blob: 12eae38995953895ef44ac90f439919f45c5a072 [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "hardware/regs/sio.h"
#include "hardware/regs/addressmap.h"
.syntax unified
.cpu cortex-m0plus
.thumb
#include "pico/asm_helper.S"
#ifndef PICO_DIVIDER_CALL_IDIV0
#define PICO_DIVIDER_CALL_IDIV0 1
#endif
#ifndef PICO_DIVIDER_CALL_LDIV0
#define PICO_DIVIDER_CALL_LDIV0 1
#endif
.macro div_section name
#if PICO_DIVIDER_IN_RAM
.section RAM_SECTION_NAME(\name), "ax"
#else
.section SECTION_NAME(\name), "ax"
#endif
.endm
#if SIO_DIV_CSR_READY_LSB == 0
.equ SIO_DIV_CSR_READY_SHIFT_FOR_CARRY, 1
#else
need to change SHIFT above
#endif
#if SIO_DIV_CSR_DIRTY_LSB == 1
.equ SIO_DIV_CSR_DIRTY_SHIFT_FOR_CARRY, 2
#else
need to change SHIFT above
#endif
@ wait 8-n cycles for the hardware divider
.macro wait_div n
.rept (8-\n) / 2
b 9f
9:
.endr
.if (8-\n) % 2
nop
.endif
.endm
#if (SIO_DIV_SDIVISOR_OFFSET != SIO_DIV_SDIVIDEND_OFFSET + 4) || (SIO_DIV_QUOTIENT_OFFSET != SIO_DIV_SDIVISOR_OFFSET + 4) || (SIO_DIV_REMAINDER_OFFSET != SIO_DIV_QUOTIENT_OFFSET + 4)
#error register layout has changed - we rely on this order to make sure we save/restore in the right order
#endif
# SIO_BASE ptr in r2
.macro save_div_state_and_lr
ldr r3, [r2, #SIO_DIV_CSR_OFFSET]
# wait for results as we can't save signed-ness of operation
1:
lsrs r3, #SIO_DIV_CSR_READY_SHIFT_FOR_CARRY
bcc 1b
push {r4, r5, r6, r7, lr}
// note we must read quotient last, and since it isn't the last reg, we'll not use ldmia!
ldr r4, [r2, #SIO_DIV_SDIVIDEND_OFFSET]
ldr r5, [r2, #SIO_DIV_SDIVISOR_OFFSET]
ldr r7, [r2, #SIO_DIV_REMAINDER_OFFSET]
ldr r6, [r2, #SIO_DIV_QUOTIENT_OFFSET]
.endm
.macro restore_div_state_and_return
// writing sdividend (r4), sdivisor (r5), quotient (r6), remainder (r7) in that order
//
// it is worth considering what happens if we are interrupted
//
// after writing r4: we are DIRTY and !READY
// ... interruptor using div will complete based on incorrect inputs, but dividend at least will be
// saved/restored correctly and we'll restore the rest ourselves
// after writing r4, r5: we are DIRTY and !READY
// ... interruptor using div will complete based on possibly wrongly signed inputs, but dividend, divisor
// at least will be saved/restored correctly and and we'll restore the rest ourselves
// after writing r4, r5, r6: we are DIRTY and READY
// ... interruptor using div will dividend, divisor, quotient registers as is (what we just restored ourselves),
// and we'll restore the remainder after the fact
// note we are not use STM not because it can be restarted due to interrupt which is harmless, more because this is 1 cycle IO space
// and so 4 reads is cheaper (and we don't have to adjust r2)
str r4, [r2, #SIO_DIV_SDIVIDEND_OFFSET]
str r5, [r2, #SIO_DIV_SDIVISOR_OFFSET]
str r7, [r2, #SIO_DIV_REMAINDER_OFFSET]
str r6, [r2, #SIO_DIV_QUOTIENT_OFFSET]
pop {r4, r5, r6, r7, pc}
.endm
.macro save_div_state_and_lr_64
push {r4, r5, r6, r7, lr}
ldr r6, =SIO_BASE
1:
ldr r5, [r6, #SIO_DIV_CSR_OFFSET]
# wait for results as we can't save signed-ness of operation
lsrs r5, #SIO_DIV_CSR_READY_SHIFT_FOR_CARRY
bcc 1b
// note we must read quotient last, and since it isn't the last reg, we'll not use ldmia!
