| /* |
| * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <cstdio> |
| #include <map> |
| #include <set> |
| #include <vector> |
| #include <cstring> |
| #include <cstdarg> |
| #include <algorithm> |
| #include "boot/uf2.h" |
| #include "elf.h" |
| |
| typedef unsigned int uint; |
| |
| #define ERROR_ARGS -1 |
| #define ERROR_FORMAT -2 |
| #define ERROR_INCOMPATIBLE -3 |
| #define ERROR_READ_FAILED -4 |
| #define ERROR_WRITE_FAILED -5 |
| |
| #define FLASH_SECTOR_ERASE_SIZE 4096u |
| |
| static char error_msg[512]; |
| static bool verbose; |
| |
| static int fail(int code, const char *format, ...) { |
| va_list args; |
| va_start(args, format); |
| vsnprintf(error_msg, sizeof(error_msg), format, args); |
| va_end(args); |
| return code; |
| } |
| |
| static int fail_read_error() { |
| return fail(ERROR_READ_FAILED, "Failed to read input file"); |
| } |
| |
| static int fail_write_error() { |
| return fail(ERROR_WRITE_FAILED, "Failed to write output file"); |
| } |
| |
| // we require 256 (as this is the page size supported by the device) |
| #define LOG2_PAGE_SIZE 8u |
| #define PAGE_SIZE (1u << LOG2_PAGE_SIZE) |
| |
| struct address_range { |
| enum type { |
| CONTENTS, // may have contents |
| NO_CONTENTS, // must be uninitialized |
| IGNORE // will be ignored |
| }; |
| address_range(uint32_t from, uint32_t to, type type) : from(from), to(to), type(type) {} |
| address_range() : address_range(0, 0, IGNORE) {} |
| type type; |
| uint32_t to; |
| uint32_t from; |
| }; |
| |
| typedef std::vector<address_range> address_ranges; |
| |
| #define MAIN_RAM_START 0x20000000u // same as SRAM_BASE in addressmap.h |
| #define MAIN_RAM_END 0x20042000u // same as SRAM_END in addressmap.h |
| #define FLASH_START 0x10000000u // same as XIP_MAIN_BASE in addressmap.h |
| #define FLASH_END 0x15000000u |
| #define XIP_SRAM_START 0x15000000u // same as XIP_SRAM_BASE in addressmap.h |
| #define XIP_SRAM_END 0x15004000u // same as XIP_SRAM_END in addressmap.h |
| #define MAIN_RAM_BANKED_START 0x21000000u // same as SRAM0_BASE in addressmap.h |
| #define MAIN_RAM_BANKED_END 0x21040000u |
| #define ROM_START 0x00000000u // same as ROM_BASE in addressmap.h |
| #define ROM_END 0x00004000u |
| |
| const address_ranges rp2040_address_ranges_flash { |
| address_range(FLASH_START, FLASH_END, address_range::type::CONTENTS), |
| address_range(MAIN_RAM_START, MAIN_RAM_END, address_range::type::NO_CONTENTS), |
| address_range(MAIN_RAM_BANKED_START, MAIN_RAM_BANKED_END, address_range::type::NO_CONTENTS) |
| }; |
| |
| const address_ranges rp2040_address_ranges_ram { |
| address_range(MAIN_RAM_START, MAIN_RAM_END, address_range::type::CONTENTS), |
| address_range(XIP_SRAM_START, XIP_SRAM_END, address_range::type::CONTENTS), |
| address_range(ROM_START, ROM_END, address_range::type::IGNORE) // for now we ignore the bootrom if present |
| }; |
| |
| struct page_fragment { |
| page_fragment(uint32_t file_offset, uint32_t page_offset, uint32_t bytes) : file_offset(file_offset), page_offset(page_offset), bytes(bytes) {} |
| uint32_t file_offset; |
| uint32_t page_offset; |
| uint32_t bytes; |
| }; |
| |
| static int usage() { |
| fprintf(stderr, "Usage: elf2uf2 (-v) <input ELF file> <output UF2 file>\n"); |
| return ERROR_ARGS; |
| } |
| |
| static int read_and_check_elf32_header(FILE *in, elf32_header& eh_out) { |
| if (1 != fread(&eh_out, sizeof(eh_out), 1, in)) { |
| return fail(ERROR_READ_FAILED, "Unable to read ELF header"); |
| } |
| if (eh_out.common.magic != ELF_MAGIC) { |
| return fail(ERROR_FORMAT, "Not an ELF file"); |
| } |
| if (eh_out.common.version != 1 || eh_out.common.version2 != 1) { |
| return fail(ERROR_FORMAT, "Unrecognized ELF version"); |
| } |
| if (eh_out.common.arch_class != 1 || eh_out.common.endianness != 1) { |
