blob: 86c79de9ee860f44505e8827d35d4138da4d1d4e [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "hardware/resets.h"
#include "hardware/clocks.h"
#include "hardware/spi.h"
static inline void spi_reset(spi_inst_t *spi) {
invalid_params_if(HARDWARE_SPI, spi != spi0 && spi != spi1);
reset_block_num(spi == spi0 ? RESET_SPI0 : RESET_SPI1);
}
static inline void spi_unreset(spi_inst_t *spi) {
invalid_params_if(HARDWARE_SPI, spi != spi0 && spi != spi1);
unreset_block_num_wait_blocking(spi == spi0 ? RESET_SPI0 : RESET_SPI1);
}
uint spi_init(spi_inst_t *spi, uint baudrate) {
spi_reset(spi);
spi_unreset(spi);
uint baud = spi_set_baudrate(spi, baudrate);
spi_set_format(spi, 8, SPI_CPOL_0, SPI_CPHA_0, SPI_MSB_FIRST);
// Always enable DREQ signals -- harmless if DMA is not listening
hw_set_bits(&spi_get_hw(spi)->dmacr, SPI_SSPDMACR_TXDMAE_BITS | SPI_SSPDMACR_RXDMAE_BITS);
// Finally enable the SPI
hw_set_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_SSE_BITS);
return baud;
}
void spi_deinit(spi_inst_t *spi) {
hw_clear_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_SSE_BITS);
hw_clear_bits(&spi_get_hw(spi)->dmacr, SPI_SSPDMACR_TXDMAE_BITS | SPI_SSPDMACR_RXDMAE_BITS);
spi_reset(spi);
}
uint spi_set_baudrate(spi_inst_t *spi, uint baudrate) {
uint freq_in = clock_get_hz(clk_peri);
uint prescale, postdiv;
invalid_params_if(HARDWARE_SPI, baudrate > freq_in);
// Disable the SPI
uint32_t enable_mask = spi_get_hw(spi)->cr1 & SPI_SSPCR1_SSE_BITS;
hw_clear_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_SSE_BITS);
// Find smallest prescale value which puts output frequency in range of
// post-divide. Prescale is an even number from 2 to 254 inclusive.
for (prescale = 2; prescale <= 254; prescale += 2) {
if (freq_in < prescale * 256 * (uint64_t) baudrate)
break;
}
invalid_params_if(HARDWARE_SPI, prescale > 254); // Frequency too low
// Find largest post-divide which makes output <= baudrate. Post-divide is
// an integer in the range 1 to 256 inclusive.
for (postdiv = 256; postdiv > 1; --postdiv) {
if (freq_in / (prescale * (postdiv - 1)) > baudrate)
break;
}
spi_get_hw(spi)->cpsr = prescale;
hw_write_masked(&spi_get_hw(spi)->cr0, (postdiv - 1) << SPI_SSPCR0_SCR_LSB, SPI_SSPCR0_SCR_BITS);
// Re-enable the SPI
hw_set_bits(&spi_get_hw(spi)->cr1, enable_mask);
// Return the frequency we were able to achieve
return freq_in / (prescale * postdiv);
}
uint spi_get_baudrate(const spi_inst_t *spi) {
uint prescale = spi_get_const_hw(spi)->cpsr;
uint postdiv = ((spi_get_const_hw(spi)->cr0 & SPI_SSPCR0_SCR_BITS) >> SPI_SSPCR0_SCR_LSB) + 1;
return clock_get_hz(clk_peri) / (prescale * postdiv);
}
// Write len bytes from src to SPI. Simultaneously read len bytes from SPI to dst.
// Note this function is guaranteed to exit in a known amount of time (bits sent * time per bit)
int __not_in_flash_func(spi_write_read_blocking)(spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t len) {
invalid_params_if(HARDWARE_SPI, 0 > (int)len);
// Never have more transfers in flight than will fit into the RX FIFO,
// else FIFO will overflow if this code is heavily interrupted.
const size_t fifo_depth = 8;
size_t rx_remaining = len, tx_remaining = len;
while (rx_remaining || tx_remaining) {
if (tx_remaining && spi_is_writable(spi) && rx_remaining < tx_remaining + fifo_depth) {
spi_get_hw(spi)->dr = (uint32_t) *src++;
--tx_remaining;
}
if (rx_remaining && spi_is_readable(spi)) {
*dst++ = (uint8_t) spi_get_hw(spi)->dr;
--rx_remaining;
}
}
return (int)len;
}
// Write len bytes directly from src to the SPI, and discard any data received back
int __not_in_flash_func(spi_write_blocking)(spi_inst_t *spi, const uint8_t *src, size_t len) {
invalid_params_if(HARDWARE_SPI, 0 > (int)len);
// Write to TX FIFO whilst ignoring RX, then clean up afterward. When RX
// is full, PL022 inhibits RX pushes, and sets a sticky flag on
// push-on-full, but continues shifting. Safe if SSPIMSC_RORIM is not set.