ldr r4, [r6, #SIO_DIV_UDIVIDEND_OFFSET]
ldr r5, [r6, #SIO_DIV_UDIVISOR_OFFSET]
ldr r7, [r6, #SIO_DIV_REMAINDER_OFFSET]
ldr r6, [r6, #SIO_DIV_QUOTIENT_OFFSET]
.endm
.macro restore_div_state_and_return_64
// writing sdividend (r4), sdivisor (r5), quotient (r6), remainder (r7) in that order
//
// it is worth considering what happens if we are interrupted
//
// after writing r4: we are DIRTY and !READY
// ... interruptor using div will complete based on incorrect inputs, but dividend at least will be
// saved/restored correctly and we'll restore the rest ourselves
// after writing r4, r5: we are DIRTY and !READY
// ... interruptor using div will complete based on possibly wrongly signed inputs, but dividend, divisor
// at least will be saved/restored correctly and and we'll restore the rest ourselves
// after writing r4, r5, r6: we are DIRTY and READY
// ... interruptor using div will dividend, divisor, quotient registers as is (what we just restored ourselves),
// and we'll restore the remainder after the fact
mov ip, r2
ldr r2, =SIO_BASE
// note we are not use STM not because it can be restarted due to interrupt which is harmless, more because this is 1 cycle IO space
// and so 4 reads is cheaper (and we don't have to adjust r2)
str r4, [r2, #SIO_DIV_UDIVIDEND_OFFSET]
str r5, [r2, #SIO_DIV_UDIVISOR_OFFSET]
str r7, [r2, #SIO_DIV_REMAINDER_OFFSET]
str r6, [r2, #SIO_DIV_QUOTIENT_OFFSET]
mov r2, ip
pop {r4, r5, r6, r7, pc}
.endm
// since idiv and idivmod only differ by a cycle, we'll make them the same!
div_section WRAPPER_FUNC_NAME(__aeabi_idiv)
.align 2
wrapper_func __aeabi_idiv
wrapper_func __aeabi_idivmod
regular_func div_s32s32
regular_func divmod_s32s32
ldr r2, =(SIO_BASE)
# to support IRQ usage we must save/restore
ldr r3, [r2, #SIO_DIV_CSR_OFFSET]
lsrs r3, #SIO_DIV_CSR_DIRTY_SHIFT_FOR_CARRY
bcs divmod_s32s32_savestate
regular_func divmod_s32s32_unsafe
str r0, [r2, #SIO_DIV_SDIVIDEND_OFFSET]
str r1, [r2, #SIO_DIV_SDIVISOR_OFFSET]
cmp r1, #0
beq 1f
wait_div 2
// return 64 bit value so we can efficiently return both (note read order is important since QUOTIENT must be read last)
ldr r1, [r2, #SIO_DIV_REMAINDER_OFFSET]
ldr r0, [r2, #SIO_DIV_QUOTIENT_OFFSET]
bx lr
1:
push {r2, lr}
movs r1, #0x80
lsls r1, #24
asrs r2, r0, #31
eors r1, r2
cmp r0, #0
beq 1f
mvns r0, r1
1:
#if PICO_DIVIDER_CALL_IDIV0
bl __aeabi_idiv0
#endif
movs r1, #0 // remainder 0
// need to restore saved r2 as it hold SIO ptr
pop {r2, pc}
.align 2
regular_func divmod_s32s32_savestate
save_div_state_and_lr
bl divmod_s32s32_unsafe
restore_div_state_and_return
// since uidiv and uidivmod only differ by a cycle, we'll make them the same!
