gen_kobject_list.py: device driver support
Device drivers need to be treated like other kernel objects, with
thread-level permissions and validation of struct device pointers passed
in from userspace when making API calls.
However it's not sufficient to identify an object as a driver, we need
to know what subsystem it belongs to (if any) so that userspace cannot,
for example, make Ethernet driver API calls using a UART driver object.
Upon encountering a variable representing a device struct, we look at
the value of its driver_api member. If that corresponds to an instance
of a driver API struct belonging to a known subsystem, the proper
K_OBJ_DRIVER_* enumeration type will be associated with this device in
the generated gperf table.
If there is no API struct or it doesn't correspond to a known subsystem,
the device is omitted from the table; it's presumably used internally
by the kernel or is a singleton with specific APIs for it that do not
take a struct device parameter.
The list of kobjects and subsystems in the script is simplified since
the enumeration type name is strongly derived from the name of the data
structure.
A device object is marked as initialized after its init function has
been run at boot.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
diff --git a/scripts/gen_kobject_list.py b/scripts/gen_kobject_list.py
index 9967497..4d213b9 100755
--- a/scripts/gen_kobject_list.py
+++ b/scripts/gen_kobject_list.py
@@ -20,20 +20,52 @@
sys.stderr.write("pyelftools is out of date, need version 0.24 or later\n")
sys.exit(1)
-kobjects = {
- "k_alert" : "K_OBJ_ALERT",
- "k_delayed_work" : "K_OBJ_DELAYED_WORK",
- "k_mem_slab" : "K_OBJ_MEM_SLAB",
- "k_msgq" : "K_OBJ_MSGQ",
- "k_mutex" : "K_OBJ_MUTEX",
- "k_pipe" : "K_OBJ_PIPE",
- "k_sem" : "K_OBJ_SEM",
- "k_stack" : "K_OBJ_STACK",
- "k_thread" : "K_OBJ_THREAD",
- "k_timer" : "K_OBJ_TIMER",
- "k_work" : "K_OBJ_WORK",
- "k_work_q" : "K_OBJ_WORK_Q",
- }
+kobjects = [
+ "k_alert",
+ "k_delayed_work",
+ "k_mem_slab",
+ "k_msgq",
+ "k_mutex",
+ "k_pipe",
+ "k_sem",
+ "k_stack",
+ "k_thread",
+ "k_timer",
+ "k_work",
+ "k_work_q",
+ "device"
+ ]
+
+subsystems = [
+ "adc_driver_api",
+ "aio_cmp_driver_api",
+ "clock_control_driver_api",
+ "counter_driver_api",
+ "crypto_driver_api",
+ "dma_driver_api",
+ "eth_driver_api",
+ "flash_driver_api",
+ "gpio_driver_api",
+ "i2c_driver_api",
+ "i2s_driver_api",
+ "ipm_driver_api",
+ "pinmux_driver_api",
+ "pwm_driver_api",
+ "random_driver_api",
+ "rtc_driver_api",
+ "sensor_driver_api",
+ "shared_irq_driver_api",
+ "spi_driver_api",
+ "uart_driver_api",
+ "wdt_driver_api",
+ ]
+
+
+def subsystem_to_enum(subsys):
+ return "K_OBJ_DRIVER_" + subsys[:-11].upper()
+
+def kobject_to_enum(ko):
+ return "K_OBJ_" + ko[2:].upper()
DW_OP_addr = 0x3
DW_OP_fbreg = 0x91
@@ -43,7 +75,7 @@
# --- debug stuff ---
-scr = os.path.basename(sys.argv[0])
+scr = os.path.basename(sys.argv[0])
def debug(text):
if not args.verbose:
@@ -81,10 +113,10 @@
def get_kobjects(self, addr):
mt = type_env[self.member_type]
- objs = []
+ objs = {}
for i in range(self.num_members):
- objs.extend(mt.get_kobjects(addr + (i * mt.size)))
+ objs.update(mt.get_kobjects(addr + (i * mt.size)))
return objs
@@ -109,6 +141,23 @@
return mt.get_kobjects(addr + self.member_offset)
+class ConstType:
+ def __init__(self, child_type):
+ self.child_type = child_type
+
+ def __repr__(self):
+ return "<const %d>" % self.child_type
+
+ def has_kobject(self):
+ if self.child_type not in type_env:
+ return False
+
+ return type_env[self.child_type].has_kobject()
+
+ def get_kobjects(self, addr):
+ return type_env[self.child_type].get_kobjects(addr)
+
+
class AggregateType:
def __init__(self, offset, name, size):
self.name = name
@@ -140,17 +189,18 @@
return result
def get_kobjects(self, addr):
- objs = []
+ objs = {}
for member in self.members:
- objs.extend(member.get_kobjects(addr))
+ objs.update(member.get_kobjects(addr))
return objs
class KobjectType:
- def __init__(self, offset, name, size):
+ def __init__(self, offset, name, size, api=False):
self.name = name
self.size = size
self.offset = offset
+ self.api = api
def __repr__(self):
