blob: 63ce372209e1531ada151523eeae5c0934009c4d [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <cstdio>
#include <map>
#include <set>
#include <vector>
#include <cstring>
#include <cstdarg>
#include <algorithm>
#include <cstring>
#include <memory>
#include "elf2uf2.h"
#include "errors.h"
#define FLASH_SECTOR_ERASE_SIZE 4096u
static bool verbose;
static void fail_read_error() {
fail(ERROR_READ_FAILED, "Failed to read input file");
}
static void fail_write_error() {
fail(ERROR_WRITE_FAILED, "Failed to write output file");
}
struct page_fragment {
page_fragment(uint32_t file_offset, uint32_t page_offset, uint32_t bytes) : file_offset(file_offset), page_offset(page_offset), bytes(bytes) {}
uint32_t file_offset;
uint32_t page_offset;
uint32_t bytes;
};
int check_address_range(const address_ranges& valid_ranges, uint32_t addr, uint32_t vaddr, uint32_t size, bool uninitialized, address_range &ar) {
for(const auto& range : valid_ranges) {
if (range.from <= addr && range.to >= addr + size) {
if (range.type == address_range::type::NO_CONTENTS && !uninitialized) {
fail(ERROR_INCOMPATIBLE, "ELF contains memory contents for uninitialized memory at %p", addr);
}
ar = range;
if (verbose) {
printf("%s segment %08x->%08x (%08x->%08x)\n", uninitialized ? "Uninitialized" : "Mapped", addr,
addr + size, vaddr, vaddr+size);
}
return 0;
}
}
fail(ERROR_INCOMPATIBLE, "Memory segment %08x->%08x is outside of valid address range for device", addr, addr+size);
return ERROR_INCOMPATIBLE;
}
int check_elf32_ph_entries(const std::vector<elf32_ph_entry>& entries, const address_ranges& valid_ranges, std::map<uint32_t, std::vector<page_fragment>>& pages) {
for(const auto & entry : entries) {
if (entry.type == PT_LOAD && entry.memsz) {
address_range ar;
int rc;
unsigned int mapped_size = std::min(entry.filez, entry.memsz);
if (mapped_size) {
rc = check_address_range(valid_ranges, entry.paddr, entry.vaddr, mapped_size, false, ar);
if (rc) return rc;
// we don't download uninitialized, generally it is BSS and should be zero-ed by crt0.S, or it may be COPY areas which are undefined
if (ar.type != address_range::type::CONTENTS) {
if (verbose) printf(" ignored\n");
continue;
}
unsigned int addr = entry.paddr;
unsigned int remaining = mapped_size;
unsigned int file_offset = entry.offset;
while (remaining) {
unsigned int off = addr & (UF2_PAGE_SIZE - 1);
unsigned int len = std::min(remaining, UF2_PAGE_SIZE - off);
auto &fragments = pages[addr - off]; // list of fragments
// note if filesz is zero, we want zero init which is handled because the
// statement above creates an empty page fragment list
// check overlap with any existing fragments
for (const auto &fragment : fragments) {
if ((off < fragment.page_offset + fragment.bytes) !=
((off + len) <= fragment.page_offset)) {
fail(ERROR_FORMAT, "In memory segments overlap");
}
}
fragments.push_back(
page_fragment{file_offset,off,len});
addr += len;
file_offset += len;
remaining -= len;
}
}
if (entry.memsz > entry.filez) {
// we have some uninitialized data too
rc = check_address_range(valid_ranges, entry.paddr + entry.filez, entry.vaddr + entry.filez, entry.memsz - entry.filez, true,
ar);
if (rc) return rc;
}
}
}
return 0;
}
int realize_page(std::shared_ptr<std::iostream> in, const std::vector<page_fragment> &fragments, uint8_t *buf, unsigned int buf_len) {
assert(buf_len >= UF2_PAGE_SIZE);
for(auto& frag : fragments) {
assert(frag.page_offset < UF2_PAGE_SIZE && frag.page_offset + frag.bytes <= UF2_PAGE_SIZE);
in->seekg(frag.file_offset, in->beg);
if (in->fail()) {
fail_read_error();
}
in->read((char*)buf + frag.page_offset, frag.bytes);
if (in->fail()) {
fail_read_error();
}
}
return 0;
}
static bool is_address_mapped(const std::map<uint32_t, std::vector<page_fragment>>& pages, uint32_t addr) {
uint32_t page = addr & ~(UF2_PAGE_SIZE - 1);
if (!pages.count(page)) return false;
// todo check actual address within page
return true;
}
uf2_block gen_abs_block(uint32_t abs_block_loc) {
uf2_block block;