div_section WRAPPER_FUNC_NAME(__aeabi_uidiv)
regular_func div_u32u32
regular_func divmod_u32u32
wrapper_func __aeabi_uidiv
wrapper_func __aeabi_uidivmod
ldr r2, =(SIO_BASE)
# to support IRQ usage we must save/restore
ldr r3, [r2, #SIO_DIV_CSR_OFFSET]
lsrs r3, #SIO_DIV_CSR_DIRTY_SHIFT_FOR_CARRY
bcs divmod_u32u32_savestate
regular_func divmod_u32u32_unsafe
str r0, [r2, #SIO_DIV_UDIVIDEND_OFFSET]
str r1, [r2, #SIO_DIV_UDIVISOR_OFFSET]
cmp r1, #0
beq 1f
wait_div 2
// return 64 bit value so we can efficiently return both (note read order is important since QUOTIENT must be read last)
ldr r1, [r2, #SIO_DIV_REMAINDER_OFFSET]
ldr r0, [r2, #SIO_DIV_QUOTIENT_OFFSET]
bx lr
1:
push {r2, lr}
cmp r0, #0
beq 1f
movs r0, #0
mvns r0, r0
1:
#if PICO_DIVIDER_CALL_IDIV0
bl __aeabi_idiv0
#endif
movs r1, #0 // remainder 0
// need to restore saved r2 as it hold SIO ptr
pop {r2, pc}
.align 2
regular_func divmod_u32u32_savestate
save_div_state_and_lr
bl divmod_u32u32_unsafe
restore_div_state_and_return
div_section WRAPPER_FUNC_NAME(__aeabi_ldiv)
.align 2
wrapper_func __aeabi_ldivmod
regular_func div_s64s64
regular_func divmod_s64s64
mov ip, r2
ldr r2, =(SIO_BASE)
# to support IRQ usage we must save/restore
ldr r2, [r2, #SIO_DIV_CSR_OFFSET]
lsrs r2, #SIO_DIV_CSR_DIRTY_SHIFT_FOR_CARRY
mov r2, ip
bcs divmod_s64s64_savestate
b divmod_s64s64_unsafe
.align 2
divmod_s64s64_savestate:
save_div_state_and_lr_64
bl divmod_s64s64_unsafe
restore_div_state_and_return_64
.align 2
wrapper_func __aeabi_uldivmod
regular_func div_u64u64
regular_func divmod_u64u64
mov ip, r2
ldr r2, =(SIO_BASE)
# to support IRQ usage we must save/restore
ldr r2, [r2, #SIO_DIV_CSR_OFFSET]
lsrs r2, #SIO_DIV_CSR_DIRTY_SHIFT_FOR_CARRY
mov r2, ip
bcs divmod_u64u64_savestate
b divmod_u64u64_unsafe
.align 2
regular_func divmod_u64u64_savestate
save_div_state_and_lr_64
bl divmod_u64u64_unsafe
restore_div_state_and_return_64
.macro dneg lo,hi
mvns \hi,\hi
rsbs \lo,#0
bne l\@_1
adds \hi,#1
l\@_1:
.endm
.align 2
regular_func divmod_s64s64_unsafe
cmp r3,#0
blt 1f
@ here x +ve
beq 2f @ could x be zero?
3:
cmp r1,#0
bge divmod_u64u64_unsafe @ both positive
@ y -ve, x +ve
push {r14}
dneg r0,r1
bl divmod_u64u64_unsafe
dneg r0,r1
dneg r2,r3
pop {r15}
2:
cmp r2,#0
bne 3b @ back if x not zero
cmp r0,#0 @ y==0?
bne 4f
cmp r1,#0
beq 5f @ then pass 0 to __aeabi_ldiv0
4:
movs r0,#0
lsrs r1,#31
lsls r1,#31 @ get sign bit
bne 5f @ y -ve? pass -2^63 to __aeabi_ldiv0
mvns r0,r0
lsrs r1,r0,#1 @ y +ve: pass 2^63-1 to __aeabi_ldiv0
5:
push {r14}
#if PICO_DIVIDER_CALL_LDIV0
bl __aeabi_ldiv0
#endif
movs r2,#0 @ and return 0 for the remainder
movs r3,#0
pop {r15}
1:
@ here x -ve
push {r14}
cmp r1,#0
blt 1f
@ y +ve, x -ve
dneg r2,r3
bl divmod_u64u64_unsafe
dneg r0,r1
pop {r15}
1:
@ y -ve, x -ve
dneg r0,r1
dneg r2,r3
bl divmod_u64u64_unsafe
dneg r2,r3
pop {r15}
regular_func divmod_u64u64_unsafe
cmp r1,#0
bne y64 @ y fits in 32 bits?
cmp r3,#0 @ yes; and x?
