| /* |
| * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <cstdio> |
| #include <map> |
| #include <set> |
| #include <vector> |
| #include <cstring> |
| #include <cstdarg> |
| #include <algorithm> |
| #include <cstring> |
| #include <memory> |
| |
| #include "elf2uf2.h" |
| #include "errors.h" |
| |
| #define FLASH_SECTOR_ERASE_SIZE 4096u |
| |
| static bool verbose; |
| |
| static void fail_read_error() { |
| fail(ERROR_READ_FAILED, "Failed to read input file"); |
| } |
| |
| static void fail_write_error() { |
| fail(ERROR_WRITE_FAILED, "Failed to write output file"); |
| } |
| |
| struct page_fragment { |
| page_fragment(uint32_t file_offset, uint32_t page_offset, uint32_t bytes) : file_offset(file_offset), page_offset(page_offset), bytes(bytes) {} |
| uint32_t file_offset; |
| uint32_t page_offset; |
| uint32_t bytes; |
| }; |
| |
| int check_address_range(const address_ranges& valid_ranges, uint32_t addr, uint32_t vaddr, uint32_t size, bool uninitialized, address_range &ar) { |
| for(const auto& range : valid_ranges) { |
| if (range.from <= addr && range.to >= addr + size) { |
| if (range.type == address_range::type::NO_CONTENTS && !uninitialized) { |
| fail(ERROR_INCOMPATIBLE, "ELF contains memory contents for uninitialized memory at %p", addr); |
| } |
| ar = range; |
| if (verbose) { |
| printf("%s segment %08x->%08x (%08x->%08x)\n", uninitialized ? "Uninitialized" : "Mapped", addr, |
| addr + size, vaddr, vaddr+size); |
| } |
| return 0; |
| } |
| } |
| fail(ERROR_INCOMPATIBLE, "Memory segment %08x->%08x is outside of valid address range for device", addr, addr+size); |
| return ERROR_INCOMPATIBLE; |
| } |
| |
| int check_elf32_ph_entries(const std::vector<elf32_ph_entry>& entries, const address_ranges& valid_ranges, std::map<uint32_t, std::vector<page_fragment>>& pages) { |
| for(const auto & entry : entries) { |
| if (entry.type == PT_LOAD && entry.memsz) { |
| address_range ar; |
| int rc; |
| unsigned int mapped_size = std::min(entry.filez, entry.memsz); |
| if (mapped_size) { |
| rc = check_address_range(valid_ranges, entry.paddr, entry.vaddr, mapped_size, false, ar); |
| if (rc) return rc; |
| // we don't download uninitialized, generally it is BSS and should be zero-ed by crt0.S, or it may be COPY areas which are undefined |
| if (ar.type != address_range::type::CONTENTS) { |
| if (verbose) printf(" ignored\n"); |
| continue; |
| } |
| unsigned int addr = entry.paddr; |
| unsigned int remaining = mapped_size; |
| unsigned int file_offset = entry.offset; |
| while (remaining) { |
| unsigned int off = addr & (UF2_PAGE_SIZE - 1); |
| unsigned int len = std::min(remaining, UF2_PAGE_SIZE - off); |
| auto &fragments = pages[addr - off]; // list of fragments |
| // note if filesz is zero, we want zero init which is handled because the |
| // statement above creates an empty page fragment list |
| // check overlap with any existing fragments |
| for (const auto &fragment : fragments) { |
| if ((off < fragment.page_offset + fragment.bytes) != |
| ((off + len) <= fragment.page_offset)) { |
| fail(ERROR_FORMAT, "In memory segments overlap"); |
| } |
| } |
| fragments.push_back( |
| page_fragment{file_offset,off,len}); |
| addr += len; |
| file_offset += len; |
| remaining -= len; |
| } |
| } |
| if (entry.memsz > entry.filez) { |
| // we have some uninitialized data too |
