blob: e333d8ad16cd36edc00c0bcbdbc7e6fbeff68524 [file] [log] [blame]
//! Locks that have the same behaviour as a mutex.
//!
//! The [`Mutex`] in the root of the crate, can be configured using the `ticket_mutex` feature.
//! If it's enabled, [`TicketMutex`] and [`TicketMutexGuard`] will be re-exported as [`Mutex`]
//! and [`MutexGuard`], otherwise the [`SpinMutex`] and guard will be re-exported.
//!
//! `ticket_mutex` is disabled by default.
//!
//! [`Mutex`]: ../struct.Mutex.html
//! [`MutexGuard`]: ../struct.MutexGuard.html
//! [`TicketMutex`]: ./struct.TicketMutex.html
//! [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html
//! [`SpinMutex`]: ./struct.SpinMutex.html
//! [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html
#[cfg(feature = "spin_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))]
pub mod spin;
#[cfg(feature = "spin_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))]
pub use self::spin::{SpinMutex, SpinMutexGuard};
#[cfg(feature = "ticket_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))]
pub mod ticket;
#[cfg(feature = "ticket_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))]
pub use self::ticket::{TicketMutex, TicketMutexGuard};
#[cfg(feature = "fair_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))]
pub mod fair;
#[cfg(feature = "fair_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))]
pub use self::fair::{FairMutex, FairMutexGuard, Starvation};
use crate::{RelaxStrategy, Spin};
use core::{
fmt,
ops::{Deref, DerefMut},
};
#[cfg(all(not(feature = "spin_mutex"), not(feature = "use_ticket_mutex")))]
compile_error!("The `mutex` feature flag was used (perhaps through another feature?) without either `spin_mutex` or `use_ticket_mutex`. One of these is required.");
#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))]
type InnerMutex<T, R> = self::spin::SpinMutex<T, R>;
#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))]
type InnerMutexGuard<'a, T> = self::spin::SpinMutexGuard<'a, T>;
#[cfg(feature = "use_ticket_mutex")]
type InnerMutex<T, R> = self::ticket::TicketMutex<T, R>;
#[cfg(feature = "use_ticket_mutex")]
type InnerMutexGuard<'a, T> = self::ticket::TicketMutexGuard<'a, T>;
/// A spin-based lock providing mutually exclusive access to data.
///
/// The implementation uses either a ticket mutex or a regular spin mutex depending on whether the `spin_mutex` or
/// `ticket_mutex` feature flag is enabled.
///
/// # Example
///
/// ```
/// use spin;
///
/// let lock = spin::Mutex::new(0);
///
/// // Modify the data
/// *lock.lock() = 2;
///
/// // Read the data
/// let answer = *lock.lock();
/// assert_eq!(answer, 2);
/// ```
///
/// # Thread safety example
///
/// ```
/// use spin;
/// use std::sync::{Arc, Barrier};
///
/// let thread_count = 1000;
/// let spin_mutex = Arc::new(spin::Mutex::new(0));
///
/// // We use a barrier to ensure the readout happens after all writing
/// let barrier = Arc::new(Barrier::new(thread_count + 1));
///
/// # let mut ts = Vec::new();
/// for _ in (0..thread_count) {
/// let my_barrier = barrier.clone();
/// let my_lock = spin_mutex.clone();
/// # let t =
/// std::thread::spawn(move || {
/// let mut guard = my_lock.lock();
/// *guard += 1;
///
/// // Release the lock to prevent a deadlock
/// drop(guard);
/// my_barrier.wait();
/// });
/// # ts.push(t);
/// }
///
/// barrier.wait();
///
/// let answer = { *spin_mutex.lock() };
/// assert_eq!(answer, thread_count);
///
/// # for t in ts {
/// # t.join().unwrap();
/// # }
/// ```
pub struct Mutex<T: ?Sized, R = Spin> {
inner: InnerMutex<T, R>,
}
unsafe impl<T: ?Sized + Send, R> Sync for Mutex<T, R> {}
unsafe impl<T: ?Sized + Send, R> Send for Mutex<T, R> {}
/// A generic guard that will protect some data access and
/// uses either a ticket lock or a normal spin mutex.
///
/// For more info see [`TicketMutexGuard`] or [`SpinMutexGuard`].
///
/// [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html
/// [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html
pub struct MutexGuard<'a, T: 'a + ?Sized> {
inner: InnerMutexGuard<'a, T>,
}
impl<T, R> Mutex<T, R> {
/// Creates a new [`Mutex`] wrapping the supplied data.