bne 1f
cmp r2,#0
beq 2f @ x==0?
mov r12,r7
ldr r7,=#SIO_BASE
str r0,[r7,#SIO_DIV_UDIVIDEND_OFFSET]
str r2,[r7,#SIO_DIV_UDIVISOR_OFFSET]
movs r1,#0
movs r3,#0
wait_div 2
ldr r2,[r7,#SIO_DIV_REMAINDER_OFFSET]
ldr r0,[r7,#SIO_DIV_QUOTIENT_OFFSET]
mov r7,r12
bx r14
2: @ divide by 0 with y<2^32
cmp r0,#0 @ y==0?
beq 3f @ then pass 0 to __aeabi_ldiv0
udiv0:
ldr r0,=#0xffffffff
movs r1,r0 @ pass 2^64-1 to __aeabi_ldiv0
3:
push {r14}
#if PICO_DIVIDER_CALL_LDIV0
bl __aeabi_ldiv0
#endif
movs r2,#0 @ and return 0 for the remainder
movs r3,#0
pop {r15}
1:
movs r2,r0 @ x>y, so result is 0 remainder y
movs r3,r1
movs r0,#0
movs r1,#0
bx r14
.ltorg
@ here y occupies more than 32 bits
@ split into cases acccording to the size of x
y64:
cmp r3,#0
beq 1f
b y64_x48 @ if x does not fit in 32 bits, go to 48- and 64-bit cases
1:
lsrs r3,r2,#16
bne y64_x32 @ jump if x is 17..32 bits
@ here x is at most 16 bits
cmp r2,#0
beq udiv0 @ x==0? exit as with y!=0 case above
push {r7}
ldr r7,=#SIO_BASE
str r1,[r7,#SIO_DIV_UDIVIDEND_OFFSET]
str r2,[r7,#SIO_DIV_UDIVISOR_OFFSET]
wait_div 4
push {r4, r5}
lsrs r4,r0,#16
ldr r3,[r7,#SIO_DIV_REMAINDER_OFFSET] @ r0=y0-q0*x; 0<=r0<x
ldr r1,[r7,#SIO_DIV_QUOTIENT_OFFSET] @ q0=y0/x;
lsls r3,#16
orrs r3,r4
str r3,[r7,#SIO_DIV_UDIVIDEND_OFFSET] @ y1=(r0<<16)+(((ui32)y)>>16);
wait_div 1
uxth r4,r0
ldr r3,[r7,#SIO_DIV_REMAINDER_OFFSET] @ r1=y1-q1*x; 0<=r1<x
ldr r5,[r7,#SIO_DIV_QUOTIENT_OFFSET] @ q1=y1/x;
lsls r3,#16
orrs r3,r4
str r3,[r7,#SIO_DIV_UDIVIDEND_OFFSET] @ y1=(r0<<16)+(((ui32)y)>>16);
wait_div 3
movs r3,#0
lsls r4,r5,#16 @ quotient=(q0<<32)+(q1<<16)+q2
lsrs r5,#16
ldr r2,[r7,#SIO_DIV_REMAINDER_OFFSET] @ r2=y2-q2*x; 0<=r2<x
ldr r0,[r7,#SIO_DIV_QUOTIENT_OFFSET] @ q2=y2/x;
adds r0,r4
adcs r1,r5
pop {r4,r5,r7}
bx r14
.ltorg
y64_x32:
@ here x is 17..32 bits
push {r4-r7,r14}
mov r12,r2 @ save x
movs r5,#0 @ xsh=0
lsrs r4,r2,#24
bne 1f
lsls r2,#8 @ if(x0<1U<<24) x0<<=8,xsh =8;
adds r5,#8
1:
lsrs r4,r2,#28
bne 1f
lsls r2,#4 @ if(x0<1U<<28) x0<<=4,xsh+=4;
adds r5,#4
1:
lsrs r4,r2,#30
bne 1f
lsls r2,#2 @ if(x0<1U<<30) x0<<=2,xsh+=2;
adds r5,#2
1:
lsrs r4,r2,#31
bne 1f
lsls r2,#1 @ if(x0<1U<<31) x0<<=1,xsh+=1;
adds r5,#1
1:
@ now 2^31<=x0<2^32, 0<=xsh<16 (amount x is shifted in x0); number of quotient bits to be calculated qb=xsh+33 33<=qb<49
lsrs r4,r2,#15
adds r4,#1 @ x1=(x0>>15)+1; 2^16<x1<=2^17
ldr r7,=#SIO_BASE
str r4,[r7,#SIO_DIV_UDIVISOR_OFFSET]
ldr r4,=#0xffffffff
