| //! A Hardware Abstraction Layer (HAL) for embedded systems |
| //! |
| //! **NOTE** This HAL is still is active development. Expect the traits presented here to be |
| //! tweaked, split or be replaced wholesale before being stabilized, i.e. before hitting the 1.0.0 |
| //! release. That being said there's a part of the HAL that's currently considered unproven and is |
| //! hidden behind an "unproven" Cargo feature. This API is even more volatile and it's exempt from |
| //! semver rules: it can change in a non-backward compatible fashion or even disappear in between |
| //! patch releases. |
| //! |
| //! # Design goals |
| //! |
| //! The HAL |
| //! |
| //! - Must *erase* device specific details. Neither register, register blocks or magic values should |
| //! appear in the API. |
| //! |
| //! - Must be generic *within* a device and *across* devices. The API to use a serial interface must |
| //! be the same regardless of whether the implementation uses the USART1 or UART4 peripheral of a |
| //! device or the UART0 peripheral of another device. |
| //! |
| //! - Where possible must *not* be tied to a specific asynchronous model. The API should be usable |
| //! in blocking mode, with the `futures` model, with an async/await model or with a callback model. |
| //! (cf. the [`nb`] crate) |
| //! |
| //! - Must be minimal, and thus easy to implement and zero cost, yet highly composable. People that |
| //! want higher level abstraction should *prefer to use this HAL* rather than *re-implement* |
| //! register manipulation code. |
| //! |
| //! - Serve as a foundation for building an ecosystem of platform agnostic drivers. Here driver |
| //! means a library crate that lets a target platform interface an external device like a digital |
| //! sensor or a wireless transceiver. The advantage of this system is that by writing the driver as |
| //! a generic library on top of `embedded-hal` driver authors can support any number of target |
| //! platforms (e.g. Cortex-M microcontrollers, AVR microcontrollers, embedded Linux, etc.). The |
| //! advantage for application developers is that by adopting `embedded-hal` they can unlock all |
| //! these drivers for their platform. |
| //! |
| //! # Out of scope |
| //! |
| //! - Initialization and configuration stuff like "ensure this serial interface and that SPI |
| //! interface are not using the same pins". The HAL will focus on *doing I/O*. |
| //! |
| //! # Reference implementation |
| //! |
| //! The [`stm32f30x-hal`] crate contains a reference implementation of this HAL. |
| //! |
| //! [`stm32f30x-hal`]: https://crates.io/crates/stm32f30x-hal/0.1.0 |
| //! |
| //! # Platform agnostic drivers |
| //! |
| //! You can find platform agnostic drivers built on top of `embedded-hal` on crates.io by [searching |
| //! for the *embedded-hal* keyword](https://crates.io/keywords/embedded-hal). |
| //! |
| //! If you writing a platform agnostic driver yourself you are highly encouraged to [add the |
| //! embedded-hal keyword](https://doc.rust-lang.org/cargo/reference/manifest.html#package-metadata) |
| //! to your crate before publishing it! |
| //! |
| //! # Detailed design |
| //! |
| //! ## Traits |
| //! |
| //! The HAL is specified as traits to allow generic programming. These traits make use of the |
| //! [`nb`][] crate (*please go read that crate documentation before continuing*) to abstract over |
| //! the asynchronous model and to also provide a blocking operation mode. |
| //! |
| //! [`nb`]: https://crates.io/crates/nb |
| //! |
| //! Here's how a HAL trait may look like: |
| //! |
| //! ``` |
| //! extern crate nb; |
| //! |
| //! /// A serial interface |
| //! pub trait Serial { |
| //! /// Error type associated to this serial interface |
| //! type Error; |
| //! |
| //! /// Reads a single byte |
