| /* |
| * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include "hardware/irq.h" |
| #include "pico/runtime_init.h" |
| |
| #include "hardware/claim.h" |
| #include "pico/mutex.h" |
| #include "pico/assert.h" |
| |
| #if defined(PICO_RUNTIME_INIT_PER_CORE_IRQ_PRIORITIES) && !PICO_RUNTIME_SKIP_INIT_PER_CORE_IRQ_PRIORITIES |
| PICO_RUNTIME_INIT_FUNC_PER_CORE(runtime_init_per_core_irq_priorities, PICO_RUNTIME_INIT_PER_CORE_IRQ_PRIORITIES); |
| #endif |
| |
| #if PICO_VTABLE_PER_CORE |
| static uint8_t user_irq_claimed[NUM_CORES]; |
| static inline uint8_t *user_irq_claimed_ptr(void) { |
| return &user_irq_claimed[get_core_num()]; |
| } |
| #else |
| static uint8_t user_irq_claimed; |
| static inline uint8_t *user_irq_claimed_ptr(void) { |
| return &user_irq_claimed; |
| } |
| #endif |
| |
| static inline irq_handler_t *get_vtable(void) { |
| #ifdef __riscv |
| return (irq_handler_t *) (riscv_read_csr(RVCSR_MTVEC_OFFSET) & ~0x3u); |
| #else |
| return (irq_handler_t *) scb_hw->vtor; |
| #endif |
| } |
| |
| static inline void *add_thumb_bit(void *addr) { |
| #ifdef __riscv |
| return addr; |
| #else |
| return (void *) (((uintptr_t) addr) | 0x1); |
| #endif |
| } |
| |
| static inline void *remove_thumb_bit(void *addr) { |
| #ifdef __riscv |
| return addr; |
| #else |
| return (void *) (((uintptr_t) addr) & (uint)~0x1); |
| #endif |
| } |
| |
| static void set_raw_irq_handler_and_unlock(uint num, irq_handler_t handler, uint32_t save) { |
| // update vtable (vtable_handler may be same or updated depending on cases, but we do it anyway for compactness) |
| get_vtable()[VTABLE_FIRST_IRQ + num] = handler; |
| __dmb(); |
| spin_unlock(spin_lock_instance(PICO_SPINLOCK_ID_IRQ), save); |
| } |
| |
| void irq_set_enabled(uint num, bool enabled) { |
| check_irq_param(num); |
| // really should update irq_set_mask_enabled? |
| irq_set_mask_n_enabled(num / 32, 1u << (num % 32), enabled); |
| } |
| |
| bool irq_is_enabled(uint num) { |
| check_irq_param(num); |
| #if PICO_RP2040 |
| return 0 != ((1u << num) & *((io_rw_32 *) (PPB_BASE + M0PLUS_NVIC_ISER_OFFSET))); |
| #elif defined(__riscv) |
| return 0 != (hazard3_irqarray_read(RVCSR_MEIEA_OFFSET, num / 16) & (1u << (num % 16))); |
| #else |
| return 0 != (nvic_hw->iser[num/32] & (1 << num % 32)); |
| #endif |
| } |
| |
| static inline void irq_set_mask_n_enabled_internal(uint n, uint32_t mask, bool enabled) { |
| invalid_params_if(HARDWARE_IRQ, n * 32u >= ((NUM_IRQS + 31u) & ~31u)); |
| #if defined(__riscv) |
| if (enabled) { |
| hazard3_irqarray_clear(RVCSR_MEIFA_OFFSET, 2 * n, mask & 0xffffu); |
| hazard3_irqarray_clear(RVCSR_MEIFA_OFFSET, 2 * n + 1, mask >> 16); |
| hazard3_irqarray_set(RVCSR_MEIEA_OFFSET, 2 * n, mask & 0xffffu); |
| hazard3_irqarray_set(RVCSR_MEIEA_OFFSET, 2 * n + 1, mask >> 16); |
| } else { |
| hazard3_irqarray_clear(RVCSR_MEIEA_OFFSET, 2 * n, mask & 0xffffu); |
| hazard3_irqarray_clear(RVCSR_MEIEA_OFFSET, 2 * n + 1, mask >> 16); |
| } |
| #elif PICO_RP2040 |
| ((void)n); |
| if (enabled) { |
| nvic_hw->icpr = mask; |
| nvic_hw->iser = mask; |
| } else { |
| nvic_hw->icer = mask; |
| } |
| #else |
| // >32 IRQs (well this works for the bottom 32 which is all that is passed in |
| if (enabled) { |
| nvic_hw->icpr[n] = mask; |
| nvic_hw->iser[n] = mask; |
| } else { |
| nvic_hw->icer[n] = mask; |
| } |
| #endif |
| } |
| |
