blob: 99253369f036f157ca9eac17ceab780b6e2f861c [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_PWM_H
#define _HARDWARE_PWM_H
#include "pico.h"
#include "hardware/structs/pwm.h"
#ifdef __cplusplus
extern "C" {
#endif
// PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_PWM, Enable/disable assertions in the PWM module, type=bool, default=0, group=hadrware_pwm
#ifndef PARAM_ASSERTIONS_ENABLED_PWM
#define PARAM_ASSERTIONS_ENABLED_PWM 0
#endif
/** \file hardware/pwm.h
* \defgroup hardware_pwm hardware_pwm
*
* Hardware Pulse Width Modulation (PWM) API
*
* The RP2040 PWM block has 8 identical slices. Each slice can drive two PWM output signals, or
* measure the frequency or duty cycle of an input signal. This gives a total of up to 16 controllable
* PWM outputs. All 30 GPIOs can be driven by the PWM block
*
* The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a
* toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of
* time spent at the high signal level is known as the duty cycle of the signal.
*
* The default behaviour of a PWM slice is to count upward until the wrap value (\ref pwm_config_set_wrap) is reached, and then
* immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward after
* reaching TOP, until it reaches 0 again.
*
* \subsection pwm_example Example
* \addtogroup hardware_pwm
* \include hello_pwm.c
*/
/** \brief PWM Divider mode settings
* \ingroup hardware_pwm
*
*/
enum pwm_clkdiv_mode
{
PWM_DIV_FREE_RUNNING, ///< Free-running counting at rate dictated by fractional divider
PWM_DIV_B_HIGH, ///< Fractional divider is gated by the PWM B pin
PWM_DIV_B_RISING, ///< Fractional divider advances with each rising edge of the PWM B pin
PWM_DIV_B_FALLING ///< Fractional divider advances with each falling edge of the PWM B pin
};
enum pwm_chan
{
PWM_CHAN_A = 0,
PWM_CHAN_B = 1
};
typedef struct {
uint32_t csr;
uint32_t div;
uint32_t top;
} pwm_config;
/** \brief Determine the PWM slice that is attached to the specified GPIO
* \ingroup hardware_pwm
*
* \return The PWM slice number that controls the specified GPIO.
*/
static inline uint pwm_gpio_to_slice_num(uint gpio) {
valid_params_if(PWM, gpio < N_GPIOS);
return (gpio >> 1u) & 7u;
}
/** \brief Determine the PWM channel that is attached to the specified GPIO.
* \ingroup hardware_pwm
*
* Each slice 0 to 7 has two channels, A and B.
*
* \return The PWM channel that controls the specified GPIO.
*/
static inline uint pwm_gpio_to_channel(uint gpio) {
valid_params_if(PWM, gpio < N_GPIOS);
return gpio & 1u;
}
/** \brief Set phase correction in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param phase_correct true to set phase correct modulation, false to set trailing edge
*
* Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached,
* the PWM starts counting back down. The output frequency is halved when phase-correct mode is enabled.
*/
static inline void pwm_config_set_phase_correct(pwm_config *c, bool phase_correct) {
c->csr = (c->csr & ~PWM_CH0_CSR_PH_CORRECT_BITS)
| (!!phase_correct << PWM_CH0_CSR_PH_CORRECT_LSB);
}
/** \brief Set clock divider in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param div Value to divide counting rate by. Must be greater than or equal to 1.
*
* If the divide mode is free-running, the PWM counter runs at clk_sys / div.
* Otherwise, the divider reduces the rate of events seen on the B pin input (level or edge)
* before passing them on to the PWM counter.
*/
static inline void pwm_config_set_clkdiv(pwm_config *c, float div) {
c->div = (uint32_t)(div * (float)(1u << PWM_CH1_DIV_INT_LSB));
}
/** \brief Set PWM clock divider in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param div integer value to reduce counting rate by. Must be greater than or equal to 1.
*
* If the divide mode is free-running, the PWM counter runs at clk_sys / div.
* Otherwise, the divider reduces the rate of events seen on the B pin input (level or edge)
* before passing them on to the PWM counter.