| //! fn read(&mut self) -> nb::Result<u8, Self::Error>; |
| //! |
| //! /// Writes a single byte |
| //! fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error>; |
| //! } |
| //! ``` |
| //! |
| //! The `nb::Result` enum is used to add a [`WouldBlock`] variant to the errors |
| //! of the serial interface. As explained in the documentation of the `nb` crate this single API, |
| //! when paired with the macros in the `nb` crate, can operate in a blocking manner, or in a |
| //! non-blocking manner compatible with `futures` and with the `await!` operator. |
| //! |
| //! [`WouldBlock`]: https://docs.rs/nb/0.1.0/nb/enum.Error.html |
| //! |
| //! Some traits, like the one shown below, may expose possibly blocking APIs that can't fail. In |
| //! those cases `nb::Result<_, Void>` is used. |
| //! |
| //! ``` |
| //! extern crate nb; |
| //! extern crate void; |
| //! |
| //! use void::Void; |
| //! |
| //! /// A count down timer |
| //! pub trait CountDown { |
| //! // .. |
| //! |
| //! /// "waits" until the count down is over |
| //! fn wait(&mut self) -> nb::Result<(), Void>; |
| //! } |
| //! |
| //! # fn main() {} |
| //! ``` |
| //! |
| //! ## Suggested implementation |
| //! |
| //! The HAL traits should be implemented for device crates generated via [`svd2rust`] to maximize |
| //! code reuse. |
| //! |
| //! [`svd2rust`]: https://crates.io/crates/svd2rust |
| //! |
| //! Shown below is an implementation of some of the HAL traits for the [`stm32f30x`] crate. This |
| //! single implementation will work for *any* microcontroller in the STM32F30x family. |
| //! |
| //! [`stm32f30x`]: https://crates.io/crates/stm32f30x |
| //! |
| //! ``` |
| //! // crate: stm32f30x-hal |
| //! // An implementation of the `embedded-hal` traits for STM32F30x microcontrollers |
| //! |
| //! extern crate embedded_hal as hal; |
| //! extern crate nb; |
| //! |
| //! // device crate |
| //! extern crate stm32f30x; |
| //! |
| //! use stm32f30x::USART1; |
| //! |
| //! /// A serial interface |
| //! // NOTE generic over the USART peripheral |
| //! pub struct Serial<USART> { usart: USART } |
| //! |
| //! // convenience type alias |
| //! pub type Serial1 = Serial<USART1>; |
| //! |
| //! /// Serial interface error |
| //! pub enum Error { |
| //! /// Buffer overrun |
| //! Overrun, |
| //! // omitted: other error variants |
| //! } |
| //! |
| //! impl hal::serial::Read<u8> for Serial<USART1> { |
| //! type Error = Error; |
| //! |
| //! fn read(&mut self) -> nb::Result<u8, Error> { |
| //! // read the status register |
| //! let isr = self.usart.isr.read(); |
| //! |
| //! if isr.ore().bit_is_set() { |
| //! // Error: Buffer overrun |
| //! Err(nb::Error::Other(Error::Overrun)) |
| //! } |
| //! // omitted: checks for other errors |
| //! else if isr.rxne().bit_is_set() { |
| //! // Data available: read the data register |
| //! Ok(self.usart.rdr.read().bits() as u8) |
| //! } else { |
| //! // No data available yet |
| //! Err(nb::Error::WouldBlock) |
| //! } |
| //! } |
| //! } |
| //! |
| //! impl hal::serial::Write<u8> for Serial<USART1> { |
| //! type Error = Error; |
| //! |
| //! fn write(&mut self, byte: u8) -> nb::Result<(), Error> { |
| //! // Similar to the `read` implementation |
| //! # Ok(()) |
| //! } |
| //! |
| //! fn flush(&mut self) -> nb::Result<(), Error> { |
| //! // Similar to the `read` implementation |
| //! # Ok(()) |
| //! } |
| //! } |
| //! |
| //! # fn main() {} |
| //! ``` |
| //! |
| //! ## Intended usage |
| //! |
| //! Thanks to the [`nb`] crate the HAL API can be used in a blocking manner, |
| //! with `futures` or with the `await` operator using the [`block!`], |
| //! [`try_nb!`] and [`await!`] macros respectively. |
| //! |
| //! [`block!`]: https://docs.rs/nb/0.1.0/nb/macro.block.html |
| //! [`try_nb!`]: https://docs.rs/nb/0.1.0/nb/index.html#how-to-use-this-crate |