str r4,[r7,#SIO_DIV_UDIVIDEND_OFFSET]
lsrs r6,r1,#16
uxth r3,r2 @ x0l
wait_div 2
ldr r4,[r7,#SIO_DIV_QUOTIENT_OFFSET] @ r=0xffffffffU/x1; 2^15<=r<2^16 r is a normalised reciprocal of x, guaranteed not an overestimate
@ here
@ r0:r1 y
@ r2 x0
@ r4 r
@ r5 xsh
@ r12 x
muls r6,r4
lsrs r6,#16 @ q=((ui32)(y>>48)*r)>>16;
lsls r7,r6,#13
mov r14,r7 @ quh=q0<<13
muls r3,r6 @ x0l*q
lsrs r7,r3,#15
lsls r3,#17 @ r3:r7 is (x0l*q)<<17
subs r0,r3
sbcs r1,r7 @ y-=(x0l*q)<<17
lsrs r3,r2,#16 @ x0h
muls r3,r6 @ q*x0h
adds r3,r3
subs r1,r3 @ y-=(x0h*q)<<17
lsrs r6,r1,#3
muls r6,r4
lsrs r6,#16 @ q=((ui32)(y>>35)*r)>>16;
add r14,r6 @ quh+=q1
uxth r3,r2 @ x0l
muls r3,r6 @ x0l*q
lsrs r7,r3,#28
lsls r3,#4 @ r3:r7 is (x0l*q)<<4
subs r0,r3
sbcs r1,r7 @ y-=(x0l*q)<<4
lsrs r3,r2,#16 @ x0h
muls r3,r6 @ x0h*q
lsrs r7,r3,#12
lsls r3,#20 @ r3:r7 is (x0h*q)<<4
subs r0,r3
sbcs r1,r7 @ y-=(x0h*q)<<4
lsrs r6,r0,#22
lsls r7,r1,#10
orrs r6,r7 @ y>>22
muls r6,r4
lsrs r6,#16 @ q=((ui32)(y>>22)*r)>>16;
cmp r5,#9
blt last0 @ if(xsh<9) goto last0;
@ on this path xsh>=9, which means x<2^23
lsrs r2,#9 @ x0>>9: this shift loses no bits
@ the remainder y-x0*q is guaranteed less than a very small multiple of the remaining quotient
@ bits (at most 6 bits) times x, and so fits in one word
muls r2,r6 @ x0*q
subs r0,r2 @ y-x0*q
lsls r7,r6,#13 @ qul=q<<13
1:
lsrs r6,r0,#9
muls r6,r4
lsrs r6,#16 @ q=((ui32)(y>>9)*r)>>16;
@ here
@ r0 y
@ r2 x0>>9
@ r5 xsh
@ r6 q
@ r7 qul
@ r12 x
@ r14 quh
movs r3,#22
subs r3,r5 @ 22-xsh
lsrs r6,r3 @ q>>=22-xsh
lsrs r7,r3 @ qul>>=22-xsh
adds r7,r6 @ qul+=q
mov r4,r12
muls r6,r4 @ x*q
subs r2,r0,r6 @ y-=x*q
mov r0,r14 @ quh
adds r5,#4 @ xsh+4
adds r3,#6 @ 28-xsh
movs r1,r0
lsrs r1,r3
lsls r0,r5 @ r0:r1 is quh<<(4+xsh)
adds r0,r7
bcc 1f
2:
adds r1,#1
1: @ qu=((ui64)quh<<(4+xsh))+qul
cmp r2,r4
bhs 3f
movs r3,#0
pop {r4-r7,r15}
.ltorg
3:
subs r2,r4
adds r0,#1
bcc 1b
b 2b @ while(y>=x) y-=x,qu++;
@ here:
@ r0:r1 y
@ r2 x0
@ r4 r
@ r5 xsh; xsh<9
@ r6 q
last0:
movs r7,#9
subs r7,r5 @ 9-xsh
lsrs r6,r7
mov r4,r12 @ x
uxth r2,r4
muls r2,r6 @ q*xlo
subs r0,r2
bcs 1f
subs r1,#1 @ y-=q*xlo
1:
lsrs r2,r4,#16 @ xhi
muls r2,r6 @ q*xhi
lsrs r3,r2,#16
lsls r2,#16
subs r2,r0,r2
sbcs r1,r3 @ y-q*xhi
movs r3,r1 @ y now in r2:r3
mov r0,r14 @ quh
adds r5,#4 @ xsh+4
adds r7,#19 @ 28-xsh
movs r1,r0
lsrs r1,r7
lsls r0,r5 @ r0:r1 is quh<<(4+xsh)
adds r0,r6
bcc 1f
adds r1,#1 @ quh<<(xsh+4))+q
1:
cmp r3,#0 @ y>=2^32?
