see ctor)
if (m_names) {
nargs -= m_names.size();
}
tuple val(nargs);
for (size_t i = 0; i < nargs; ++i) {
// +1 for PY_VECTORCALL_ARGUMENTS_OFFSET (see ctor)
val[i] = reinterpret_borrow<object>(m_args[i + 1]);
}
return val;
}
dict kwargs() const {
dict val;
if (m_names) {
size_t offset = m_args.size() - m_names.size();
for (size_t i = 0; i < m_names.size(); ++i, ++offset) {
val[m_names[i]] = reinterpret_borrow<object>(m_args[offset]);
}
}
return val;
}
private:
// normal argument, possibly needing conversion
template <typename T>
void process(list & /*names_list*/, T &&x) {
handle h = detail::make_caster<T>::cast(std::forward<T>(x), policy, {});
if (!h) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error_unable_to_convert_call_arg(std::to_string(m_args.size() - 1));
#else
throw cast_error_unable_to_convert_call_arg(std::to_string(m_args.size() - 1),
type_id<T>());
#endif
}
m_args.push_back_steal(h.ptr()); // cast returns a new reference
}
// * unpacking
void process(list & /*names_list*/, detail::args_proxy ap) {
if (!ap) {
return;
}
for (auto a : ap) {
m_args.push_back_borrow(a.ptr());
}
}
// named argument
// NOLINTNEXTLINE(performance-unnecessary-value-param)
void process(list &names_list, arg_v a) {
assert(names_list);
if (!a.name) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
nameless_argument_error();
#else
nameless_argument_error(a.type);
#endif
}
auto name = str(a.name);
if (names_list.contains(name)) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
multiple_values_error();
#else
multiple_values_error(a.name);
#endif
}
if (!a.value) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error_unable_to_convert_call_arg(a.name);
#else
throw cast_error_unable_to_convert_call_arg(a.name, a.type);
#endif
}
names_list.append(std::move(name));
m_args.push_back_borrow(a.value.ptr());
}
// ** unpacking
void process(list &names_list, detail::kwargs_proxy kp) {
if (!kp) {
return;
}
assert(names_list);
for (auto &&k : reinterpret_borrow<dict>(kp)) {
auto name = str(k.first);
if (names_list.contains(name)) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
multiple_values_error();
#else
multiple_values_error(name);
#endif
}
names_list.append(std::move(name));
m_args.push_back_borrow(k.second.ptr());
}
}
[[noreturn]] static void nameless_argument_error() {
throw type_error(
"Got kwargs without a name; only named arguments "
"may be passed via py::arg() to a python function call. "
"(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
}
[[noreturn]] static void nameless_argument_error(const std::string &type) {
throw type_error("Got kwargs without a name of type '" + type
+ "'; only named "
"arguments may be passed via py::arg() to a python function call. ");
}
[[noreturn]] static void multiple_values_error() {
throw type_error(
"Got multiple values for keyword argument "
"(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
}
[[noreturn]] static void multiple_values_error(const std::string &name) {
throw type_error("Got multiple values for keyword argument '" + name + "'");
}
private:
ref_small_vector<arg_vector_small_size> m_args;
tuple m_names;
};
/// Collect all arguments, including keywords and unpacking
template <return_value_policy policy, typename... Args>
unpacking_collector<policy> collect_arguments(Args &&...args) {
// Following argument order rules for generalized unpacking according to PEP 448
static_assert(
constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>(),
"Invalid function call: positional args must precede keywords and */** unpacking;");
static_assert(constexpr_last<is_s_unpacking, Args...>()
< constexpr_first<is_ds_unpacking, Args...>(),
"Invalid function call: * unpacking must precede ** unpacking");
return unpacking_collector<policy>(std::forward<Args>(args)...);
}
template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::operator()(Args &&...args) const {
#ifndef NDEBUG
if (!PyGILState_Check()) {
pybind11_fail("pybind11::object_api<>::operator() PyGILState_Check() failure.");
}
#endif
return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
}
template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::call(Args &&...args) const {
return operator()<policy>(std::forward<Args>(args)...);
}
PYBIND11_NAMESPACE_END(detail)
template <typename T>
handle type::handle_of() {
static_assert(std::is_base_of<detail::type_caster_generic, detail::make_caster<T>>::value,
"py::type::of<T> only supports the case where T is a registered C++ types.");
return detail::get_type_handle(typeid(T), true);
}
#define PYBIND11_MAKE_OPAQUE(...) \
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) \
namespace detail { \
template <> \
class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> {}; \
} \
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
/// Lets you pass a type containing a `,` through a macro parameter without needing a separate
/// typedef, e.g.:
/// `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
#define PYBIND11_TYPE(...) __VA_ARGS__
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)