| return fail(ERROR_INCOMPATIBLE, "Require 32 bit little-endian ELF"); |
| } |
| if (eh_out.eh_size != sizeof(struct elf32_header)) { |
| return fail(ERROR_FORMAT, "Invalid ELF32 format"); |
| } |
| if (eh_out.common.machine != EM_ARM) { |
| return fail(ERROR_FORMAT, "Not an ARM executable"); |
| } |
| if (eh_out.common.abi != 0) { |
| return fail(ERROR_INCOMPATIBLE, "Unrecognized ABI"); |
| } |
| if (eh_out.flags & EF_ARM_ABI_FLOAT_HARD) { |
| return fail(ERROR_INCOMPATIBLE, "HARD-FLOAT not supported"); |
| } |
| return 0; |
| } |
| |
| int check_address_range(const address_ranges& valid_ranges, uint32_t addr, uint32_t vaddr, uint32_t size, bool uninitialized, address_range &ar) { |
| for(const auto& range : valid_ranges) { |
| if (range.from <= addr && range.to >= addr + size) { |
| if (range.type == address_range::type::NO_CONTENTS && !uninitialized) { |
| return fail(ERROR_INCOMPATIBLE, "ELF contains memory contents for uninitialized memory at 0x%p", addr); |
| } |
| ar = range; |
| if (verbose) { |
| printf("%s segment %08x->%08x (%08x->%08x)\n", uninitialized ? "Uninitialized" : "Mapped", addr, |
| addr + size, vaddr, vaddr+size); |
| } |
| return 0; |
| } |
| } |
| return fail(ERROR_INCOMPATIBLE, "Memory segment %08x->%08x is outside of valid address range for device", addr, addr+size); |
| } |
| |
| int read_elf32_ph_entries(FILE *in, const elf32_header &eh, std::vector<elf32_ph_entry>& entries) { |
| if (eh.ph_entry_size != sizeof(elf32_ph_entry)) { |
| return fail(ERROR_FORMAT, "Invalid ELF32 program header"); |
| } |
| if (eh.ph_num) { |
| entries.resize(eh.ph_num); |
| if (fseek(in, eh.ph_offset, SEEK_SET)) { |
| return fail_read_error(); |
| } |
| if (eh.ph_num != fread(&entries[0], sizeof(struct elf32_ph_entry), eh.ph_num, in)) { |
| return fail_read_error(); |
| } |
| } |
| return 0; |
| } |
| |
| int check_elf32_ph_entries(const std::vector<elf32_ph_entry>& entries, const address_ranges& valid_ranges, std::map<uint32_t, std::vector<page_fragment>>& pages) { |
| for(const auto & entry : entries) { |
| if (entry.type == PT_LOAD && entry.memsz) { |
| address_range ar; |
| int rc; |
| uint mapped_size = std::min(entry.filez, entry.memsz); |
| if (mapped_size) { |
| rc = check_address_range(valid_ranges, entry.paddr, entry.vaddr, mapped_size, false, ar); |
| if (rc) return rc; |
| // we don't download uninitialized, generally it is BSS and should be zero-ed by crt0.S, or it may be COPY areas which are undefined |
| if (ar.type != address_range::type::CONTENTS) { |
| if (verbose) printf(" ignored\n"); |
| continue; |
| } |
| uint addr = entry.paddr; |
| uint remaining = mapped_size; |
| uint file_offset = entry.offset; |
| while (remaining) { |
| uint off = addr & (PAGE_SIZE - 1); |
| uint len = std::min(remaining, PAGE_SIZE - off); |
| auto &fragments = pages[addr - off]; // list of fragments |
| // note if filesz is zero, we want zero init which is handled because the |
| // statement above creates an empty page fragment list |
| // check overlap with any existing fragments |
| for (const auto &fragment : fragments) { |
| if ((off < fragment.page_offset + fragment.bytes) != |
| ((off + len) <= fragment.page_offset)) { |
| fail(ERROR_FORMAT, "In memory segments overlap"); |
| } |
| } |
| fragments.push_back( |
| page_fragment{file_offset,off,len}); |
| addr += len; |
| file_offset += len; |
| remaining -= len; |
| } |
| } |
| if (entry.memsz > entry.filez) { |
| // we have some uninitialized data too |
| rc = check_address_range(valid_ranges, entry.paddr + entry.filez, entry.vaddr + entry.filez, entry.memsz - entry.filez, true, |
| ar); |
| if (rc) return rc; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| int realize_page(FILE *in, const std::vector<page_fragment> &fragments, uint8_t *buf, uint buf_len) { |