block.magic_start0 = UF2_MAGIC_START0;
block.magic_start1 = UF2_MAGIC_START1;
block.flags = UF2_FLAG_FAMILY_ID_PRESENT | UF2_FLAG_EXTENSION_FLAGS_PRESENT;
block.payload_size = UF2_PAGE_SIZE;
block.num_blocks = 2;
block.file_size = ABSOLUTE_FAMILY_ID;
block.magic_end = UF2_MAGIC_END;
block.target_addr = abs_block_loc;
block.block_no = 0;
memset(block.data, 0, sizeof(block.data));
memset(block.data, 0xef, UF2_PAGE_SIZE);
*(uint32_t*)&(block.data[UF2_PAGE_SIZE]) = UF2_EXTENSION_RP2_IGNORE_BLOCK;
return block;
}
bool check_abs_block(uf2_block block) {
return std::all_of(block.data, block.data + UF2_PAGE_SIZE, [](uint8_t i) { return i == 0xef; }) &&
block.magic_start0 == UF2_MAGIC_START0 &&
block.magic_start1 == UF2_MAGIC_START1 &&
(block.flags & ~UF2_FLAG_EXTENSION_FLAGS_PRESENT) == UF2_FLAG_FAMILY_ID_PRESENT &&
block.payload_size == UF2_PAGE_SIZE &&
block.num_blocks == 2 &&
block.file_size == ABSOLUTE_FAMILY_ID &&
block.magic_end == UF2_MAGIC_END &&
block.block_no == 0 &&
!(block.flags & UF2_FLAG_EXTENSION_FLAGS_PRESENT && *(uint32_t*)&(block.data[UF2_PAGE_SIZE]) != UF2_EXTENSION_RP2_IGNORE_BLOCK);
}
int pages2uf2(std::map<uint32_t, std::vector<page_fragment>>& pages, std::shared_ptr<std::iostream> in, std::shared_ptr<std::iostream> out, uint32_t family_id, uint32_t abs_block_loc=0) {
// RP2350-E10: add absolute block to start of flash UF2s, targeting end of flash by default
if (family_id != ABSOLUTE_FAMILY_ID && family_id != RP2040_FAMILY_ID && abs_block_loc) {
uint32_t base_addr = pages.begin()->first;
address_ranges flash_range = rp2350_address_ranges_flash;
if (is_address_initialized(flash_range, base_addr)) {
uf2_block block = gen_abs_block(abs_block_loc);
out->write((char*)&block, sizeof(uf2_block));
if (out->fail()) {
fail_write_error();
}
}
}
uf2_block block;
unsigned int page_num = 0;
block.magic_start0 = UF2_MAGIC_START0;
block.magic_start1 = UF2_MAGIC_START1;
block.flags = UF2_FLAG_FAMILY_ID_PRESENT;
block.payload_size = UF2_PAGE_SIZE;
block.num_blocks = (uint32_t)pages.size();
block.file_size = family_id;
block.magic_end = UF2_MAGIC_END;
for(auto& page_entry : pages) {
block.target_addr = page_entry.first;
block.block_no = page_num++;
if (verbose) {
printf("Page %d / %d %08x%s\n", block.block_no, block.num_blocks, block.target_addr,
page_entry.second.empty() ? " (padding)": "");
}
memset(block.data, 0, sizeof(block.data));
int rc = realize_page(in, page_entry.second, block.data, sizeof(block.data));
if (rc) return rc;
out->write((char*)&block, sizeof(uf2_block));
if (out->fail()) {
fail_write_error();
}
}
return 0;
}
int bin2uf2(std::shared_ptr<std::iostream> in, std::shared_ptr<std::iostream> out, uint32_t address, uint32_t family_id, uint32_t abs_block_loc) {
std::map<uint32_t, std::vector<page_fragment>> pages;
in->seekg(0, in->end);
if (in->fail()) {
fail_read_error();
}
int size = in->tellg();
if (size <= 0) {
fail_read_error();
}
unsigned int addr = address;
unsigned int remaining = size;
unsigned int file_offset = 0;
while (remaining) {
unsigned int off = addr & (UF2_PAGE_SIZE - 1);
unsigned int len = std::min(remaining, UF2_PAGE_SIZE - off);
auto &fragments = pages[addr - off]; // list of fragments
// note if filesz is zero, we want zero init which is handled because the
// statement above creates an empty page fragment list
// check overlap with any existing fragments
for (const auto &fragment : fragments) {
if ((off < fragment.page_offset + fragment.bytes) !=
((off + len) <= fragment.page_offset)) {
fail(ERROR_FORMAT, "In memory segments overlap");
}
}
fragments.push_back(
page_fragment{file_offset,off,len});
addr += len;
file_offset += len;
remaining -= len;
}
return pages2uf2(pages, in, out, family_id, abs_block_loc);
}
int elf2uf2(std::shared_ptr<std::iostream> in, std::shared_ptr<std::iostream> out, uint32_t family_id, uint32_t package_addr, uint32_t abs_block_loc) {
elf_file elf;
std::map<uint32_t, std::vector<page_fragment>> pages;
int rc = elf.read_file(in);
bool ram_style = false;