| //! [`await!`]: https://docs.rs/nb/0.1.0/nb/index.html#how-to-use-this-crate |
| //! |
| //! ### Blocking mode |
| //! |
| //! An example of sending a string over the serial interface in a blocking |
| //! fashion: |
| //! |
| //! ``` |
| //! extern crate embedded_hal; |
| //! #[macro_use(block)] |
| //! extern crate nb; |
| //! |
| //! use stm32f30x_hal::Serial1; |
| //! use embedded_hal::serial::Write; |
| //! |
| //! # fn main() { |
| //! let mut serial: Serial1 = { |
| //! // .. |
| //! # Serial1 |
| //! }; |
| //! |
| //! for byte in b"Hello, world!" { |
| //! // NOTE `block!` blocks until `serial.write()` completes and returns |
| //! // `Result<(), Error>` |
| //! block!(serial.write(*byte)).unwrap(); |
| //! } |
| //! # } |
| //! |
| //! # mod stm32f30x_hal { |
| //! # extern crate void; |
| //! # use self::void::Void; |
| //! # pub struct Serial1; |
| //! # impl Serial1 { |
| //! # pub fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { |
| //! # Ok(()) |
| //! # } |
| //! # } |
| //! # } |
| //! ``` |
| //! |
| //! ### `futures` |
| //! |
| //! An example of running two tasks concurrently. First task: blink an LED every |
| //! second. Second task: loop back data over the serial interface. |
| //! |
| //! ``` |
| //! extern crate embedded_hal as hal; |
| //! extern crate futures; |
| //! extern crate void; |
| //! |
| //! #[macro_use(try_nb)] |
| //! extern crate nb; |
| //! |
| //! use hal::prelude::*; |
| //! use futures::{ |
| //! future, |
| //! Async, |
| //! Future, |
| //! }; |
| //! use futures::future::Loop; |
| //! use stm32f30x_hal::{Led, Serial1, Timer6}; |
| //! use void::Void; |
| //! |
| //! /// `futures` version of `CountDown.wait` |
| //! /// |
| //! /// This returns a future that must be polled to completion |
| //! fn wait<T>(mut timer: T) -> impl Future<Item = T, Error = Void> |
| //! where |
| //! T: hal::timer::CountDown, |
| //! { |
| //! let mut timer = Some(timer); |
| //! future::poll_fn(move || { |
| //! try_nb!(timer.as_mut().unwrap().wait()); |
| //! |
| //! Ok(Async::Ready(timer.take().unwrap())) |
| //! }) |
| //! } |
| //! |
| //! /// `futures` version of `Serial.read` |
| //! /// |
| //! /// This returns a future that must be polled to completion |
| //! fn read<S>(mut serial: S) -> impl Future<Item = (S, u8), Error = S::Error> |
| //! where |
| //! S: hal::serial::Read<u8>, |
| //! { |
| //! let mut serial = Some(serial); |
| //! future::poll_fn(move || { |
| //! let byte = try_nb!(serial.as_mut().unwrap().read()); |
| //! |
| //! Ok(Async::Ready((serial.take().unwrap(), byte))) |
| //! }) |
| //! } |
| //! |
| //! /// `futures` version of `Serial.write` |
| //! /// |
| //! /// This returns a future that must be polled to completion |
| //! fn write<S>(mut serial: S, byte: u8) -> impl Future<Item = S, Error = S::Error> |
| //! where |
| //! S: hal::serial::Write<u8>, |
| //! { |
| //! let mut serial = Some(serial); |
| //! future::poll_fn(move || { |
| //! try_nb!(serial.as_mut().unwrap().write(byte)); |
| //! |
| //! Ok(Async::Ready(serial.take().unwrap())) |
| //! }) |
| //! } |
| //! |
| //! fn main() { |
| //! // HAL implementers |
| //! let timer: Timer6 = { |
| //! // .. |
| //! # Timer6 |
| //! }; |
| //! let serial: Serial1 = { |
| //! // .. |
| //! # Serial1 |
| //! }; |
| //! let led: Led = { |
| //! // .. |
| //! # Led |
| //! }; |
| //! |
| //! // Tasks |
| //! let mut blinky = future::loop_fn::<_, (), _, _>( |
| //! (led, timer, true), |
| //! |(mut led, mut timer, state)| { |
| //! wait(timer).map(move |timer| { |
| //! if state { |
| //! led.on(); |
| //! } else { |
| //! led.off(); |
| //! } |
| //! |
| //! Loop::Continue((led, timer, !state)) |
| //! }) |
| //! }); |
| //! |
| //! let mut loopback = future::loop_fn::<_, (), _, _>(serial, |mut serial| { |
| //! read(serial).and_then(|(serial, byte)| { |