| void irq_set_mask_enabled(uint32_t mask, bool enabled) { |
| irq_set_mask_n_enabled_internal(0, mask, enabled); |
| } |
| |
| void irq_set_mask_n_enabled(uint n, uint32_t mask, bool enabled) { |
| irq_set_mask_n_enabled_internal(n, mask, enabled); |
| } |
| |
| void irq_set_pending(uint num) { |
| check_irq_param(num); |
| #ifdef __riscv |
| // Interrupt force is subsequently cleared by any read of meinext that |
| // indicates the forced IRQ (can also be cleared manually) |
| hazard3_irqarray_set(RVCSR_MEIFA_OFFSET, num / 16, 1u << (num % 16)); |
| #else |
| #if PICO_RP2040 |
| *((io_rw_32 *) (PPB_BASE + M0PLUS_NVIC_ISPR_OFFSET)) = 1u << num; |
| #else |
| nvic_hw->ispr[num/32] = 1 << (num % 32); |
| #endif |
| #endif |
| } |
| |
| #if !PICO_DISABLE_SHARED_IRQ_HANDLERS |
| // limited by 8 bit relative links (and reality) |
| static_assert(PICO_MAX_SHARED_IRQ_HANDLERS >= 1 && PICO_MAX_SHARED_IRQ_HANDLERS < 0x7f, ""); |
| |
| // note these are not real functions, they are code fragments (i.e. don't call them) |
| extern void irq_handler_chain_first_slot(void); |
| extern void irq_handler_chain_remove_tail(void); |
| |
| // On Arm: |
| // |
| // - The first slot begins with a tail call to irq_handler_chain_first_slot, passing a pointer to |
| // the slot in r1; this pushes the initial link register to the stack, invokes the slot's handler |
| // and then returns into the latter half of the slot |
| // |
| // - Non-first slots begin with a call of the slot's handler |
| // |
| // - Non-last slots end with a tail into the next slot in the chain |
| // |
| // - The last slot ends with a pop of the return address pushed by irq_handler_chain_first_slot |
| // |
| // On RISC-V: |
| // |
| // - The first slot begins with jal t0, irq_handler_first_chain_slot followed by a 32-bit pointer to |
| // the handler; this pushes the ultimate return address to the stack, invokes the slot's handler |
| // and then returns into the latter half of the slot |
| // |
| // - Non-first slots begin with an lui; jalr sequence to call the handler |
| // |
| // - Non-last slots end with a tail into the next slot in the chain |
| // |
| // - The last slot ends with a pop of the return address pushed by irq_handler_chain_first_slot |
| // |
| // This means the layout is different between Arm and RISC-V (though total size is the same): Arm is |
| // 6 bytes of code, 2 bytes of link and 4 bytes of pointer. RISC-V is 10 bytes of code and 2 bytes |
| // of link. |
| |
| extern struct irq_handler_chain_slot { |
| #ifndef __riscv |
| uint16_t inst1; |
| uint16_t inst2; |
| #else |
| uint32_t inst1; |
| uint32_t inst2; |
| #endif |
| uint16_t inst3; |
| union { |
| // On Arm, when a handler is removed while executing, it needs a 32-bit instruction at |
| // inst3, which overwrites the link and the priority; this is ok because no one else is |
| // modifying the chain, as the chain is effectively core-local, and the user code which |
| // might still need this link disables the IRQ in question before updating, which means we |
| // aren't executing! |
| struct { |
| int8_t link; |
| uint8_t priority; |
| }; |
| uint16_t inst4; |
| }; |
| #ifndef __riscv |
| irq_handler_t handler; |
| #endif |
| } irq_handler_chain_slots[PICO_MAX_SHARED_IRQ_HANDLERS]; |
| |
| static int8_t irq_handler_chain_free_slot_head; |
| |
| static inline bool is_shared_irq_raw_handler(irq_handler_t raw_handler) { |