| rc = check_address_range(valid_ranges, entry.paddr + entry.filez, entry.vaddr + entry.filez, entry.memsz - entry.filez, true, |
| ar); |
| if (rc) return rc; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| int realize_page(std::shared_ptr<std::iostream> in, const std::vector<page_fragment> &fragments, uint8_t *buf, unsigned int buf_len) { |
| assert(buf_len >= UF2_PAGE_SIZE); |
| for(auto& frag : fragments) { |
| assert(frag.page_offset < UF2_PAGE_SIZE && frag.page_offset + frag.bytes <= UF2_PAGE_SIZE); |
| in->seekg(frag.file_offset, in->beg); |
| if (in->fail()) { |
| fail_read_error(); |
| } |
| in->read((char*)buf + frag.page_offset, frag.bytes); |
| if (in->fail()) { |
| fail_read_error(); |
| } |
| } |
| return 0; |
| } |
| |
| static bool is_address_mapped(const std::map<uint32_t, std::vector<page_fragment>>& pages, uint32_t addr) { |
| uint32_t page = addr & ~(UF2_PAGE_SIZE - 1); |
| if (!pages.count(page)) return false; |
| // todo check actual address within page |
| return true; |
| } |
| |
| uf2_block gen_abs_block(uint32_t abs_block_loc) { |
| uf2_block block; |
| block.magic_start0 = UF2_MAGIC_START0; |
| block.magic_start1 = UF2_MAGIC_START1; |
| block.flags = UF2_FLAG_FAMILY_ID_PRESENT | UF2_FLAG_EXTENSION_FLAGS_PRESENT; |
| block.payload_size = UF2_PAGE_SIZE; |
| block.num_blocks = 2; |
| block.file_size = ABSOLUTE_FAMILY_ID; |
| block.magic_end = UF2_MAGIC_END; |
| block.target_addr = abs_block_loc; |
| block.block_no = 0; |
| memset(block.data, 0, sizeof(block.data)); |
| memset(block.data, 0xef, UF2_PAGE_SIZE); |
| *(uint32_t*)&(block.data[UF2_PAGE_SIZE]) = UF2_EXTENSION_RP2_IGNORE_BLOCK; |
| return block; |
| } |
| |
| bool check_abs_block(uf2_block block) { |
| return std::all_of(block.data, block.data + UF2_PAGE_SIZE, [](uint8_t i) { return i == 0xef; }) && |
| block.magic_start0 == UF2_MAGIC_START0 && |
| block.magic_start1 == UF2_MAGIC_START1 && |
| (block.flags & ~UF2_FLAG_EXTENSION_FLAGS_PRESENT) == UF2_FLAG_FAMILY_ID_PRESENT && |
| block.payload_size == UF2_PAGE_SIZE && |
| block.num_blocks == 2 && |
| block.file_size == ABSOLUTE_FAMILY_ID && |
| block.magic_end == UF2_MAGIC_END && |
| block.block_no == 0 && |
| !(block.flags & UF2_FLAG_EXTENSION_FLAGS_PRESENT && *(uint32_t*)&(block.data[UF2_PAGE_SIZE]) != UF2_EXTENSION_RP2_IGNORE_BLOCK); |
| } |
| |
| int pages2uf2(std::map<uint32_t, std::vector<page_fragment>>& pages, std::shared_ptr<std::iostream> in, std::shared_ptr<std::iostream> out, uint32_t family_id, uint32_t abs_block_loc=0) { |
| // RP2350-E10: add absolute block to start of flash UF2s, targeting end of flash by default |
| if (family_id != ABSOLUTE_FAMILY_ID && family_id != RP2040_FAMILY_ID && abs_block_loc) { |
| uint32_t base_addr = pages.begin()->first; |
| address_ranges flash_range = rp2350_address_ranges_flash; |
| if (is_address_initialized(flash_range, base_addr)) { |
| uf2_block block = gen_abs_block(abs_block_loc); |
| out->write((char*)&block, sizeof(uf2_block)); |
| if (out->fail()) { |
| fail_write_error(); |
| } |
| } |
| } |
| uf2_block block; |
| unsigned int page_num = 0; |
| block.magic_start0 = UF2_MAGIC_START0; |
| block.magic_start1 = UF2_MAGIC_START1; |
| block.flags = UF2_FLAG_FAMILY_ID_PRESENT; |
| block.payload_size = UF2_PAGE_SIZE; |
| block.num_blocks = (uint32_t)pages.size(); |