| //! write(serial, byte) |
| //! }).map(|serial| { |
| //! Loop::Continue(serial) |
| //! }) |
| //! }); |
| //! |
| //! // Event loop |
| //! loop { |
| //! blinky.poll().unwrap(); // NOTE(unwrap) E = Void |
| //! loopback.poll().unwrap(); |
| //! # break; |
| //! } |
| //! } |
| //! |
| //! # mod stm32f30x_hal { |
| //! # extern crate void; |
| //! # use self::void::Void; |
| //! # pub struct Timer6; |
| //! # impl ::hal::timer::CountDown for Timer6 { |
| //! # type Time = (); |
| //! # |
| //! # fn start<T>(&mut self, _: T) where T: Into<()> {} |
| //! # fn wait(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| //! # } |
| //! # |
| //! # pub struct Serial1; |
| //! # impl ::hal::serial::Read<u8> for Serial1 { |
| //! # type Error = Void; |
| //! # fn read(&mut self) -> ::nb::Result<u8, Void> { Err(::nb::Error::WouldBlock) } |
| //! # } |
| //! # impl ::hal::serial::Write<u8> for Serial1 { |
| //! # type Error = Void; |
| //! # fn flush(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| //! # fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| //! # } |
| //! # |
| //! # pub struct Led; |
| //! # impl Led { |
| //! # pub fn off(&mut self) {} |
| //! # pub fn on(&mut self) {} |
| //! # } |
| //! # } |
| //! ``` |
| //! |
| //! ### `await` |
| //! |
| //! Same example as above but using `await!` instead of `futures`. |
| //! |
| //! ``` |
| //! #![feature(generator_trait)] |
| //! #![feature(generators)] |
| //! |
| //! extern crate embedded_hal as hal; |
| //! |
| //! #[macro_use(await)] |
| //! extern crate nb; |
| //! |
| //! use std::ops::Generator; |
| //! use std::pin::Pin; |
| //! |
| //! use hal::prelude::*; |
| //! use stm32f30x_hal::{Led, Serial1, Timer6}; |
| //! |
| //! fn main() { |
| //! // HAL implementers |
| //! let mut timer: Timer6 = { |
| //! // .. |
| //! # Timer6 |
| //! }; |
| //! let mut serial: Serial1 = { |
| //! // .. |
| //! # Serial1 |
| //! }; |
| //! let mut led: Led = { |
| //! // .. |
| //! # Led |
| //! }; |
| //! |
| //! // Tasks |
| //! let mut blinky = (move || { |
| //! let mut state = false; |
| //! loop { |
| //! // `await!` means "suspend / yield here" instead of "block until |
| //! // completion" |
| //! await!(timer.wait()).unwrap(); // NOTE(unwrap) E = Void |
| //! |
| //! state = !state; |
| //! |
| //! if state { |
| //! led.on(); |
| //! } else { |
| //! led.off(); |
| //! } |
| //! } |
| //! }); |
| //! |
| //! let mut loopback = (move || { |
| //! loop { |
| //! let byte = await!(serial.read()).unwrap(); |
| //! await!(serial.write(byte)).unwrap(); |
| //! } |
| //! }); |
| //! |
| //! // Event loop |
| //! loop { |
| //! Pin::new(&mut blinky).resume(()); |
| //! Pin::new(&mut loopback).resume(()); |
| //! # break; |
| //! } |
| //! } |
| //! |
| //! # mod stm32f30x_hal { |
| //! # extern crate void; |
| //! # use self::void::Void; |
| //! # pub struct Serial1; |
| //! # impl Serial1 { |
| //! # pub fn read(&mut self) -> ::nb::Result<u8, Void> { Err(::nb::Error::WouldBlock) } |
| //! # pub fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| //! # } |
| //! # pub struct Timer6; |
| //! # impl Timer6 { |
| //! # pub fn wait(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| //! # } |
| //! # pub struct Led; |
| //! # impl Led { |
| //! # pub fn off(&mut self) {} |
| //! # pub fn on(&mut self) {} |
| //! # } |
| //! # } |
| //! ``` |
| //! |
| //! ## Generic programming and higher level abstractions |
| //! |
| //! The core of the HAL has been kept minimal on purpose to encourage building **generic** higher |
| //! level abstractions on top of it. Some higher level abstractions that pick an asynchronous model |
| //! or that have blocking behavior and that are deemed useful to build other abstractions can be |
| //! found in the `blocking` module and, in the future, in the `futures` and `async` modules. |
