lib: cbprintf: float conversion optimization and documentation
While documenting the float conversion code, I found there was room
for some optimization. In doing so I added test cases to cover edge
cases e.g. making sure proper rounding is applied and that no loss
of precision was introduced. Compiled code should be smaller and
faster.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
diff --git a/lib/os/cbprintf_complete.c b/lib/os/cbprintf_complete.c
index 236a807..461589a 100644
--- a/lib/os/cbprintf_complete.c
+++ b/lib/os/cbprintf_complete.c
@@ -695,22 +695,10 @@
return words;
}
-/* Ceiling divide by two. */
-static void _rlrshift(uint64_t *v)
-{
- *v = (*v & 1) + (*v >> 1);
-}
-
#ifdef CONFIG_64BIT
static void _ldiv5(uint64_t *v)
{
- /*
- * Usage in this file wants rounded behavior, not truncation. So add
- * two to get the threshold right.
- */
- *v += 2U;
-
/* The compiler can optimize this on its own on 64-bit architectures */
*v /= 5U;
}
@@ -735,13 +723,11 @@
*
* Here the multiplier is: (1 << 64) / 5 = 0x3333333333333333
* i.e. a 62 bits value. To compensate for the reduced precision, we
- * add an initial bias of 1 to v. Enlarging the multiplier to 64 bits
- * would also work but a final right shift would be needed, and carry
- * handling on the summing of partial mults would be necessary, requiring
- * more instructions. Given that we already want to add bias of 2 for
- * the result to be rounded to nearest and not truncated, we might as well
- * combine those together into a bias of 3. This also conveniently allows
- * for keeping the multiplier in a single 32-bit register given its pattern.
+ * add an initial bias of 1 to v. This conveniently allows for keeping
+ * the multiplier in a single 32-bit register given its pattern.
+ * Enlarging the multiplier to 64 bits would also work but carry handling
+ * on the summing of partial mults would be necessary, and a final right
+ * shift would be needed, requiring more instructions.
*/
static void _ldiv5(uint64_t *v)
{
@@ -758,12 +744,10 @@
__asm__ ("" : "+r" (m));
/*
- * Apply the bias of 3. We can't add it to v as this would overflow
+ * Apply a bias of 1 to v. We can't add it to v as this would overflow
* it when at max range. Factor it out with the multiplier upfront.
- * Here we multiply the low and high parts separately to avoid an
- * unnecessary 64-bit add-with-carry.
*/
- result = ((uint64_t)(m * 3U) << 32) | (m * 3U);
+ result = ((uint64_t)m << 32) | m;
/* The actual multiplication. */
result += (uint64_t)v_lo * m;
@@ -778,6 +762,13 @@
#endif /* CONFIG_64BIT */
+/* Division by 10 */
+static void _ldiv10(uint64_t *v)
+{
+ *v >>= 1;
+ _ldiv5(v);
+}
+
/* Extract the next decimal character in the converted representation of a
* fractional component.
*/
@@ -855,9 +846,6 @@
return bp;
}
-/* A magic value used in conversion. */
-#define MAX_FP1 UINT32_MAX
-
/* Number of bits in the fractional part of an IEEE 754-2008 double
* precision float.
*/
@@ -1110,41 +1098,56 @@
fract |= BIT_63;
}
-
- /* Magically convert the base-2 exponent to a base-10
- * exponent.
+ /*
+ * Let's consider:
+ *
+ * value = fract * 2^exp * 10^decexp
+ *
+ * Initially decexp = 0. The goal is to bring exp between
+ * 0 and -2 as the magnitude of a fractional decimal digit is 3 bits.
*/
int decexp = 0;
- while (exp <= -3) {
- while ((fract >> 32) >= (MAX_FP1 / 5)) {
- _rlrshift(&fract);
+ while (exp < -2) {
+ /*
+ * Make roon to allow a multiplication by 5 without overflow.
+ * We test only the top part for faster code.
+ */
+ do {
+ fract >>= 1;
exp++;
- }
+ } while ((uint32_t)(fract >> 32) >= (UINT32_MAX / 5U));
+
+ /* Perform fract * 5 * 2 / 10 */
fract *= 5U;
exp++;
decexp--;
-
- while ((fract >> 32) <= (MAX_FP1 / 2)) {
- fract <<= 1;
- exp--;
- }
}
while (exp > 0) {
+ /*
+ * Perform fract / 5 / 2 * 10.