| return (uintptr_t)raw_handler - (uintptr_t)irq_handler_chain_slots < sizeof(irq_handler_chain_slots); |
| } |
| |
| bool irq_has_shared_handler(uint irq_num) { |
| check_irq_param(irq_num); |
| irq_handler_t handler = irq_get_vtable_handler(irq_num); |
| return handler && is_shared_irq_raw_handler(handler); |
| } |
| |
| #else // PICO_DISABLE_SHARED_IRQ_HANDLERS |
| #define is_shared_irq_raw_handler(h) false |
| bool irq_has_shared_handler(uint irq_num) { |
| return false; |
| } |
| #endif |
| |
| |
| irq_handler_t irq_get_vtable_handler(uint num) { |
| check_irq_param(num); |
| return get_vtable()[VTABLE_FIRST_IRQ + num]; |
| } |
| |
| void irq_set_exclusive_handler(uint num, irq_handler_t handler) { |
| check_irq_param(num); |
| #if !PICO_NO_RAM_VECTOR_TABLE |
| spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_IRQ); |
| uint32_t save = spin_lock_blocking(lock); |
| __unused irq_handler_t current = irq_get_vtable_handler(num); |
| hard_assert(current == __unhandled_user_irq || current == handler); |
| set_raw_irq_handler_and_unlock(num, handler, save); |
| #else |
| panic_unsupported(); |
| #endif |
| } |
| |
| irq_handler_t irq_get_exclusive_handler(uint num) { |
| check_irq_param(num); |
| #if !PICO_NO_RAM_VECTOR_TABLE |
| spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_IRQ); |
| uint32_t save = spin_lock_blocking(lock); |
| irq_handler_t current = irq_get_vtable_handler(num); |
| spin_unlock(lock, save); |
| if (current == __unhandled_user_irq || is_shared_irq_raw_handler(current)) { |
| return NULL; |
| } |
| return current; |
| #else |
| panic_unsupported(); |
| #endif |
| } |
| |
| |
| #if !PICO_DISABLE_SHARED_IRQ_HANDLERS |
| |
| #ifndef __riscv |
| |
| static uint16_t make_j_16(uint16_t *from, void *to) { |
| uint32_t ui_from = (uint32_t)from; |
| uint32_t ui_to = (uint32_t)to; |
| int32_t delta = (int32_t)(ui_to - ui_from - 4); |
| assert(delta >= -2048 && delta <= 2046 && !(delta & 1)); |
| return (uint16_t)(0xe000 | ((delta >> 1) & 0x7ff)); |
| } |
| |
| static void insert_bl_32(uint16_t *from, void *to) { |
| uint32_t ui_from = (uint32_t)from; |
| uint32_t ui_to = (uint32_t)to; |
| uint32_t delta = (ui_to - ui_from - 4) / 2; |
| assert(!(delta >> 11u)); |
| from[0] = (uint16_t)(0xf000 | ((delta >> 11u) & 0x7ffu)); |
| from[1] = (uint16_t)(0xf800 | (delta & 0x7ffu)); |
| } |
| |
| static inline void *resolve_j_16(uint16_t *inst) { |
| assert(0x1c == (*inst)>>11u); |
| int32_t i_addr = (*inst) << 21u; |
| i_addr /= (int32_t)(1u<<21u); |
| return inst + 2 + i_addr; |
| } |
| |
| #else |
| |
| static uint16_t make_jal_16(uint16_t *from, void *to) { |
| uint32_t ui_from = (uint32_t)from; |
| uint32_t ui_to = (uint32_t)to; |
| int32_t delta = (int32_t)(ui_to - ui_from); |
| assert(delta >= -2048 && delta <= 2046 && !(delta & 1)); |
| return 0x2001u | riscv_encode_imm_cj((uint32_t)delta); |
| } |
| |
| static uint16_t make_j_16(uint16_t *from, void *to) { |
| return 0x8000u | make_jal_16(from, to); |
| } |
| |
| static inline uint32_t make_call_inst1(void *to) { |
| // lui ra, %hi(to) |
| return 0x000000b7u | riscv_encode_imm_u_hi((uintptr_t)to); |
| } |
| |
| static inline uint32_t make_call_inst2(void *to) { |
| // jalr ra, %lo(to)(ra) |
| return 0x000080e7u | riscv_encode_imm_i((uintptr_t)to); |
| } |
| |
| static inline uint32_t make_jal_t0_32(uint32_t *from, void *to) { |