| //! |
| //! Some examples: |
| //! |
| //! **NOTE** All the functions shown below could have been written as trait |
| //! methods with default implementation to allow specialization, but they have |
| //! been written as functions to keep things simple. |
| //! |
| //! - Write a whole buffer to a serial device in blocking a fashion. |
| //! |
| //! ``` |
| //! extern crate embedded_hal as hal; |
| //! #[macro_use(block)] |
| //! extern crate nb; |
| //! |
| //! use hal::prelude::*; |
| //! |
| //! fn write_all<S>(serial: &mut S, buffer: &[u8]) -> Result<(), S::Error> |
| //! where |
| //! S: hal::serial::Write<u8> |
| //! { |
| //! for &byte in buffer { |
| //! block!(serial.write(byte))?; |
| //! } |
| //! |
| //! Ok(()) |
| //! } |
| //! |
| //! # fn main() {} |
| //! ``` |
| //! |
| //! - Blocking serial read with timeout |
| //! |
| //! ``` |
| //! extern crate embedded_hal as hal; |
| //! extern crate nb; |
| //! |
| //! use hal::prelude::*; |
| //! |
| //! enum Error<E> { |
| //! /// Serial interface error |
| //! Serial(E), |
| //! TimedOut, |
| //! } |
| //! |
| //! fn read_with_timeout<S, T>( |
| //! serial: &mut S, |
| //! timer: &mut T, |
| //! timeout: T::Time, |
| //! ) -> Result<u8, Error<S::Error>> |
| //! where |
| //! T: hal::timer::CountDown, |
| //! S: hal::serial::Read<u8>, |
| //! { |
| //! timer.start(timeout); |
| //! |
| //! loop { |
| //! match serial.read() { |
| //! // raise error |
| //! Err(nb::Error::Other(e)) => return Err(Error::Serial(e)), |
| //! Err(nb::Error::WouldBlock) => { |
| //! // no data available yet, check the timer below |
| //! }, |
| //! Ok(byte) => return Ok(byte), |
| //! } |
| //! |
| //! match timer.wait() { |
| //! Err(nb::Error::Other(e)) => { |
| //! // The error type specified by `timer.wait()` is `!`, which |
| //! // means no error can actually occur. The Rust compiler |
| //! // still forces us to provide this match arm, though. |
| //! unreachable!() |
| //! }, |
| //! // no timeout yet, try again |
| //! Err(nb::Error::WouldBlock) => continue, |
| //! Ok(()) => return Err(Error::TimedOut), |
| //! } |
| //! } |
| //! } |
| //! |
| //! # fn main() {} |
| //! ``` |
| //! |
| //! - Asynchronous SPI transfer |
| //! |
| //! ``` |
| //! #![feature(conservative_impl_trait)] |
| //! #![feature(generators)] |
| //! #![feature(generator_trait)] |
| //! |
| //! extern crate embedded_hal as hal; |
| //! #[macro_use(await)] |
| //! extern crate nb; |
| //! |
| //! use std::ops::Generator; |
| //! |
| //! /// Transfers a byte buffer of size N |
| //! /// |
| //! /// Returns the same byte buffer but filled with the data received from the |
| //! /// slave device |
| //! fn transfer<S, B>( |
| //! mut spi: S, |
| //! mut buffer: [u8; 16], // NOTE this should be generic over the size of the array |
| //! ) -> impl Generator<Return = Result<(S, [u8; 16]), S::Error>, Yield = ()> |
| //! where |
| //! S: hal::spi::FullDuplex<u8>, |
| //! { |
| //! move || { |
| //! let n = buffer.len(); |
| //! for i in 0..n { |
| //! await!(spi.send(buffer[i]))?; |
| //! buffer[i] = await!(spi.read())?; |
| //! } |
| //! |
| //! Ok((spi, buffer)) |
| //! } |
| //! } |
| //! |
| //! # fn main() {} |
| //! ``` |
| //! |
| //! - Buffered serial interface with periodic flushing in interrupt handler |
| //! |
| //! ``` |
| //! extern crate embedded_hal as hal; |
| //! extern crate nb; |
| //! extern crate void; |
| //! |
| //! use hal::prelude::*; |
| //! use void::Void; |
| //! |
| //! fn flush<S>(serial: &mut S, cb: &mut CircularBuffer) |
| //! where |
| //! S: hal::serial::Write<u8, Error = Void>, |
| //! { |
| //! loop { |
| //! if let Some(byte) = cb.peek() { |
| //! match serial.write(*byte) { |
| //! Err(nb::Error::Other(_)) => unreachable!(), |
| //! Err(nb::Error::WouldBlock) => return, |
| //! Ok(()) => {}, // keep flushing data |