return "<kobject %s>" % self.name
@@ -159,7 +209,7 @@
return True
def get_kobjects(self, addr):
- return [(addr, kobjects[self.name])]
+ return {addr: self}
# --- helper functions for getting data from DIEs ---
@@ -170,6 +220,9 @@
def die_get_type_offset(die):
+ if not 'DW_AT_type' in die.attributes:
+ return 0
+
return die.attributes["DW_AT_type"].value + die.cu.cu_offset
@@ -188,7 +241,11 @@
if not size:
return
- if name not in kobjects:
+ if name in kobjects:
+ type_env[offset] = KobjectType(offset, name, size)
+ elif name in subsystems:
+ type_env[offset] = KobjectType(offset, name, size, api=True)
+ else:
at = AggregateType(offset, name, size)
type_env[offset] = at
@@ -204,7 +261,13 @@
return
- type_env[offset] = KobjectType(offset, name, size)
+
+def analyze_die_const(die):
+ type_offset = die_get_type_offset(die)
+ if not type_offset:
+ return
+
+ type_env[die.offset] = ConstType(type_offset)
def analyze_die_array(die):
@@ -231,6 +294,24 @@
type_env[die.offset] = ArrayType(die.offset, elements, type_offset)
+def addr_deref(elf, addr):
+ for section in elf.iter_sections():
+ start = section['sh_addr']
+ end = start + section['sh_size']
+
+ if addr >= start and addr < end:
+ data = section.data()
+ offset = addr - start
+ return struct.unpack("<I" if args.little_endian else ">I",
+ data[offset:offset+4])[0]
+
+ return 0
+
+
+def device_get_api_addr(elf, addr):
+ return addr_deref(elf, addr + 4)
+
+
def get_filename_lineno(die):
lp_header = die.dwarfinfo.line_program_for_CU(die.cu).header
files = lp_header["file_entry"]
@@ -252,6 +333,8 @@
kram_start = syms["__kernel_ram_start"]
kram_end = syms["__kernel_ram_end"]
+ krom_start = syms["_image_rom_start"]
+ krom_end = syms["_image_rom_end"]
di = elf.get_dwarf_info()
@@ -268,6 +351,8 @@
# could be something else
if die.tag == "DW_TAG_structure_type":
analyze_die_struct(die)
+ elif die.tag == "DW_TAG_const_type":
+ analyze_die_const(die)
elif die.tag == "DW_TAG_array_type":
analyze_die_array(die)
elif die.tag == "DW_TAG_variable":
@@ -285,7 +370,7 @@
# Step 3: Now that we know all the types we are looking for, examine
# all variables
- all_objs = []
+ all_objs = {}
# Gross hack, see below
work_q_found = False
@@ -336,7 +421,8 @@
addr = (loc.value[1] | (loc.value[2] << 8) | (loc.value[3] << 16) |
(loc.value[4] << 24))
- if addr < kram_start or addr >= kram_end:
+ if ((addr < kram_start or addr >= kram_end)
+ and (addr < krom_start or addr >= krom_end)):
if addr == 0:
# Never linked; gc-sections deleted it
continue
@@ -347,13 +433,38 @@
type_obj = type_env[type_offset]
objs = type_obj.get_kobjects(addr)
- all_objs.extend(objs)
+ all_objs.update(objs)
debug("symbol '%s' at %s contains %d object(s)" % (name, hex(addr),
- len(objs)))
+ len(objs)))
- debug("found %d kernel object instances total" % len(all_objs))
- return all_objs
+ # Step 4: objs is a dictionary mapping variable memory addresses to their
+ # associated type objects. Now that we have seen all variables and can
+ # properly look up API structs, convert this into a dictionary mapping
+ # variables to the C enumeration of what kernel object type it is.
+ ret = {}
+ for addr, ko in all_objs.items():
+ # API structs don't get into the gperf table
+ if ko.api:
+ continue
+
+ if ko.name != "device":
+ # Not a device struct so we immediately know its type
+ ret[addr] = kobject_to_enum(ko.name)
+ continue
+
+ # Device struct. Need to get the address of its API struct, if it has
+ # one.
+ apiaddr = device_get_api_addr(elf, addr)
+ if apiaddr not in all_objs:
+ # API struct does not correspond to a known subsystem, skip it
+ continue
+
+ apiobj = all_objs[apiaddr]
+ ret[addr] = subsystem_to_enum(apiobj.name)
+
+ debug("found %d kernel object instances total" % len(ret))
+ return ret
header = """%compare-lengths
@@ -383,7 +494,7 @@
def write_gperf_table(fp, objs, static_begin, static_end):
fp.write(header)
- for obj_addr, obj_type in objs:
+ for obj_addr, obj_type in objs.items():
# pre-initialized objects fall within this memory range, they are
# either completely initialized at build time, or done automatically
# at boot during some PRE_KERNEL_* phase