| // jal t0, to |
| return 0x000002efu | riscv_encode_imm_j((uintptr_t)to - (uintptr_t)from); |
| } |
| |
| static void *resolve_j_16(uint16_t *inst) { |
| uint32_t inst32 = (uint32_t)*inst; |
| uint32_t udiff = |
| ((inst32 & 0x0038) >> 2) + |
| ((inst32 & 0x0800) >> 7) + |
| ((inst32 & 0x0004) << 3) + |
| ((inst32 & 0x0080) >> 1) + |
| ((inst32 & 0x0040) << 1) + |
| ((inst32 & 0x0600) >> 1) + |
| ((inst32 & 0x0100) << 2) - |
| ((inst32 & 0x2000) >> 2); |
| return (void *)((uint32_t)inst + udiff); |
| } |
| |
| #endif |
| |
| // GCC produces horrible code for subtraction of pointers here, and it was bugging me |
| static inline int8_t slot_diff(struct irq_handler_chain_slot *to, struct irq_handler_chain_slot *from) { |
| static_assert(sizeof(struct irq_handler_chain_slot) == 12, ""); |
| #ifdef __riscv |
| // todo I think RISC-V also deserves a fancy pointer diff implementation |
| return (int8_t)(to - from); |
| #else |
| int32_t result = 0xaaaa; |
| // return (to - from); |
| // note this implementation has limited range, but is fine for plenty more than -128->127 result |
| pico_default_asm ( |
| "subs %1, %2\n" |
| "adcs %1, %1\n" // * 2 (and + 1 if negative for rounding) |
| "muls %0, %1\n" |
| "lsrs %0, %0, #20\n" |
| : "+l" (result), "+l" (to) |
| : "l" (from) |
| : "cc" |
| ); |
| return (int8_t)result; |
| #endif |
| } |
| |
| #ifndef __riscv |
| static const uint16_t inst16_return_from_last_slot = 0xbd01; // pop {r0, pc} |
| #else |
| static const uint16_t inst16_return_from_last_slot = 0xbe42; // cm.popret {ra}, 16 |
| #endif |
| |
| static inline int8_t get_slot_index(struct irq_handler_chain_slot *slot) { |
| return slot_diff(slot, irq_handler_chain_slots); |
| } |
| #endif |
| |
| void irq_add_shared_handler(uint num, irq_handler_t handler, uint8_t order_priority) { |
| check_irq_param(num); |
| #if PICO_NO_RAM_VECTOR_TABLE |
| panic_unsupported(); |
| #elif PICO_DISABLE_SHARED_IRQ_HANDLERS |
| irq_set_exclusive_handler(num, handler); |
| #else |
| spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_IRQ); |
| uint32_t save = spin_lock_blocking(lock); |
| hard_assert(irq_handler_chain_free_slot_head >= 0); // we must have a slot |
| struct irq_handler_chain_slot *slot = &irq_handler_chain_slots[irq_handler_chain_free_slot_head]; |
| int8_t slot_index = irq_handler_chain_free_slot_head; |
| irq_handler_chain_free_slot_head = slot->link; |
| irq_handler_t vtable_handler = get_vtable()[VTABLE_FIRST_IRQ + num]; |
| if (!is_shared_irq_raw_handler(vtable_handler)) { |
| // start new chain |
| hard_assert(vtable_handler == __unhandled_user_irq); |
| struct irq_handler_chain_slot slot_data = { |
| #ifndef __riscv |
| .inst1 = 0xa100, // add r1, pc, #0 |
| .inst2 = make_j_16(&slot->inst2, (void *) irq_handler_chain_first_slot), // b irq_handler_chain_first_slot |
| .handler = handler, |
| #else |
| .inst1 = make_jal_t0_32(&slot->inst1, irq_handler_chain_first_slot), // jal t0, irq_handler_chain_first_slot |
| .inst2 = (uint32_t)handler, // (t0 points to handler) |
| #endif |
| .inst3 = inst16_return_from_last_slot, |
| .link = -1, |
| .priority = order_priority |
| }; |
| *slot = slot_data; |
| vtable_handler = (irq_handler_t)add_thumb_bit(slot); |
| } else { |
| assert(!((((uintptr_t)remove_thumb_bit(vtable_handler)) - ((uintptr_t)irq_handler_chain_slots)) % sizeof(struct irq_handler_chain_slot))); |