| //! } |
| //! } |
| //! |
| //! cb.pop(); |
| //! } |
| //! } |
| //! |
| //! // The stuff below could be in some other crate |
| //! |
| //! /// Global singleton |
| //! pub struct BufferedSerial1; |
| //! |
| //! // NOTE private |
| //! static BUFFER1: Mutex<CircularBuffer> = { |
| //! // .. |
| //! # Mutex(CircularBuffer) |
| //! }; |
| //! static SERIAL1: Mutex<Serial1> = { |
| //! // .. |
| //! # Mutex(Serial1) |
| //! }; |
| //! |
| //! impl BufferedSerial1 { |
| //! pub fn write(&self, byte: u8) { |
| //! self.write_all(&[byte]) |
| //! } |
| //! |
| //! pub fn write_all(&self, bytes: &[u8]) { |
| //! let mut buffer = BUFFER1.lock(); |
| //! for byte in bytes { |
| //! buffer.push(*byte).expect("buffer overrun"); |
| //! } |
| //! // omitted: pend / enable interrupt_handler |
| //! } |
| //! } |
| //! |
| //! fn interrupt_handler() { |
| //! let mut serial = SERIAL1.lock(); |
| //! let mut buffer = BUFFER1.lock(); |
| //! |
| //! flush(&mut *serial, &mut buffer); |
| //! } |
| //! |
| //! # struct Mutex<T>(T); |
| //! # impl<T> Mutex<T> { |
| //! # fn lock(&self) -> RefMut<T> { unimplemented!() } |
| //! # } |
| //! # struct RefMut<'a, T>(&'a mut T) where T: 'a; |
| //! # impl<'a, T> ::std::ops::Deref for RefMut<'a, T> { |
| //! # type Target = T; |
| //! # fn deref(&self) -> &T { self.0 } |
| //! # } |
| //! # impl<'a, T> ::std::ops::DerefMut for RefMut<'a, T> { |
| //! # fn deref_mut(&mut self) -> &mut T { self.0 } |
| //! # } |
| //! # struct Serial1; |
| //! # impl ::hal::serial::Write<u8> for Serial1 { |
| //! # type Error = Void; |
| //! # fn write(&mut self, _: u8) -> nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| //! # fn flush(&mut self) -> nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| //! # } |
| //! # struct CircularBuffer; |
| //! # impl CircularBuffer { |
| //! # pub fn peek(&mut self) -> Option<&u8> { None } |
| //! # pub fn pop(&mut self) -> Option<u8> { None } |
| //! # pub fn push(&mut self, _: u8) -> Result<(), ()> { Ok(()) } |
| //! # } |
| //! |
| //! # fn main() {} |
| //! ``` |
| |
| #![deny(missing_docs)] |
| #![no_std] |
| |
| #[macro_use] |
| extern crate nb; |
| extern crate void; |
| |
| pub mod adc; |
| pub mod blocking; |
| pub mod can; |
| pub mod digital; |
| pub mod fmt; |
| pub mod prelude; |
| pub mod serial; |
| pub mod spi; |
| pub mod timer; |
| pub mod watchdog; |
| |
| /// Input capture |
| /// |
| /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
| /// |
| /// # Examples |
| /// |
| /// You can use this interface to measure the period of (quasi) periodic signals |
| /// / events |
| /// |
| /// ``` |
| /// extern crate embedded_hal as hal; |
| /// #[macro_use(block)] |
| /// extern crate nb; |
| /// |
| /// use hal::prelude::*; |
| /// |
| /// fn main() { |
| /// let mut capture: Capture1 = { |
| /// // .. |
| /// # Capture1 |
| /// }; |
| /// |
| /// capture.set_resolution(1.ms()); |
| /// |
| /// let before = block!(capture.capture(Channel::_1)).unwrap(); |
| /// let after = block!(capture.capture(Channel::_1)).unwrap(); |
| /// |
| /// let period = after.wrapping_sub(before); |
| /// |
| /// println!("Period: {} ms", period); |
| /// } |
| /// |
| /// # extern crate void; |
| /// # use void::Void; |
| /// # struct MilliSeconds(u32); |
| /// # trait U32Ext { fn ms(self) -> MilliSeconds; } |
| /// # impl U32Ext for u32 { fn ms(self) -> MilliSeconds { MilliSeconds(self) } } |
| /// # struct Capture1; |
| /// # enum Channel { _1 } |
| /// # impl hal::Capture for Capture1 { |
| /// # type Capture = u16; |
| /// # type Channel = Channel; |
| /// # type Error = Void; |
| /// # type Time = MilliSeconds; |
| /// # fn capture(&mut self, _: Channel) -> ::nb::Result<u16, Void> { Ok(0) } |
| /// # fn disable(&mut self, _: Channel) { unimplemented!() } |
| /// # fn enable(&mut self, _: Channel) { unimplemented!() } |