bne 3f
cmp r2,r4 @ y>=x?
bhs 4f
pop {r4-r7,r15}
3:
adds r0,#1 @ qu++
bcc 2f
adds r1,#1
2:
subs r2,r4 @ y-=x
bcs 3b
subs r3,#1
bne 3b
1:
cmp r2,r4
bhs 4f
pop {r4-r7,r15}
4:
adds r0,#1 @ qu++
bcc 2f
adds r1,#1
2:
subs r2,r4 @ y-=x
b 1b
y64_x48:
@ here x is 33..64 bits
push {r4-r7,r14} @ save a copy of x
lsrs r4,r3,#16
beq 1f
b y64_x64 @ jump if x is 49..64 bits
1:
push {r2-r3} @ save a copy of x
@ here x is 33..48 bits
movs r5,#0 @ xsh=0
lsrs r4,r3,#8
bne 1f
lsls r3,#8
lsrs r6,r2,#24
orrs r3,r6
lsls r2,#8 @ if(x0<1U<<40) x0<<=8,xsh =8;
adds r5,#8
1:
lsrs r4,r3,#12
bne 1f
lsls r3,#4
lsrs r6,r2,#28
orrs r3,r6
lsls r2,#4 @ if(x0<1U<<44) x0<<=4,xsh+=4;
adds r5,#4
1:
lsrs r4,r3,#14
bne 1f
lsls r3,#2
lsrs r6,r2,#30
orrs r3,r6
lsls r2,#2 @ if(x0<1U<<46) x0<<=2,xsh+=2;
adds r5,#2
1:
lsrs r4,r3,#15
bne 1f
adds r2,r2
adcs r3,r3 @ if(x0<1U<<47) x0<<=1,xsh+=1;
adds r5,#1
1:
@ now 2^47<=x0<2^48, 0<=xsh<16 (amount x is shifted in x0); number of quotient bits to be calculated qb=xsh+17 17<=qb<33
movs r4,r3
adds r7,r2,r2
adcs r4,r4
adds r4,#1 @ x1=(ui32)(x0>>31)+1; // 2^16<x1<=2^17
ldr r7,=#SIO_BASE
str r4,[r7,#SIO_DIV_UDIVISOR_OFFSET]
ldr r4,=#0xffffffff
str r4,[r7,#SIO_DIV_UDIVIDEND_OFFSET]
lsrs r6,r1,#16
wait_div 1
ldr r4,[r7,#SIO_DIV_QUOTIENT_OFFSET] @ r=0xffffffffU/x1; 2^15<=r<2^16 r is a normalised reciprocal of x, guaranteed not an overestimate
@ here
@ r0:r1 y
@ r2:r3 x0
@ r4 r
@ r5 xsh 0<=xsh<16
muls r6,r4
lsrs r6,#16 @ q=((ui32)(y>>48)*r)>>16;
lsls r7,r6,#13
mov r14,r7 @ save q<<13
uxth r7,r2 @ x0l
muls r7,r6
subs r0,r7
bcs 1f
subs r1,#1
1:
subs r0,r7
bcs 1f
subs r1,#1
1:
uxth r7,r3 @ x0h
muls r7,r6
subs r1,r7
subs r1,r7
lsrs r7,r2,#16 @ x0m
muls r7,r6
lsls r6,r7,#17
lsrs r7,#15
subs r0,r6
sbcs r1,r7 @ y-=((ui64)q*x0)<<1;
lsrs r6,r1,#3 @ y>>35
muls r6,r4
lsrs r6,#16 @ q=((ui32)(y>>35)*r)>>16;
cmp r5,#12
blt last1 @ if(xsh<12) goto last1;
add r14,r6 @ qu<<13+q
lsrs r2,#12
lsls r7,r3,#20