| struct irq_handler_chain_slot *prev_slot = NULL; |
| struct irq_handler_chain_slot *existing_vtable_slot = remove_thumb_bit((void *) vtable_handler); |
| struct irq_handler_chain_slot *cur_slot = existing_vtable_slot; |
| while (cur_slot->priority > order_priority) { |
| prev_slot = cur_slot; |
| if (cur_slot->link < 0) break; |
| cur_slot = &irq_handler_chain_slots[cur_slot->link]; |
| } |
| if (prev_slot) { |
| // insert into chain |
| struct irq_handler_chain_slot slot_data = { |
| #ifndef __riscv |
| .inst1 = 0x4801, // ldr r0, [pc, #4] |
| .inst2 = 0x4780, // blx r0 |
| .handler = handler, |
| #else |
| .inst1 = make_call_inst1(handler), // lui ra, %hi(handler) |
| .inst2 = make_call_inst2(handler), // jalr ra, %lo(handler)(ra) |
| #endif |
| .inst3 = prev_slot->link >= 0 ? |
| make_j_16(&slot->inst3, resolve_j_16(&prev_slot->inst3)) : // b next_slot |
| inst16_return_from_last_slot, |
| .link = prev_slot->link, |
| .priority = order_priority |
| }; |
| // update code and data links |
| prev_slot->inst3 = make_j_16(&prev_slot->inst3, slot), |
| prev_slot->link = slot_index; |
| *slot = slot_data; |
| } else { |
| // update with new chain head |
| struct irq_handler_chain_slot slot_data = { |
| #ifndef __riscv |
| .inst1 = 0xa100, // add r1, pc, #0 |
| .inst2 = make_j_16(&slot->inst2, (void *) irq_handler_chain_first_slot), // b irq_handler_chain_first_slot |
| .handler = handler, |
| #else |
| .inst1 = make_jal_t0_32(&slot->inst1, irq_handler_chain_first_slot), // jal t0, irq_handler_chain_first_slot |
| .inst2 = (uint32_t)handler, // (t0 points to handler) |
| #endif |
| .inst3 = make_j_16(&slot->inst3, existing_vtable_slot), // b existing_slot |
| .link = get_slot_index(existing_vtable_slot), |
| .priority = order_priority, |
| }; |
| *slot = slot_data; |
| // fixup previous head slot |
| #ifndef __riscv |
| existing_vtable_slot->inst1 = 0x4801; // ldr r0, [pc, #4] |
| existing_vtable_slot->inst2 = 0x4780; // blx r0 |
| #else |
| // todo lock-freeness? |
| void *handler_of_existing_head = (void*)existing_vtable_slot->inst2; |
| existing_vtable_slot->inst1 = make_call_inst1(handler_of_existing_head); |
| existing_vtable_slot->inst2 = make_call_inst2(handler_of_existing_head); |
| #endif |
| vtable_handler = (irq_handler_t)add_thumb_bit(slot); |
| } |
| } |
| set_raw_irq_handler_and_unlock(num, vtable_handler, save); |
| #endif // !PICO_NO_RAM_VECTOR_TABLE && !PICO_DISABLE_SHARED_IRQ_HANDLERS |
| } |
| |
| #if !PICO_DISABLE_SHARED_IRQ_HANDLERS |
| static inline irq_handler_t handler_from_slot(struct irq_handler_chain_slot *slot) { |
| #ifndef __riscv |
| return slot->handler; |
| #else |
| if (slot->inst1 & 0x8u) { |
| // jal t0, irq_handler_chain_first_slot; .word handler |
| return (irq_handler_t)slot->inst2; |
| } else { |
| // lui ra, %hi(handler); jalr ra, %lo(handler)(ra) |
| return (irq_handler_t)( |
| ((slot->inst1 >> 12) << 12) + (uint32_t)((int32_t)slot->inst2 >> 20) |
| ); |
| } |
| #endif |
| } |
| #endif |
| |
| void irq_remove_handler(uint num, irq_handler_t handler) { |
| #if !PICO_NO_RAM_VECTOR_TABLE |
| spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_IRQ); |
| uint32_t save = spin_lock_blocking(lock); |
| irq_handler_t vtable_handler = get_vtable()[VTABLE_FIRST_IRQ + num]; |
| if (vtable_handler != __unhandled_user_irq && vtable_handler != handler) { |