*/
static inline void pwm_config_set_clkdiv_int(pwm_config *c, uint div) {
c->div = div << PWM_CH1_DIV_INT_LSB;
}
/** \brief Set PWM counting mode in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param mode PWM divide/count mode
*
* Configure which event gates the operation of the fractional divider.
* The default is always-on (free-running PWM). Can also be configured to count on
* high level, rising edge or falling edge of the B pin input.
*/
static inline void pwm_config_set_clkdiv_mode(pwm_config *c, enum pwm_clkdiv_mode mode) {
valid_params_if(PWM, mode >= PWM_DIV_FREE_RUNNING && mode <= PWM_DIV_B_FALLING);
c->csr = (c->csr & ~PWM_CH0_CSR_DIVMODE_BITS)
| (mode << PWM_CH0_CSR_DIVMODE_LSB);
}
/** \brief Set output polarity in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param a true to invert output A
* \param b true to invert output B
*/
static inline void pwm_config_set_output_polarity(pwm_config *c, bool a, bool b) {
c->csr = (c->csr & ~(PWM_CH0_CSR_A_INV_BITS | PWM_CH0_CSR_B_INV_BITS))
| ((!!a << PWM_CH0_CSR_A_INV_LSB) | (!!b << PWM_CH0_CSR_B_INV_LSB));
}
/** \brief Set PWM counter wrap value in a PWM configuration
* \ingroup hardware_pwm
*
* Set the highest value the counter will reach before returning to 0. Also known as TOP.
*
* \param c PWM configuration struct to modify
* \param wrap Value to set wrap to
*/
static inline void pwm_config_set_wrap(pwm_config *c, uint16_t wrap) {
c->top = wrap;
}
/** \brief Initialise a PWM with settings from a configuration object
* \ingroup hardware_pwm
*
* Use the \ref pwm_get_default_config() function to initialise a config structure, make changes as
* needed using the pwm_config_* functions, then call this function to set up the PWM.
*
* \param slice_num PWM slice number
* \param c The configuration to use
* \param start If true the PWM will be started running once configured. If false you will need to start
* manually using \ref pwm_set_enabled() or \ref pwm_set_mask_enabled()
*/
static inline void pwm_init(uint slice_num, pwm_config *c, bool start) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
pwm_hw->slice[slice_num].csr = 0;
pwm_hw->slice[slice_num].ctr = PWM_CH0_CTR_RESET;
pwm_hw->slice[slice_num].cc = PWM_CH0_CC_RESET;
pwm_hw->slice[slice_num].top = c->top;
pwm_hw->slice[slice_num].div = c->div;
pwm_hw->slice[slice_num].csr = c->csr | (!!start << PWM_CH0_CSR_EN_LSB);
}
/** \brief Get a set of default values for PWM configuration
* \ingroup hardware_pwm
*
* PWM config is free running at system clock speed, no phase correction, wrapping at 0xffff,
* with standard polarities for channels A and B.
*
* \return Set of default values.
*/
static inline pwm_config pwm_get_default_config() {
pwm_config c = {0, 0, 0};
pwm_config_set_phase_correct(&c, false);
pwm_config_set_clkdiv_int(&c, 1);
pwm_config_set_clkdiv_mode(&c, PWM_DIV_FREE_RUNNING);
pwm_config_set_output_polarity(&c, false, false);
pwm_config_set_wrap(&c, 0xffffu);
return c;
}
/** \brief Set the current PWM counter wrap value
* \ingroup hardware_pwm
*
* Set the highest value the counter will reach before returning to 0. Also known as TOP.
*
* \param slice_num PWM slice number
* \param wrap Value to set wrap to
*/
static inline void pwm_set_wrap(uint slice_num, uint16_t wrap) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
pwm_hw->slice[slice_num].top = wrap;
}
/** \brief Set the current PWM counter compare value for one channel
* \ingroup hardware_pwm
*
* Set the value of the PWM counter compare value, for either channel A or channel B
*
* \param slice_num PWM slice number
* \param chan Which channel to update. 0 for A, 1 for B.