orrs r2,r7
lsrs r3,#12 @ x0>>12
uxth r7,r2 @ x0l
muls r7,r6
subs r0,r7
bcs 1f
subs r1,#1
1:
uxth r7,r3 @ x0h
muls r7,r6
subs r1,r7
lsrs r7,r2,#16 @ x0m
muls r7,r6
lsls r6,r7,#16
lsrs r7,#16
subs r0,r6
sbcs r1,r7 @ y-=((ui64)q*x0)>>12
lsrs r6,r0,#22
lsls r7,r1,#10
orrs r6,r7 @ y>>22
muls r6,r4
movs r7,#41
subs r7,r5
lsrs r6,r7 @ q=((ui32)(y>>22)*r)>>(16+25-xsh)
subs r5,#12
mov r7,r14
lsls r7,r5
2:
adds r7,r6 @ qu=(qu<<(xsh-12))+q
pop {r4,r5} @ recall x
@ here
@ r0:r1 y
@ r4:r5 x
@ r6 q
@ r7 qu
uxth r2,r4
uxth r3,r5
muls r2,r6 @ xlo*q
muls r3,r6 @ xhi*q
subs r0,r2
sbcs r1,r3
lsrs r2,r4,#16
muls r2,r6
lsrs r3,r2,#16
lsls r2,#16 @ xm*q
subs r0,r2
sbcs r1,r3 @ y-=(ui64)q*x
1:
movs r2,r0
movs r3,r1
adds r7,#1
subs r0,r4
sbcs r1,r5 @ while(y>=x) y-=x,qu++;
bhs 1b
subs r0,r7,#1 @ correction to qu
movs r1,#0
pop {r4-r7,r15}
last1:
@ r0:r1 y
@ r2:r3 x0
@ r5 xsh
@ r6 q
movs r7,#12
subs r7,r5
lsrs r6,r7 @ q>>=12-xsh
mov r7,r14
lsrs r7,#13
lsls r7,r5
adds r7,r7 @ qu<<(xsh+1)
b 2b
y64_x64:
@ here x is 49..64 bits
movs r4,#0 @ q=0 if x>>32==0xffffffff
adds r5,r3,#1
beq 1f
ldr r7,=#SIO_BASE
str r5,[r7,#SIO_DIV_UDIVISOR_OFFSET]
str r1,[r7,#SIO_DIV_UDIVIDEND_OFFSET]
wait_div 0
ldr r4,[r7,#SIO_DIV_QUOTIENT_OFFSET] @ q=(ui32)(y>>32)/((x>>32)+1)
1:
uxth r5,r2
uxth r6,r3
muls r5,r4
muls r6,r4
subs r0,r5
sbcs r1,r6
lsrs r5,r2,#16
lsrs r6,r3,#16
muls r5,r4
muls r6,r4
lsls r6,#16
lsrs r7,r5,#16
orrs r6,r7
lsls r5,#16
subs r0,r5
sbcs r1,r6 @ y-=(ui64)q*x
cmp r1,r3 @ while(y>=x) y-=x,q++
bhs 1f
3:
movs r2,r0
movs r3,r1
movs r0,r4
movs r1,#0
pop {r4-r7,r15}
1:
bne 2f
cmp r0,r2
blo 3b
2:
subs r0,r2
sbcs r1,r3
adds r4,#1
cmp r1,r3
blo 3b
b 1b
div_section divmod_s64s64_rem
regular_func divmod_s64s64_rem
push {r4, lr}
bl divmod_s64s64
ldr r4, [sp, #8]
stmia r4!, {r2,r3}
pop {r4, pc}
div_section divmod_u64u64_rem
regular_func divmod_u64u64_rem
push {r4, lr}
bl divmod_u64u64
ldr r4, [sp, #8]
stmia r4!, {r2,r3}
pop {r4, pc}