| #if !PICO_DISABLE_SHARED_IRQ_HANDLERS |
| if (is_shared_irq_raw_handler(vtable_handler)) { |
| // This is a bit tricky, as an executing IRQ handler doesn't take a lock. |
| |
| // First thing to do is to disable the IRQ in question; that takes care of calls from user code. |
| // Note that a irq handler chain is local to our own core, so we don't need to worry about the other core |
| bool was_enabled = irq_is_enabled(num); |
| irq_set_enabled(num, false); |
| __dmb(); |
| |
| // It is possible we are being called while an IRQ for this chain is already in progress. |
| // The issue we have here is that we must not free a slot that is currently being executed, because |
| // inst3 is still to be executed, and inst3 might get overwritten if the slot is re-used. |
| |
| // By disallowing other exceptions from removing an IRQ handler (which seems fair) |
| // we now only have to worry about removing a slot from a chain that is currently executing. |
| |
| // Note we expect that the slot we are deleting is the one that is executing. |
| // In particular, bad things happen if the caller were to delete the handler in the chain |
| // before it. This is not an allowed use case though, and I can't imagine anyone wanting to in practice. |
| // Sadly this is not something we can detect. |
| |
| uint exception = __get_current_exception(); |
| hard_assert(!exception || exception == num + VTABLE_FIRST_IRQ); |
| |
| struct irq_handler_chain_slot *prev_slot = NULL; |
| struct irq_handler_chain_slot *existing_vtable_slot = remove_thumb_bit((void *) vtable_handler); |
| struct irq_handler_chain_slot *to_free_slot = existing_vtable_slot; |
| while (handler_from_slot(to_free_slot) != handler) { |
| prev_slot = to_free_slot; |
| if (to_free_slot->link < 0) break; |
| to_free_slot = &irq_handler_chain_slots[to_free_slot->link]; |
| } |
| if (handler_from_slot(to_free_slot) == handler) { |
| int8_t next_slot_index = to_free_slot->link; |
| if (next_slot_index >= 0) { |
| // There is another slot in the chain, so copy that over us, so that our inst3 points at something valid |
| // Note this only matters in the exception case anyway, and it that case, we will skip the next handler, |
| // however in that case its IRQ cause should immediately cause re-entry of the IRQ and the only side |
| // effect will be that there was potentially brief out of priority order execution of the handlers |
| struct irq_handler_chain_slot *next_slot = &irq_handler_chain_slots[next_slot_index]; |
| #ifndef __riscv |
| to_free_slot->handler = next_slot->handler; |
| #else |
| irq_handler_t handler_of_next_slot = handler_from_slot(next_slot); |
| if (to_free_slot == existing_vtable_slot) { |
| to_free_slot->inst2 = (uint32_t)handler_of_next_slot; |
| } else { |
| to_free_slot->inst1 = make_call_inst1(handler_of_next_slot); |
| to_free_slot->inst2 = make_call_inst2(handler_of_next_slot); |
| } |
| #endif |
| to_free_slot->priority = next_slot->priority; |
| to_free_slot->link = next_slot->link; |
| to_free_slot->inst3 = next_slot->link >= 0 ? |
| make_j_16(&to_free_slot->inst3, resolve_j_16(&next_slot->inst3)) : // b next_>slot->next_slot |
| inst16_return_from_last_slot, |
| |
| // add old next slot back to free list |
| next_slot->link = irq_handler_chain_free_slot_head; |
| irq_handler_chain_free_slot_head = next_slot_index; |