| assert(buf_len >= PAGE_SIZE); |
| for(auto& frag : fragments) { |
| assert(frag.page_offset >= 0 && frag.page_offset < PAGE_SIZE && frag.page_offset + frag.bytes <= PAGE_SIZE); |
| if (fseek(in, frag.file_offset, SEEK_SET)) { |
| return fail_read_error(); |
| } |
| if (1 != fread(buf + frag.page_offset, frag.bytes, 1, in)) { |
| return fail_read_error(); |
| } |
| } |
| return 0; |
| } |
| |
| static bool is_address_valid(const address_ranges& valid_ranges, uint32_t addr) { |
| for(const auto& range : valid_ranges) { |
| if (range.from <= addr && range.to > addr) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool is_address_initialized(const address_ranges& valid_ranges, uint32_t addr) { |
| for(const auto& range : valid_ranges) { |
| if (range.from <= addr && range.to > addr) { |
| return address_range::type::CONTENTS == range.type; |
| } |
| } |
| return false; |
| } |
| |
| static bool is_address_mapped(const std::map<uint32_t, std::vector<page_fragment>>& pages, uint32_t addr) { |
| uint32_t page = addr & ~(PAGE_SIZE - 1); |
| if (!pages.count(page)) return false; |
| // todo check actual address within page |
| return true; |
| } |
| |
| static int determine_binary_type(const elf32_header &eh, const std::vector<elf32_ph_entry>& entries, bool *ram_style) { |
| for(const auto &entry : entries) { |
| if (entry.type == PT_LOAD && entry.memsz) { |
| uint mapped_size = std::min(entry.filez, entry.memsz); |
| if (mapped_size) { |
| // we back convert the entrypoint from a VADDR to a PADDR to see if it originates in flash, and if |
| // so call THAT a flash binary. |
| if (eh.entry >= entry.vaddr && eh.entry < entry.vaddr + mapped_size) { |
| uint32_t effective_entry = eh.entry + entry.paddr - entry.vaddr; |
| if (is_address_initialized(rp2040_address_ranges_ram, effective_entry)) { |
| *ram_style = true; |
| return 0; |
| } else if (is_address_initialized(rp2040_address_ranges_flash, effective_entry)) { |
| *ram_style = false; |
| return 0; |
| } |
| } |
| } |
| } |
| } |
| return fail(ERROR_INCOMPATIBLE, "entry point is not in mapped part of file"); |
| } |
| |
| int elf2uf2(FILE *in, FILE *out) { |
| elf32_header eh; |
| std::map<uint32_t, std::vector<page_fragment>> pages; |
| int rc = read_and_check_elf32_header(in, eh); |
| bool ram_style = false; |
| address_ranges valid_ranges = {}; |
| if (!rc) { |
| std::vector<elf32_ph_entry> entries; |
| rc = read_elf32_ph_entries(in, eh, entries); |
| if (!rc) { |
| rc = determine_binary_type(eh, entries, &ram_style); |
| } |
| if (!rc) { |
| if (verbose) { |
| if (ram_style) { |
| printf("Detected RAM binary\n"); |
| } else { |
| printf("Detected FLASH binary\n"); |
| } |
| } |
| valid_ranges = ram_style ? rp2040_address_ranges_ram : rp2040_address_ranges_flash; |
| rc = check_elf32_ph_entries(entries, valid_ranges, pages); |
| } |
| } |
| if (rc) return rc; |
| if (pages.empty()) { |
| return fail(ERROR_INCOMPATIBLE, "The input file has no memory pages"); |
| } |
| uint page_num = 0; |
| if (ram_style) { |
| uint32_t expected_ep_main_ram = UINT32_MAX; |
| uint32_t expected_ep_xip_sram = UINT32_MAX; |
| for(auto& page_entry : pages) { |
| if ( ((page_entry.first >= MAIN_RAM_START) && (page_entry.first < MAIN_RAM_END)) && (page_entry.first < expected_ep_main_ram) ) { |
| expected_ep_main_ram = page_entry.first | 0x1; |
| } else if ( ((page_entry.first >= XIP_SRAM_START) && (page_entry.first < XIP_SRAM_END)) && (page_entry.first < expected_ep_xip_sram) ) { |
| expected_ep_xip_sram = page_entry.first | 0x1; |
| } |
| } |
| uint32_t expected_ep = (UINT32_MAX != expected_ep_main_ram) ? expected_ep_main_ram : expected_ep_xip_sram; |
| if (eh.entry == expected_ep_xip_sram) { |
| return fail(ERROR_INCOMPATIBLE, "B0/B1 Boot ROM does not support direct entry into XIP_SRAM\n"); |