address_ranges valid_ranges = {};
address_ranges flash_range; address_ranges ram_range;
if (family_id == RP2040_FAMILY_ID) {
flash_range = rp2040_address_ranges_flash;
ram_range = rp2040_address_ranges_ram;
} else {
flash_range = rp2350_address_ranges_flash;
ram_range = rp2350_address_ranges_ram;
}
if (!rc) {
rc = rp_determine_binary_type(elf.header(), elf.segments(), flash_range, ram_range, &ram_style);
if (!rc) {
if (verbose) {
if (ram_style) {
printf("Detected RAM binary\n");
} else {
printf("Detected FLASH binary\n");
}
}
valid_ranges = ram_style ? ram_range : flash_range;
rc = check_elf32_ph_entries(elf.segments(), valid_ranges, pages);
}
}
if (rc) return rc;
if (pages.empty()) {
fail(ERROR_INCOMPATIBLE, "The input file has no memory pages");
}
// No Thumb bit on RISC-V
elf32_header eh = elf.header();
uint32_t thumb_bit = eh.common.machine == EM_ARM ? 0x1u : 0x0u;
if (ram_style) {
uint32_t expected_ep_main_ram = UINT32_MAX;
uint32_t expected_ep_xip_sram = UINT32_MAX;
for(auto& page_entry : pages) {
if ( ((page_entry.first >= SRAM_START) && (page_entry.first < ram_range[0].to)) && (page_entry.first < expected_ep_main_ram) ) {
expected_ep_main_ram = page_entry.first | thumb_bit;
} else if ( ((page_entry.first >= ram_range[1].from) && (page_entry.first < ram_range[1].to)) && (page_entry.first < expected_ep_xip_sram) ) {
expected_ep_xip_sram = page_entry.first | thumb_bit;
}
}
uint32_t expected_ep = (UINT32_MAX != expected_ep_main_ram) ? expected_ep_main_ram : expected_ep_xip_sram;
if (eh.entry == expected_ep_xip_sram && family_id == RP2040_FAMILY_ID) {
fail(ERROR_INCOMPATIBLE, "RP2040 B0/B1/B2 Boot ROM does not support direct entry into XIP_SRAM\n");
} else if (eh.entry != expected_ep && family_id == RP2040_FAMILY_ID) {
fail(ERROR_INCOMPATIBLE, "A RP2040 RAM binary should have an entry point at the beginning: %08x (not %08x)\n", expected_ep, eh.entry);
}
static_assert(0 == (SRAM_START & (UF2_PAGE_SIZE - 1)), "");
// currently don't require this as entry point is now at the start, we don't know where reset vector is
// todo can be re-enabled for RP2350
#if 0
uint8_t buf[UF2_PAGE_SIZE];
rc = realize_page(in, pages[SRAM_START], buf, sizeof(buf));
if (rc) return rc;
uint32_t sp = ((uint32_t *)buf)[0];
uint32_t ip = ((uint32_t *)buf)[1];
if (!is_address_mapped(pages, ip)) {
fail(ERROR_INCOMPATIBLE, "Vector table at %08x is invalid: reset vector %08x is not in mapped memory",
SRAM_START, ip);
}
if (!is_address_valid(valid_ranges, sp - 4)) {
fail(ERROR_INCOMPATIBLE, "Vector table at %08x is invalid: stack pointer %08x is not in RAM",
SRAM_START, sp);
}
#endif
} else {
// Fill in empty dummy uf2 pages to align the binary to flash sectors (except for the last sector which we don't
// need to pad, and choose not to to avoid making all SDK UF2s bigger)
// That workaround is required because the bootrom uses the block number for erase sector calculations:
// https://github.com/raspberrypi/pico-bootrom/blob/c09c7f08550e8a36fc38dc74f8873b9576de99eb/bootrom/virtual_disk.c#L205
std::set<uint32_t> touched_sectors;
for (auto& page_entry : pages) {
uint32_t sector = page_entry.first / FLASH_SECTOR_ERASE_SIZE;
touched_sectors.insert(sector);
}
uint32_t last_page = pages.rbegin()->first;
for (uint32_t sector : touched_sectors) {
for (uint32_t page = sector * FLASH_SECTOR_ERASE_SIZE; page < (sector + 1) * FLASH_SECTOR_ERASE_SIZE; page += UF2_PAGE_SIZE) {
if (page < last_page) {
// Create a dummy page, if it does not exist yet. note that all present pages are first
// zeroed before they are filled with any contents, so a dummy page will be all zeros.
auto &dummy = pages[page];
}
}
}
}
if (package_addr) {
// Package binary at address
uint32_t base_addr = pages.begin()->first;
int32_t package_delta = package_addr - base_addr;
if (verbose) printf("Base %x\n", base_addr);
auto copy_pages = pages;
pages.clear();
for (auto page : copy_pages) {
pages[page.first + package_delta] = page.second;
}
}
return pages2uf2(pages, in, out, family_id, abs_block_loc);
}