blob: fd9a75ca25b51c34b6f675746ab5c3b67f35a435 [file] [log] [blame]
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_PWM_H
#define _HARDWARE_STRUCTS_PWM_H
#include "hardware/address_mapped.h"
#include "hardware/regs/pwm.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#tab-registerlist_pwm
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pwm.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct pwm_slice_hw {
_REG_(PWM_CH0_CSR_OFFSET) // PWM_CH0_CSR
// Control and status register
// 0x00000080 [7] : PH_ADV (0): Advance the phase of the counter by 1 count, while it is running
// 0x00000040 [6] : PH_RET (0): Retard the phase of the counter by 1 count, while it is running
// 0x00000030 [5:4] : DIVMODE (0)
// 0x00000008 [3] : B_INV (0): Invert output B
// 0x00000004 [2] : A_INV (0): Invert output A
// 0x00000002 [1] : PH_CORRECT (0): 1: Enable phase-correct modulation
// 0x00000001 [0] : EN (0): Enable the PWM channel
io_rw_32 csr;
_REG_(PWM_CH0_DIV_OFFSET) // PWM_CH0_DIV
// INT and FRAC form a fixed-point fractional number
// 0x00000ff0 [11:4] : INT (1)
// 0x0000000f [3:0] : FRAC (0)
io_rw_32 div;
_REG_(PWM_CH0_CTR_OFFSET) // PWM_CH0_CTR
// Direct access to the PWM counter
// 0x0000ffff [15:0] : CH0_CTR (0)
io_rw_32 ctr;
_REG_(PWM_CH0_CC_OFFSET) // PWM_CH0_CC
// Counter compare values
// 0xffff0000 [31:16] : B (0)
// 0x0000ffff [15:0] : A (0)
io_rw_32 cc;
_REG_(PWM_CH0_TOP_OFFSET) // PWM_CH0_TOP
// Counter wrap value
// 0x0000ffff [15:0] : CH0_TOP (0xffff)
io_rw_32 top;
} pwm_slice_hw_t;
typedef struct {
pwm_slice_hw_t slice[NUM_PWM_SLICES]; // 8
_REG_(PWM_EN_OFFSET) // PWM_EN
// This register aliases the CSR_EN bits for all channels
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_rw_32 en;
_REG_(PWM_INTR_OFFSET) // PWM_INTR
// Raw Interrupts
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_rw_32 intr;
_REG_(PWM_INTE_OFFSET) // PWM_INTE
// Interrupt Enable
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_rw_32 inte;
_REG_(PWM_INTF_OFFSET) // PWM_INTF
// Interrupt Force
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_rw_32 intf;
_REG_(PWM_INTS_OFFSET) // PWM_INTS
// Interrupt status after masking & forcing
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_ro_32 ints;
} pwm_hw_t;
#define pwm_hw ((pwm_hw_t *const)PWM_BASE)
static_assert( NUM_PWM_SLICES == 8, "");
#endif