* \param level new level for the selected output
*/
static inline void pwm_set_chan_level(uint slice_num, uint chan, uint16_t level) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
hw_write_masked(
&pwm_hw->slice[slice_num].cc,
level << (chan ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB),
chan ? PWM_CH0_CC_B_BITS : PWM_CH0_CC_A_BITS
);
}
/** \brief Set PWM counter compare values
* \ingroup hardware_pwm
*
* Set the value of the PWM counter compare values, A and B
*
* \param slice_num PWM slice number
* \param level_a Value to set compare A to. When the counter reaches this value the A output is deasserted
* \param level_b Value to set compare B to. When the counter reaches this value the B output is deasserted
*/
static inline void pwm_set_both_levels(uint slice_num, uint16_t level_a, uint16_t level_b) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
pwm_hw->slice[slice_num].cc = (level_b << PWM_CH0_CC_B_LSB) | (level_a << PWM_CH0_CC_A_LSB);
}
/** \brief Helper function to set the PWM level for the slice and channel associated with a GPIO.
* \ingroup hardware_pwm
*
* Look up the correct slice (0 to 7) and channel (A or B) for a given GPIO, and update the corresponding
* counter-compare field.
*
* This PWM slice should already have been configured and set running. Also be careful of multiple GPIOs
* mapping to the same slice and channel (if GPIOs have a difference of 16).
*
* \param gpio GPIO to set level of
* \param level PWM level for this GPIO
*/
static inline void pwm_set_gpio_level(uint gpio, uint16_t level) {
valid_params_if(PWM, gpio < N_GPIOS);
pwm_set_chan_level(pwm_gpio_to_slice_num(gpio), pwm_gpio_to_channel(gpio), level);
}
/** \brief Get PWM counter
* \ingroup hardware_pwm
*
* Get current value of PWM counter
*
* \param slice_num PWM slice number
* \return Current value of PWM counter
*/
static inline int16_t pwm_get_counter(uint slice_num) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
return (pwm_hw->slice[slice_num].ctr);
}
/** \brief Set PWM counter
* \ingroup hardware_pwm
*
* Set the value of the PWM counter
*
* \param slice_num PWM slice number
* \param c Value to set the PWM counter to
*
*/
static inline void pwm_set_counter(uint slice_num, uint16_t c) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
pwm_hw->slice[slice_num].ctr = c;
}
/** \brief Advance PWM count
* \ingroup hardware_pwm
*
* Advance the phase of a running the counter by 1 count.
*
* This function will return once the increment is complete.
*
* \param slice_num PWM slice number
*/
static inline void pwm_advance_count(uint slice_num) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
hw_set_bits(&pwm_hw->slice[slice_num].csr, PWM_CH0_CSR_PH_ADV_BITS);
while (pwm_hw->slice[slice_num].csr & PWM_CH0_CSR_PH_ADV_BITS) {
tight_loop_contents();
}
}
/** \brief Retard PWM count
* \ingroup hardware_pwm
*
* Retard the phase of a running counter by 1 count
*
* This function will return once the retardation is complete.
*
* \param slice_num PWM slice number
*/
static inline void pwm_retard_count(uint slice_num) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
hw_set_bits(&pwm_hw->slice[slice_num].csr, PWM_CH0_CSR_PH_RET_BITS);
while (pwm_hw->slice[slice_num].csr & PWM_CH0_CSR_PH_RET_BITS) {
tight_loop_contents();
}
}
/** \brief Set PWM clock divider using an 8:4 fractional value
* \ingroup hardware_pwm
*
* Set the clock divider. Counter increment will be on sysclock divided by this value, taking in to account the gating.
*
* \param slice_num PWM slice number
* \param integer 8 bit integer part of the clock divider
* \param fract 4 bit fractional part of the clock divider
*/
static inline void pwm_set_clkdiv_int_frac(uint slice_num, uint8_t integer, uint8_t fract) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
valid_params_if(PWM, fract >= 0 && slice_num <= 16);
pwm_hw->slice[slice_num].div = (integer << PWM_CH0_DIV_INT_LSB) | (fract << PWM_CH0_DIV_FRAC_LSB);
}
/** \brief Set PWM clock divider
* \ingroup hardware_pwm
*
* Set the clock divider. Counter increment will be on sysclock divided by this value, taking in to account the gating.