///
/// # Example
///
/// ```
/// use spin::Mutex;
///
/// static MUTEX: Mutex<()> = Mutex::new(());
///
/// fn demo() {
/// let lock = MUTEX.lock();
/// // do something with lock
/// drop(lock);
/// }
/// ```
#[inline(always)]
pub const fn new(value: T) -> Self {
Self {
inner: InnerMutex::new(value),
}
}
/// Consumes this [`Mutex`] and unwraps the underlying data.
///
/// # Example
///
/// ```
/// let lock = spin::Mutex::new(42);
/// assert_eq!(42, lock.into_inner());
/// ```
#[inline(always)]
pub fn into_inner(self) -> T {
self.inner.into_inner()
}
}
impl<T: ?Sized, R: RelaxStrategy> Mutex<T, R> {
/// Locks the [`Mutex`] and returns a guard that permits access to the inner data.
///
/// The returned value may be dereferenced for data access
/// and the lock will be dropped when the guard falls out of scope.
///
/// ```
/// let lock = spin::Mutex::new(0);
/// {
/// let mut data = lock.lock();
/// // The lock is now locked and the data can be accessed
/// *data += 1;
/// // The lock is implicitly dropped at the end of the scope
/// }
/// ```
#[inline(always)]
pub fn lock(&self) -> MutexGuard<T> {
MutexGuard {
inner: self.inner.lock(),
}
}
}
impl<T: ?Sized, R> Mutex<T, R> {
/// Returns `true` if the lock is currently held.
///
/// # Safety
///
/// This function provides no synchronization guarantees and so its result should be considered 'out of date'
/// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
#[inline(always)]
pub fn is_locked(&self) -> bool {
self.inner.is_locked()
}
/// Force unlock this [`Mutex`].
///
/// # Safety
///
/// This is *extremely* unsafe if the lock is not held by the current
/// thread. However, this can be useful in some instances for exposing the
/// lock to FFI that doesn't know how to deal with RAII.
#[inline(always)]
pub unsafe fn force_unlock(&self) {
self.inner.force_unlock()
}
/// Try to lock this [`Mutex`], returning a lock guard if successful.
///
/// # Example
///
/// ```
/// let lock = spin::Mutex::new(42);
///
/// let maybe_guard = lock.try_lock();
/// assert!(maybe_guard.is_some());
///
/// // `maybe_guard` is still held, so the second call fails
/// let maybe_guard2 = lock.try_lock();
/// assert!(maybe_guard2.is_none());
/// ```
#[inline(always)]
pub fn try_lock(&self) -> Option<MutexGuard<T>> {
self.inner
.try_lock()
.map(|guard| MutexGuard { inner: guard })
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the [`Mutex`] mutably, and a mutable reference is guaranteed to be exclusive in Rust,
/// no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As such,
/// this is a 'zero-cost' operation.
///
/// # Example
///
/// ```
/// let mut lock = spin::Mutex::new(0);
/// *lock.get_mut() = 10;
/// assert_eq!(*lock.lock(), 10);
/// ```
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
self.inner.get_mut()
}
}
impl<T: ?Sized + fmt::Debug, R> fmt::Debug for Mutex<T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.inner, f)
}
}
impl<T: ?Sized + Default, R> Default for Mutex<T, R> {
fn default() -> Self {
Self::new(Default::default())
}
}
impl<T, R> From<T> for Mutex<T, R> {
fn from(data: T) -> Self {
Self::new(data)
}
}
impl<'a, T: ?Sized> MutexGuard<'a, T> {
/// Leak the lock guard, yielding a mutable reference to the underlying data.
///
/// Note that this function will permanently lock the original [`Mutex`].
///
/// ```
/// let mylock = spin::Mutex::new(0);
///
/// let data: &mut i32 = spin::MutexGuard::leak(mylock.lock());
///
/// *data = 1;
/// assert_eq!(*data, 1);
/// ```
#[inline(always)]
pub fn leak(this: Self) -> &'a mut T {
InnerMutexGuard::leak(this.inner)
}
}
impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'a, T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> {
type Target = T;
fn deref(&self) -> &T {
&*self.inner
}
}
impl<'a, T: ?Sized> DerefMut for MutexGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T {
&mut *self.inner
}
}
#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for Mutex<(), R> {
type GuardMarker = lock_api_crate::GuardSend;
const INIT: Self = Self::new(());
fn lock(&self) {
// Prevent guard destructor running
core::mem::forget(Self::lock(self));
}
fn try_lock(&self) -> bool {
// Prevent guard destructor running
Self::try_lock(self).map(core::mem::forget).is_some()
}
unsafe fn unlock(&self) {
self.force_unlock();
}
fn is_locked(&self) -> bool {
self.inner.is_locked()
}
}