| block.file_size = family_id; |
| block.magic_end = UF2_MAGIC_END; |
| for(auto& page_entry : pages) { |
| block.target_addr = page_entry.first; |
| block.block_no = page_num++; |
| if (verbose) { |
| printf("Page %d / %d %08x%s\n", block.block_no, block.num_blocks, block.target_addr, |
| page_entry.second.empty() ? " (padding)": ""); |
| } |
| memset(block.data, 0, sizeof(block.data)); |
| int rc = realize_page(in, page_entry.second, block.data, sizeof(block.data)); |
| if (rc) return rc; |
| out->write((char*)&block, sizeof(uf2_block)); |
| if (out->fail()) { |
| fail_write_error(); |
| } |
| } |
| return 0; |
| } |
| |
| int bin2uf2(std::shared_ptr<std::iostream> in, std::shared_ptr<std::iostream> out, uint32_t address, uint32_t family_id, uint32_t abs_block_loc) { |
| std::map<uint32_t, std::vector<page_fragment>> pages; |
| |
| in->seekg(0, in->end); |
| if (in->fail()) { |
| fail_read_error(); |
| } |
| int size = in->tellg(); |
| if (size <= 0) { |
| fail_read_error(); |
| } |
| |
| unsigned int addr = address; |
| unsigned int remaining = size; |
| unsigned int file_offset = 0; |
| while (remaining) { |
| unsigned int off = addr & (UF2_PAGE_SIZE - 1); |
| unsigned int len = std::min(remaining, UF2_PAGE_SIZE - off); |
| auto &fragments = pages[addr - off]; // list of fragments |
| // note if filesz is zero, we want zero init which is handled because the |
| // statement above creates an empty page fragment list |
| // check overlap with any existing fragments |
| for (const auto &fragment : fragments) { |
| if ((off < fragment.page_offset + fragment.bytes) != |
| ((off + len) <= fragment.page_offset)) { |
| fail(ERROR_FORMAT, "In memory segments overlap"); |
| } |
| } |
| fragments.push_back( |
| page_fragment{file_offset,off,len}); |
| addr += len; |
| file_offset += len; |
| remaining -= len; |
| } |
| |
| return pages2uf2(pages, in, out, family_id, abs_block_loc); |
| } |
| |
| int elf2uf2(std::shared_ptr<std::iostream> in, std::shared_ptr<std::iostream> out, uint32_t family_id, uint32_t package_addr, uint32_t abs_block_loc) { |
| elf_file elf; |
| std::map<uint32_t, std::vector<page_fragment>> pages; |
| |
| int rc = elf.read_file(in); |
| bool ram_style = false; |
| address_ranges valid_ranges = {}; |
| address_ranges flash_range; address_ranges ram_range; |
| if (family_id == RP2040_FAMILY_ID) { |
| flash_range = rp2040_address_ranges_flash; |
| ram_range = rp2040_address_ranges_ram; |
| } else { |
| flash_range = rp2350_address_ranges_flash; |
| ram_range = rp2350_address_ranges_ram; |
| } |
| if (!rc) { |
| rc = rp_determine_binary_type(elf.header(), elf.segments(), flash_range, ram_range, &ram_style); |
| if (!rc) { |
| if (verbose) { |
| if (ram_style) { |
| printf("Detected RAM binary\n"); |
| } else { |
| printf("Detected FLASH binary\n"); |
| } |
| } |
| valid_ranges = ram_style ? ram_range : flash_range; |
| rc = check_elf32_ph_entries(elf.segments(), valid_ranges, pages); |
| } |
| } |
| if (rc) return rc; |
| if (pages.empty()) { |
| fail(ERROR_INCOMPATIBLE, "The input file has no memory pages"); |
| } |
| // No Thumb bit on RISC-V |
| elf32_header eh = elf.header(); |
| uint32_t thumb_bit = eh.common.machine == EM_ARM ? 0x1u : 0x0u; |
| if (ram_style) { |
| uint32_t expected_ep_main_ram = UINT32_MAX; |