| } else if (eh.entry != expected_ep) { |
| return fail(ERROR_INCOMPATIBLE, "A RAM binary should have an entry point at the beginning: %08x (not %08x)\n", expected_ep, eh.entry); |
| } |
| static_assert(0 == (MAIN_RAM_START & (PAGE_SIZE - 1)), ""); |
| // currently don't require this as entry point is now at the start, we don't know where reset vector is |
| #if 0 |
| uint8_t buf[PAGE_SIZE]; |
| rc = realize_page(in, pages[MAIN_RAM_START], buf, sizeof(buf)); |
| if (rc) return rc; |
| uint32_t sp = ((uint32_t *)buf)[0]; |
| uint32_t ip = ((uint32_t *)buf)[1]; |
| if (!is_address_mapped(pages, ip)) { |
| return fail(ERROR_INCOMPATIBLE, "Vector table at %08x is invalid: reset vector %08x is not in mapped memory", |
| MAIN_RAM_START, ip); |
| } |
| if (!is_address_valid(valid_ranges, sp - 4)) { |
| return fail(ERROR_INCOMPATIBLE, "Vector table at %08x is invalid: stack pointer %08x is not in RAM", |
| MAIN_RAM_START, sp); |
| } |
| #endif |
| } else { |
| // Fill in empty dummy uf2 pages to align the binary to flash sectors (except for the last sector which we don't |
| // need to pad, and choose not to to avoid making all SDK UF2s bigger) |
| // That workaround is required because the bootrom uses the block number for erase sector calculations: |
| // https://github.com/raspberrypi/pico-bootrom/blob/c09c7f08550e8a36fc38dc74f8873b9576de99eb/bootrom/virtual_disk.c#L205 |
| |
| std::set<uint32_t> touched_sectors; |
| for (auto& page_entry : pages) { |
| uint32_t sector = page_entry.first / FLASH_SECTOR_ERASE_SIZE; |
| touched_sectors.insert(sector); |
| } |
| |
| uint32_t last_page = pages.rbegin()->first; |
| for (uint32_t sector : touched_sectors) { |
| for (uint32_t page = sector * FLASH_SECTOR_ERASE_SIZE; page < (sector + 1) * FLASH_SECTOR_ERASE_SIZE; page += PAGE_SIZE) { |
| if (page < last_page) { |
| // Create a dummy page, if it does not exist yet. note that all present pages are first |
| // zeroed before they are filled with any contents, so a dummy page will be all zeros. |
| auto &dummy = pages[page]; |
| } |
| } |
| } |
| } |
| uf2_block block; |
| block.magic_start0 = UF2_MAGIC_START0; |
| block.magic_start1 = UF2_MAGIC_START1; |
| block.flags = UF2_FLAG_FAMILY_ID_PRESENT; |
| block.payload_size = PAGE_SIZE; |
| block.num_blocks = (uint32_t)pages.size(); |
| block.file_size = RP2040_FAMILY_ID; |
| block.magic_end = UF2_MAGIC_END; |
| for(auto& page_entry : pages) { |
| block.target_addr = page_entry.first; |
| block.block_no = page_num++; |
| if (verbose) { |
| printf("Page %d / %d %08x%s\n", block.block_no, block.num_blocks, block.target_addr, |
| page_entry.second.empty() ? " (padding)": ""); |
| } |
| memset(block.data, 0, sizeof(block.data)); |
| rc = realize_page(in, page_entry.second, block.data, sizeof(block.data)); |
| if (rc) return rc; |
| if (1 != fwrite(&block, sizeof(uf2_block), 1, out)) { |
| return fail_write_error(); |
| } |
| } |
| return 0; |
| } |
| |
| int main(int argc, char **argv) { |
| int arg = 1; |
| if (arg < argc && !strcmp(argv[arg], "-v")) { |
| verbose = true; |
| arg++; |
| } |
| if (argc < arg + 2) { |
| return usage(); |
| } |
| const char *in_filename = argv[arg++]; |
| FILE *in = fopen(in_filename, "rb"); |
| if (!in) { |
| fprintf(stderr, "Can't open input file '%s'\n", in_filename); |
| return ERROR_ARGS; |
| } |
| const char *out_filename = argv[arg++]; |
| FILE *out = fopen(out_filename, "wb"); |
| if (!out) { |
| fprintf(stderr, "Can't open output file '%s'\n", out_filename); |
| return ERROR_ARGS; |
| } |
| |
| int rc = elf2uf2(in, out); |
| fclose(in); |
| fclose(out); |
| if (rc) { |
| remove(out_filename); |
| if (error_msg[0]) { |
| fprintf(stderr, "ERROR: %s\n", error_msg); |
| } |
| } |
| return rc; |
| } |