| /// # fn get_resolution(&self) -> MilliSeconds { unimplemented!() } |
| /// # fn set_resolution<T>(&mut self, _: T) where T: Into<MilliSeconds> {} |
| /// # } |
| /// ``` |
| #[cfg(feature = "unproven")] |
| // reason: pre-singletons API. With singletons a `CapturePin` (cf. `PwmPin`) trait seems more |
| // appropriate |
| pub trait Capture { |
| /// Enumeration of `Capture` errors |
| /// |
| /// Possible errors: |
| /// |
| /// - *overcapture*, the previous capture value was overwritten because it |
| /// was not read in a timely manner |
| type Error; |
| |
| /// Enumeration of channels that can be used with this `Capture` interface |
| /// |
| /// If your `Capture` interface has no channels you can use the type `()` |
| /// here |
| type Channel; |
| |
| /// A time unit that can be converted into a human time unit (e.g. seconds) |
| type Time; |
| |
| /// The type of the value returned by `capture` |
| type Capture; |
| |
| /// "Waits" for a transition in the capture `channel` and returns the value |
| /// of counter at that instant |
| /// |
| /// NOTE that you must multiply the returned value by the *resolution* of |
| /// this `Capture` interface to get a human time unit (e.g. seconds) |
| fn capture(&mut self, channel: Self::Channel) -> nb::Result<Self::Capture, Self::Error>; |
| |
| /// Disables a capture `channel` |
| fn disable(&mut self, channel: Self::Channel); |
| |
| /// Enables a capture `channel` |
| fn enable(&mut self, channel: Self::Channel); |
| |
| /// Returns the current resolution |
| fn get_resolution(&self) -> Self::Time; |
| |
| /// Sets the resolution of the capture timer |
| fn set_resolution<R>(&mut self, resolution: R) |
| where |
| R: Into<Self::Time>; |
| } |
| |
| /// Pulse Width Modulation |
| /// |
| /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
| /// |
| /// # Examples |
| /// |
| /// Use this interface to control the power output of some actuator |
| /// |
| /// ``` |
| /// extern crate embedded_hal as hal; |
| /// |
| /// use hal::prelude::*; |
| /// |
| /// fn main() { |
| /// let mut pwm: Pwm1 = { |
| /// // .. |
| /// # Pwm1 |
| /// }; |
| /// |
| /// pwm.set_period(1.khz()); |
| /// |
| /// let max_duty = pwm.get_max_duty(); |
| /// |
| /// // brightest LED |
| /// pwm.set_duty(Channel::_1, max_duty); |
| /// |
| /// // dimmer LED |
| /// pwm.set_duty(Channel::_2, max_duty / 4); |
| /// } |
| /// |
| /// # struct KiloHertz(u32); |
| /// # trait U32Ext { fn khz(self) -> KiloHertz; } |
| /// # impl U32Ext for u32 { fn khz(self) -> KiloHertz { KiloHertz(self) } } |
| /// # enum Channel { _1, _2 } |
| /// # struct Pwm1; |
| /// # impl hal::Pwm for Pwm1 { |
| /// # type Channel = Channel; |
| /// # type Time = KiloHertz; |
| /// # type Duty = u16; |
| /// # fn disable(&mut self, _: Channel) { unimplemented!() } |
| /// # fn enable(&mut self, _: Channel) { unimplemented!() } |
| /// # fn get_duty(&self, _: Channel) -> u16 { unimplemented!() } |
| /// # fn get_max_duty(&self) -> u16 { 0 } |
| /// # fn set_duty(&mut self, _: Channel, _: u16) {} |
| /// # fn get_period(&self) -> KiloHertz { unimplemented!() } |
| /// # fn set_period<T>(&mut self, _: T) where T: Into<KiloHertz> {} |
| /// # } |
| /// ``` |
| #[cfg(feature = "unproven")] |
| // reason: pre-singletons API. The `PwmPin` trait seems more useful because it models independent |
| // PWM channels. Here a certain number of channels are multiplexed in a single implementer. |
| pub trait Pwm { |
| /// Enumeration of channels that can be used with this `Pwm` interface |
| /// |
| /// If your `Pwm` interface has no channels you can use the type `()` |
| /// here |
| type Channel; |
| |
| /// A time unit that can be converted into a human time unit (e.g. seconds) |
| type Time; |
| |
| /// Type for the `duty` methods |
| /// |