for (size_t i = 0; i < len; ++i) {
while (!spi_is_writable(spi))
tight_loop_contents();
spi_get_hw(spi)->dr = (uint32_t)src[i];
}
// Drain RX FIFO, then wait for shifting to finish (which may be *after*
// TX FIFO drains), then drain RX FIFO again
while (spi_is_readable(spi))
(void)spi_get_hw(spi)->dr;
while (spi_get_hw(spi)->sr & SPI_SSPSR_BSY_BITS)
tight_loop_contents();
while (spi_is_readable(spi))
(void)spi_get_hw(spi)->dr;
// Don't leave overrun flag set
spi_get_hw(spi)->icr = SPI_SSPICR_RORIC_BITS;
return (int)len;
}
// Read len bytes directly from the SPI to dst.
// repeated_tx_data is output repeatedly on SO as data is read in from SI.
// Generally this can be 0, but some devices require a specific value here,
// e.g. SD cards expect 0xff
int __not_in_flash_func(spi_read_blocking)(spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t len) {
invalid_params_if(HARDWARE_SPI, 0 > (int)len);
const size_t fifo_depth = 8;
size_t rx_remaining = len, tx_remaining = len;
while (rx_remaining || tx_remaining) {
if (tx_remaining && spi_is_writable(spi) && rx_remaining < tx_remaining + fifo_depth) {
spi_get_hw(spi)->dr = (uint32_t) repeated_tx_data;
--tx_remaining;
}
if (rx_remaining && spi_is_readable(spi)) {
*dst++ = (uint8_t) spi_get_hw(spi)->dr;
--rx_remaining;
}
}
return (int)len;
}
// Write len halfwords from src to SPI. Simultaneously read len halfwords from SPI to dst.
int __not_in_flash_func(spi_write16_read16_blocking)(spi_inst_t *spi, const uint16_t *src, uint16_t *dst, size_t len) {
invalid_params_if(HARDWARE_SPI, 0 > (int)len);
// Never have more transfers in flight than will fit into the RX FIFO,
// else FIFO will overflow if this code is heavily interrupted.
const size_t fifo_depth = 8;
size_t rx_remaining = len, tx_remaining = len;
while (rx_remaining || tx_remaining) {
if (tx_remaining && spi_is_writable(spi) && rx_remaining < tx_remaining + fifo_depth) {
spi_get_hw(spi)->dr = (uint32_t) *src++;
--tx_remaining;
}
if (rx_remaining && spi_is_readable(spi)) {
*dst++ = (uint16_t) spi_get_hw(spi)->dr;
--rx_remaining;
}
}
return (int)len;
}
// Write len bytes directly from src to the SPI, and discard any data received back
int __not_in_flash_func(spi_write16_blocking)(spi_inst_t *spi, const uint16_t *src, size_t len) {
invalid_params_if(HARDWARE_SPI, 0 > (int)len);
// Deliberately overflow FIFO, then clean up afterward, to minimise amount
// of APB polling required per halfword
for (size_t i = 0; i < len; ++i) {
while (!spi_is_writable(spi))
tight_loop_contents();
spi_get_hw(spi)->dr = (uint32_t)src[i];
}
while (spi_is_readable(spi))
(void)spi_get_hw(spi)->dr;
while (spi_get_hw(spi)->sr & SPI_SSPSR_BSY_BITS)
tight_loop_contents();
while (spi_is_readable(spi))
(void)spi_get_hw(spi)->dr;
// Don't leave overrun flag set
spi_get_hw(spi)->icr = SPI_SSPICR_RORIC_BITS;
return (int)len;
}
// Read len halfwords directly from the SPI to dst.
// repeated_tx_data is output repeatedly on SO as data is read in from SI.
int __not_in_flash_func(spi_read16_blocking)(spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst, size_t len) {
invalid_params_if(HARDWARE_SPI, 0 > (int)len);
const size_t fifo_depth = 8;
size_t rx_remaining = len, tx_remaining = len;
while (rx_remaining || tx_remaining) {
if (tx_remaining && spi_is_writable(spi) && rx_remaining < tx_remaining + fifo_depth) {
spi_get_hw(spi)->dr = (uint32_t) repeated_tx_data;
--tx_remaining;
}
if (rx_remaining && spi_is_readable(spi)) {
*dst++ = (uint16_t) spi_get_hw(spi)->dr;
--rx_remaining;
}
}
return (int)len;
}