| } else { |
| // Slot being removed is at the end of the chain |
| if (!exception) { |
| // case when we're not in exception, we physically unlink now |
| if (prev_slot) { |
| // chain is not empty |
| prev_slot->link = -1; |
| prev_slot->inst3 = inst16_return_from_last_slot; |
| } else { |
| // chain is not empty |
| vtable_handler = __unhandled_user_irq; |
| } |
| // add slot back to free list |
| to_free_slot->link = irq_handler_chain_free_slot_head; |
| irq_handler_chain_free_slot_head = get_slot_index(to_free_slot); |
| } else { |
| // since we are the last slot we know that our inst3 hasn't executed yet, so we change |
| // it to bl to irq_handler_chain_remove_tail which will remove the slot. |
| #ifndef __riscv |
| // NOTE THAT THIS TRASHES PRIORITY AND LINK SINCE THIS IS A 4 BYTE INSTRUCTION |
| // BUT THEY ARE NOT NEEDED NOW |
| insert_bl_32(&to_free_slot->inst3, (void *) irq_handler_chain_remove_tail); |
| #else |
| to_free_slot->inst3 = make_jal_16(&to_free_slot->inst3, (void*) irq_handler_chain_remove_tail); |
| #endif |
| } |
| } |
| } else { |
| assert(false); // not found |
| } |
| irq_set_enabled(num, was_enabled); |
| } |
| #else |
| assert(false); // not found |
| #endif |
| } else { |
| vtable_handler = __unhandled_user_irq; |
| } |
| set_raw_irq_handler_and_unlock(num, vtable_handler, save); |
| #else |
| panic_unsupported(); |
| #endif |
| } |
| |
| #ifndef __riscv |
| static io_rw_32 *nvic_ipr0(void) { |
| return (io_rw_32 *)(PPB_BASE + ARM_CPU_PREFIXED(NVIC_IPR0_OFFSET)); |
| } |
| #endif |
| |
| void irq_set_priority(uint num, uint8_t hardware_priority) { |
| check_irq_param(num); |
| #ifdef __riscv |
| // SDK priorities are upside down due to Cortex-M influence |
| hardware_priority = (uint8_t)((hardware_priority >> 4) ^ 0xf); |
| // There is no atomic field write operation, so first drop the IRQ to its |
| // lowest priority (safe even if it is in a preemption frame below us) and |
| // then use a set to raise it to the target priority. |
| hazard3_irqarray_clear(RVCSR_MEIPRA_OFFSET, num / 4, 0xfu << (4 * (num % 4))); |
| hazard3_irqarray_set(RVCSR_MEIPRA_OFFSET, num / 4, hardware_priority << (4 * (num % 4))); |
| #else |
| io_rw_32 *p = nvic_ipr0() + (num >> 2); |
| // note that only 32 bit writes are supported |
| *p = (*p & ~(0xffu << (8 * (num & 3u)))) | (((uint32_t) hardware_priority) << (8 * (num & 3u))); |
| #endif |
| } |
| |
| uint irq_get_priority(uint num) { |
| check_irq_param(num); |
| #ifdef __riscv |
| uint16_t priority_row = (uint16_t) hazard3_irqarray_read(RVCSR_MEIPRA_OFFSET, num / 4u); |
| uint8_t priority_4bit = (priority_row >> (4 * (num % 4))) & 0xfu; |
| return ((priority_4bit ^ 0xfu) << 4u); |
| #else |
| // note that only 32 bit reads are supported |
| io_rw_32 *p = nvic_ipr0() + (num >> 2); |
| return (uint8_t)(*p >> (8 * (num & 3u))); |
| #endif |
| } |
| |
| #if !PICO_DISABLE_SHARED_IRQ_HANDLERS |
| // used by irq_handler_chain.S to remove the last link in a handler chain after it executes |
| // note this must be called only with the last slot in a chain (and during the exception) |
| void irq_add_tail_to_free_list(struct irq_handler_chain_slot *slot) { |
| irq_handler_t slot_handler = (irq_handler_t) add_thumb_bit(slot); |
| assert(is_shared_irq_raw_handler(slot_handler)); |
| |
| uint exception = __get_current_exception(); |