| uint32_t expected_ep_xip_sram = UINT32_MAX; |
| for(auto& page_entry : pages) { |
| if ( ((page_entry.first >= SRAM_START) && (page_entry.first < ram_range[0].to)) && (page_entry.first < expected_ep_main_ram) ) { |
| expected_ep_main_ram = page_entry.first | thumb_bit; |
| } else if ( ((page_entry.first >= ram_range[1].from) && (page_entry.first < ram_range[1].to)) && (page_entry.first < expected_ep_xip_sram) ) { |
| expected_ep_xip_sram = page_entry.first | thumb_bit; |
| } |
| } |
| uint32_t expected_ep = (UINT32_MAX != expected_ep_main_ram) ? expected_ep_main_ram : expected_ep_xip_sram; |
| if (eh.entry == expected_ep_xip_sram && family_id == RP2040_FAMILY_ID) { |
| fail(ERROR_INCOMPATIBLE, "RP2040 B0/B1/B2 Boot ROM does not support direct entry into XIP_SRAM\n"); |
| } else if (eh.entry != expected_ep && family_id == RP2040_FAMILY_ID) { |
| fail(ERROR_INCOMPATIBLE, "A RP2040 RAM binary should have an entry point at the beginning: %08x (not %08x)\n", expected_ep, eh.entry); |
| } |
| static_assert(0 == (SRAM_START & (UF2_PAGE_SIZE - 1)), ""); |
| // currently don't require this as entry point is now at the start, we don't know where reset vector is |
| // todo can be re-enabled for RP2350 |
| #if 0 |
| uint8_t buf[UF2_PAGE_SIZE]; |
| rc = realize_page(in, pages[SRAM_START], buf, sizeof(buf)); |
| if (rc) return rc; |
| uint32_t sp = ((uint32_t *)buf)[0]; |
| uint32_t ip = ((uint32_t *)buf)[1]; |
| if (!is_address_mapped(pages, ip)) { |
| fail(ERROR_INCOMPATIBLE, "Vector table at %08x is invalid: reset vector %08x is not in mapped memory", |
| SRAM_START, ip); |
| } |
| if (!is_address_valid(valid_ranges, sp - 4)) { |
| fail(ERROR_INCOMPATIBLE, "Vector table at %08x is invalid: stack pointer %08x is not in RAM", |
| SRAM_START, sp); |
| } |
| #endif |
| } else { |
| // Fill in empty dummy uf2 pages to align the binary to flash sectors (except for the last sector which we don't |
| // need to pad, and choose not to to avoid making all SDK UF2s bigger) |
| // That workaround is required because the bootrom uses the block number for erase sector calculations: |
| // https://github.com/raspberrypi/pico-bootrom/blob/c09c7f08550e8a36fc38dc74f8873b9576de99eb/bootrom/virtual_disk.c#L205 |
| |
| std::set<uint32_t> touched_sectors; |
| for (auto& page_entry : pages) { |
| uint32_t sector = page_entry.first / FLASH_SECTOR_ERASE_SIZE; |
| touched_sectors.insert(sector); |
| } |
| |
| uint32_t last_page = pages.rbegin()->first; |
| for (uint32_t sector : touched_sectors) { |
| for (uint32_t page = sector * FLASH_SECTOR_ERASE_SIZE; page < (sector + 1) * FLASH_SECTOR_ERASE_SIZE; page += UF2_PAGE_SIZE) { |
| if (page < last_page) { |
| // Create a dummy page, if it does not exist yet. note that all present pages are first |
| // zeroed before they are filled with any contents, so a dummy page will be all zeros. |
| auto &dummy = pages[page]; |
| } |
| } |
| } |
| } |
| |
| if (package_addr) { |
| // Package binary at address |
| uint32_t base_addr = pages.begin()->first; |
| int32_t package_delta = package_addr - base_addr; |
| if (verbose) printf("Base %x\n", base_addr); |
| |
| auto copy_pages = pages; |
| pages.clear(); |
| for (auto page : copy_pages) { |
| pages[page.first + package_delta] = page.second; |
| } |
| } |
| |
| return pages2uf2(pages, in, out, family_id, abs_block_loc); |
| } |