| /// The implementer is free to choose a float / percentage representation |
| /// (e.g. `0.0 .. 1.0`) or an integer representation (e.g. `0 .. 65535`) |
| type Duty; |
| |
| /// Disables a PWM `channel` |
| fn disable(&mut self, channel: Self::Channel); |
| |
| /// Enables a PWM `channel` |
| fn enable(&mut self, channel: Self::Channel); |
| |
| /// Returns the current PWM period |
| fn get_period(&self) -> Self::Time; |
| |
| /// Returns the current duty cycle |
| fn get_duty(&self, channel: Self::Channel) -> Self::Duty; |
| |
| /// Returns the maximum duty cycle value |
| fn get_max_duty(&self) -> Self::Duty; |
| |
| /// Sets a new duty cycle |
| fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty); |
| |
| /// Sets a new PWM period |
| fn set_period<P>(&mut self, period: P) |
| where |
| P: Into<Self::Time>; |
| } |
| |
| /// A single PWM channel / pin |
| /// |
| /// See `Pwm` for details |
| pub trait PwmPin { |
| /// Type for the `duty` methods |
| /// |
| /// The implementer is free to choose a float / percentage representation |
| /// (e.g. `0.0 .. 1.0`) or an integer representation (e.g. `0 .. 65535`) |
| type Duty; |
| |
| /// Disables a PWM `channel` |
| fn disable(&mut self); |
| |
| /// Enables a PWM `channel` |
| fn enable(&mut self); |
| |
| /// Returns the current duty cycle |
| fn get_duty(&self) -> Self::Duty; |
| |
| /// Returns the maximum duty cycle value |
| fn get_max_duty(&self) -> Self::Duty; |
| |
| /// Sets a new duty cycle |
| fn set_duty(&mut self, duty: Self::Duty); |
| } |
| |
| /// Quadrature encoder interface |
| /// |
| /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
| /// |
| /// # Examples |
| /// |
| /// You can use this interface to measure the speed of a motor |
| /// |
| /// ``` |
| /// extern crate embedded_hal as hal; |
| /// #[macro_use(block)] |
| /// extern crate nb; |
| /// |
| /// use hal::prelude::*; |
| /// |
| /// fn main() { |
| /// let mut qei: Qei1 = { |
| /// // .. |
| /// # Qei1 |
| /// }; |
| /// let mut timer: Timer6 = { |
| /// // .. |
| /// # Timer6 |
| /// }; |
| /// |
| /// |
| /// let before = qei.count(); |
| /// timer.start(1.s()); |
| /// block!(timer.wait()); |
| /// let after = qei.count(); |
| /// |
| /// let speed = after.wrapping_sub(before); |
| /// println!("Speed: {} pulses per second", speed); |
| /// } |
| /// |
| /// # extern crate void; |
| /// # use void::Void; |
| /// # struct Seconds(u32); |
| /// # trait U32Ext { fn s(self) -> Seconds; } |
| /// # impl U32Ext for u32 { fn s(self) -> Seconds { Seconds(self) } } |
| /// # struct Qei1; |
| /// # impl hal::Qei for Qei1 { |
| /// # type Count = u16; |
| /// # fn count(&self) -> u16 { 0 } |
| /// # fn direction(&self) -> ::hal::Direction { unimplemented!() } |
| /// # } |
| /// # struct Timer6; |
| /// # impl hal::timer::CountDown for Timer6 { |
| /// # type Time = Seconds; |
| /// # fn start<T>(&mut self, _: T) where T: Into<Seconds> {} |
| /// # fn wait(&mut self) -> ::nb::Result<(), Void> { Ok(()) } |
| /// # } |
| /// ``` |
| #[cfg(feature = "unproven")] |
| // reason: needs to be re-evaluated in the new singletons world. At the very least this needs a |
| // reference implementation |
| pub trait Qei { |
| /// The type of the value returned by `count` |
| type Count; |
| |
| /// Returns the current pulse count of the encoder |
| fn count(&self) -> Self::Count; |
| |
| /// Returns the count direction |
| fn direction(&self) -> Direction; |
| } |
| |
| /// Count direction |
| /// |
| /// *This enumeration is available if embedded-hal is built with the `"unproven"` feature.* |
| #[derive(Clone, Copy, Debug, Eq, PartialEq)] |
| #[cfg(feature = "unproven")] |
| // reason: part of the unproven `Qei` interface |
| pub enum Direction { |
| /// 3, 2, 1 |
| Downcounting, |
| /// 1, 2, 3 |
| Upcounting, |
| } |
| |
| mod private { |
| pub trait Sealed {} |
| } |