| assert(exception); |
| spin_lock_t *lock = spin_lock_instance(PICO_SPINLOCK_ID_IRQ); |
| uint32_t save = spin_lock_blocking(lock); |
| int8_t slot_index = get_slot_index(slot); |
| if (slot_handler == get_vtable()[exception]) { |
| get_vtable()[exception] = __unhandled_user_irq; |
| } else { |
| bool __unused found = false; |
| // need to find who points at the slot and update it |
| for(uint i=0;i<count_of(irq_handler_chain_slots);i++) { |
| if (irq_handler_chain_slots[i].link == slot_index) { |
| irq_handler_chain_slots[i].link = -1; |
| irq_handler_chain_slots[i].inst3 = inst16_return_from_last_slot; |
| found = true; |
| break; |
| } |
| } |
| assert(found); |
| } |
| // add slot to free list |
| slot->link = irq_handler_chain_free_slot_head; |
| irq_handler_chain_free_slot_head = slot_index; |
| spin_unlock(lock, save); |
| } |
| #endif |
| |
| __weak void runtime_init_per_core_irq_priorities(void) { |
| #if PICO_DEFAULT_IRQ_PRIORITY != 0 |
| #ifndef __riscv |
| // static_assert(!(NUM_IRQS & 3), ""); // this isn't really required - the reg is still 32 bit |
| uint32_t prio4 = (PICO_DEFAULT_IRQ_PRIORITY & 0xff) * 0x1010101u; |
| io_rw_32 *p = nvic_ipr0(); |
| for (uint i = 0; i < (NUM_IRQS + 3) / 4; i++) { |
| *p++ = prio4; |
| } |
| #else |
| for (uint i = 0; i < NUM_IRQS; ++i) { |
| irq_set_priority(i, PICO_DEFAULT_IRQ_PRIORITY); |
| } |
| #endif |
| #endif |
| } |
| |
| static uint get_user_irq_claim_index(uint irq_num) { |
| invalid_params_if(HARDWARE_IRQ, irq_num < FIRST_USER_IRQ || irq_num >= NUM_IRQS); |
| // we count backwards from the last, to match the existing hard coded uses of user IRQs in the SDK which were previously using 31 |
| static_assert(NUM_IRQS - FIRST_USER_IRQ <= 8, ""); // we only use a single byte's worth of claim bits today. |
| return NUM_IRQS - irq_num - 1u; |
| } |
| |
| void user_irq_claim(uint irq_num) { |
| hw_claim_or_assert(user_irq_claimed_ptr(), get_user_irq_claim_index(irq_num), "User IRQ is already claimed"); |
| } |
| |
| void user_irq_unclaim(uint irq_num) { |
| hw_claim_clear(user_irq_claimed_ptr(), get_user_irq_claim_index(irq_num)); |
| } |
| |
| int user_irq_claim_unused(bool required) { |
| int bit = hw_claim_unused_from_range(user_irq_claimed_ptr(), required, 0, NUM_USER_IRQS - 1, "No user IRQs are available"); |
| if (bit >= 0) bit = (int)NUM_IRQS - bit - 1; |
| return bit; |
| } |
| |
| bool user_irq_is_claimed(uint irq_num) { |
| return hw_is_claimed(user_irq_claimed_ptr(), get_user_irq_claim_index(irq_num)); |
| } |
| |
| #ifdef __riscv |
| static uint32_t encode_j_instruction(uintptr_t from, uintptr_t to) { |
| intptr_t delta = (intptr_t) (to - from); |
| invalid_params_if(HARDWARE_IRQ, delta & 1); |
| valid_params_if(HARDWARE_IRQ, ((delta >> 21) == 0 || (delta >> 21) == -1)); // range check +- 1 MiB |
| return 0x6fu | riscv_encode_imm_j((uint32_t)delta); |
| } |
| |
| irq_handler_t irq_set_riscv_vector_handler(enum riscv_vector_num index, irq_handler_t handler) { |
| invalid_params_if(HARDWARE_IRQ, index > RISCV_VEC_MACHINE_EXTERNAL_IRQ); |
| irq_handler_t *vtable = get_vtable(); |
| valid_params_if(HARDWARE_IRQ, ((uintptr_t)vtable & 0x3) == 0x1); // check we are in vector mode |
| irq_handler_t old = vtable[index]; |
| vtable[index] = (irq_handler_t)encode_j_instruction((uintptr_t)&vtable[index], (uintptr_t)handler); |
| return old; |
| } |
| #endif |