+ * The +2 is there to do round the result of the division
+ * by 5 not to lose too much precision in extreme cases.
+ */
+ fract += 2;
_ldiv5(&fract);
exp--;
decexp++;
- while ((fract >> 32) <= (MAX_FP1 / 2)) {
+
+ /* Bring back our fractional number to full scale */
+ do {
fract <<= 1;
exp--;
- }
+ } while (!(fract & BIT_63));
}
- while (exp < (0 + 4)) {
- _rlrshift(&fract);
- exp++;
- }
+ /*
+ * The binary fractional point is located somewhere above bit 63.
+ * Move it between bits 59 and 60 to give 4 bits of room to the
+ * integer part.
+ */
+ fract >>= (4 - exp);
if ((c == 'g') || (c == 'G')) {
/* Use the specified precision and exponent to select the
@@ -1165,32 +1168,31 @@
}
}
+ int decimals;
if (c == 'f') {
- exp = precision + decexp;
- if (exp < 0) {
- exp = 0;
+ decimals = precision + decexp;
+ if (decimals < 0) {
+ decimals = 0;
}
} else {
- exp = precision + 1;
+ decimals = precision + 1;
}
int digit_count = 16;
- if (exp > 16) {
- exp = 16;
+ if (decimals > 16) {
+ decimals = 16;
}
- uint64_t ltemp = BIT64(59);
-
- while (exp--) {
- _ldiv5(<emp);
- _rlrshift(<emp);
+ /* Round the value to the last digit being printed. */
+ uint64_t round = BIT64(59); /* 0.5 */
+ while (decimals--) {
+ _ldiv10(&round);
}
-
- fract += ltemp;
- if ((fract >> 32) & (0x0FU << 28)) {
- _ldiv5(&fract);
- _rlrshift(&fract);
+ fract += round;
+ /* Make sure rounding didn't make fract >= 1.0 */
+ if (fract >= BIT64(60)) {
+ _ldiv10(&fract);
decexp++;
}
diff --git a/tests/unit/cbprintf/main.c b/tests/unit/cbprintf/main.c
index 463e2d3..f699554 100644
--- a/tests/unit/cbprintf/main.c
+++ b/tests/unit/cbprintf/main.c
@@ -718,6 +718,87 @@
} else {
PRF_CHECK("%a 5.562685e-309", rc);
}
+
+ /*
+ * The following tests are tailored to exercise edge cases in
+ * lib/os/cbprintf_complete.c:encode_float() and related functions.
+ */
+
+ dv = 0x1.0p-3;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("0.125", rc);
+
+ dv = 0x1.0p-4;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("0.0625", rc);
+
+ dv = 0x1.8p-4;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("0.09375", rc);
+
+ dv = 0x1.cp-4;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("0.109375", rc);
+
+ dv = 0x1.9999999ffffffp-8;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("0.006250000005820765", rc);
+
+ dv = 0x1.0p+0;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("1", rc);
+
+ dv = 0x1.fffffffffffffp-1022;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("4.450147717014402e-308", rc);
+
+ dv = 0x1.ffffffffffffep-1022;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("4.450147717014402e-308", rc);
+
+ dv = 0x1.ffffffffffffdp-1022;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("4.450147717014401e-308", rc);
+
+ dv = 0x1.0000000000001p-1022;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("2.225073858507202e-308", rc);
+
+ dv = 0x1p-1022;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("2.225073858507201e-308", rc);
+
+ dv = 0x0.fffffffffffffp-1022;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("2.225073858507201e-308", rc);
+
+ dv = 0x0.0000000000001p-1022;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("4.940656458412465e-324", rc);
+
+ dv = 0x1.1fa182c40c60dp-1019;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("2e-307", rc);
+
+ dv = 0x1.fffffffffffffp+1023;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("1.797693134862316e+308", rc);
+
+ dv = 0x1.ffffffffffffep+1023;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("1.797693134862316e+308", rc);
+
+ dv = 0x1.ffffffffffffdp+1023;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("1.797693134862315e+308", rc);
+
+ dv = 0x1.0000000000001p+1023;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("8.988465674311582e+307", rc);
+
+ dv = 0x1p+1023;
+ rc = TEST_PRF("%.16g", dv);
+ PRF_CHECK("8.98846567431158e+307", rc);
}
static void test_fp_length(void)