*
* \param slice_num PWM slice number
* \param divider Floating point clock divider, 1.f <= value < 256.f
*/
static inline void pwm_set_clkdiv(uint slice_num, float divider) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
valid_params_if(PWM, divider >= 1.f && divider < 256.f);
uint8_t i = (uint8_t)divider;
uint8_t f = (uint8_t)((divider - i) * (0x01 << 4));
pwm_set_clkdiv_int_frac(slice_num, i, f);
}
/** \brief Set PWM output polarity
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
* \param a true to invert output A
* \param b true to invert output B
*/
static inline void pwm_set_output_polarity(uint slice_num, bool a, bool b) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
hw_write_masked(&pwm_hw->slice[slice_num].csr, !!a << PWM_CH0_CSR_A_INV_LSB | !!b << PWM_CH0_CSR_B_INV_LSB,
PWM_CH0_CSR_A_INV_BITS | PWM_CH0_CSR_B_INV_BITS);
}
/** \brief Set PWM divider mode
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
* \param mode Required divider mode
*/
static inline void pwm_set_clkdiv_mode(uint slice_num, enum pwm_clkdiv_mode mode) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
valid_params_if(PWM, mode >= PWM_DIV_FREE_RUNNING && mode <= PWM_DIV_B_FALLING);
hw_write_masked(&pwm_hw->slice[slice_num].csr, mode << PWM_CH0_CSR_DIVMODE_LSB, PWM_CH0_CSR_DIVMODE_BITS);
}
/** \brief Set PWM phase correct on/off
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
* \param phase_correct true to set phase correct modulation, false to set trailing edge
*
* Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached,
* the PWM starts counting back down. The output frequency is halved when phase-correct mode is enabled.
*/
static inline void pwm_set_phase_correct(uint slice_num, bool phase_correct) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
hw_write_masked(&pwm_hw->slice[slice_num].csr, phase_correct << PWM_CH0_CSR_PH_CORRECT_LSB, PWM_CH0_CSR_PH_CORRECT_BITS);
}
/** \brief Enable/Disable PWM
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
* \param enabled true to enable the specified PWM, false to disable
*/
static inline void pwm_set_enabled(uint slice_num, bool enabled) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
hw_write_masked(&pwm_hw->slice[slice_num].csr, !!enabled << PWM_CH0_CSR_EN_LSB, PWM_CH0_CSR_EN_BITS);
}
/** \brief Enable/Disable multiple PWM slices simultaneously
* \ingroup hardware_pwm
*
* \param mask Bitmap of PWMs to enable/disable. Bits 0 to 7 enable slices 0-7 respectively
*/
static inline void pwm_set_mask_enabled(uint32_t mask) {
pwm_hw->en = mask;
}
/*! \brief Enable PWM instance interrupt
* \ingroup hardware_pwm
*
* Used to enable a single PWM instance interrupt
*
* \param slice_num PWM block to enable/disable
* \param enabled true to enable, false to disable
*/
static inline void pwm_set_irq_enabled(uint slice_num, bool enabled) {
valid_params_if(PWM, slice_num >= 0 && slice_num < NUM_PWM_SLICES);
if (enabled) {
hw_set_bits(&pwm_hw->inte, 1u << slice_num);
} else {
hw_clear_bits(&pwm_hw->inte, 1u << slice_num);
}
}
/*! \brief Enable multiple PWM instance interrupts
* \ingroup hardware_pwm
*
* Use this to enable multiple PWM interrupts at once.
*
* \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
* \param enabled true to enable, false to disable
*/
static inline void pwm_set_irq_mask_enabled(uint32_t slice_mask, bool enabled) {
valid_params_if(PWM, slice_mask < 256);
if (enabled) {
hw_set_bits(&pwm_hw->inte, slice_mask);
} else {
hw_clear_bits(&pwm_hw->inte, slice_mask);
}
}
/*! \brief Clear single PWM channel interrupt
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
*/
static inline void pwm_clear_irq(uint slice_num) {
pwm_hw->intr = 1u << slice_num;
}
/*! \brief Get PWM interrupt status, raw
* \ingroup hardware_pwm
*
* \return Bitmask of all PWM interrupts currently set
*/
static inline int32_t pwm_get_irq_status_mask() {
return pwm_hw->ints;
}
/*! \brief Force PWM interrupt
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
*/
static inline void pwm_force_irq(uint slice_num) {
pwm_hw->intf = 1u << slice_num;
}
#ifdef __cplusplus
}
#endif
#endif