blob: f3dfc3c33cbe7563dc311b0a87b8e8f87d365545 [file] [log] [blame]
use core::{borrow::Borrow, fmt, iter::FromIterator, mem, num::NonZeroU32, ops, slice};
use hash32::{BuildHasher, BuildHasherDefault, FnvHasher, Hash, Hasher};
use crate::Vec;
/// A [`heapless::IndexMap`](./struct.IndexMap.html) using the default FNV hasher
///
/// A list of all Methods and Traits available for `FnvIndexMap` can be found in
/// the [`heapless::IndexMap`](./struct.IndexMap.html) documentation.
///
/// # Examples
/// ```
/// use heapless::FnvIndexMap;
///
/// // A hash map with a capacity of 16 key-value pairs allocated on the stack
/// let mut book_reviews = FnvIndexMap::<_, _, 16>::new();
///
/// // review some books.
/// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book.").unwrap();
/// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece.").unwrap();
/// book_reviews.insert("Pride and Prejudice", "Very enjoyable.").unwrap();
/// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.").unwrap();
///
/// // check for a specific one.
/// if !book_reviews.contains_key("Les Misérables") {
/// println!("We've got {} reviews, but Les Misérables ain't one.",
/// book_reviews.len());
/// }
///
/// // oops, this review has a lot of spelling mistakes, let's delete it.
/// book_reviews.remove("The Adventures of Sherlock Holmes");
///
/// // look up the values associated with some keys.
/// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
/// for book in &to_find {
/// match book_reviews.get(book) {
/// Some(review) => println!("{}: {}", book, review),
/// None => println!("{} is unreviewed.", book)
/// }
/// }
///
/// // iterate over everything.
/// for (book, review) in &book_reviews {
/// println!("{}: \"{}\"", book, review);
/// }
/// ```
pub type FnvIndexMap<K, V, const N: usize> = IndexMap<K, V, BuildHasherDefault<FnvHasher>, N>;
#[derive(Clone, Copy, Eq, PartialEq)]
struct HashValue(u16);
impl HashValue {
fn desired_pos(&self, mask: usize) -> usize {
usize::from(self.0) & mask
}
fn probe_distance(&self, mask: usize, current: usize) -> usize {
current.wrapping_sub(self.desired_pos(mask) as usize) & mask
}
}
#[doc(hidden)]
#[derive(Clone)]
pub struct Bucket<K, V> {
hash: HashValue,
key: K,
value: V,
}
#[doc(hidden)]
#[derive(Clone, Copy, PartialEq)]
pub struct Pos {
// compact representation of `{ hash_value: u16, index: u16 }`
// To get the most from `NonZero` we store the *value minus 1*. This way `None::Option<Pos>`
// is equivalent to the very unlikely value of `{ hash_value: 0xffff, index: 0xffff }` instead
// the more likely of `{ hash_value: 0x00, index: 0x00 }`
nz: NonZeroU32,
}
impl Pos {
fn new(index: usize, hash: HashValue) -> Self {
Pos {
nz: unsafe {
NonZeroU32::new_unchecked(
((u32::from(hash.0) << 16) + index as u32).wrapping_add(1),
)
},
}
}
fn hash(&self) -> HashValue {
HashValue((self.nz.get().wrapping_sub(1) >> 16) as u16)
}
fn index(&self) -> usize {
self.nz.get().wrapping_sub(1) as u16 as usize
}
}
enum Insert<K, V> {
Success(Inserted<V>),
Full((K, V)),
}
struct Inserted<V> {
index: usize,
old_value: Option<V>,
}
macro_rules! probe_loop {
($probe_var: ident < $len: expr, $body: expr) => {
loop {
if $probe_var < $len {
$body
$probe_var += 1;
} else {
$probe_var = 0;
}
}
}
}
struct CoreMap<K, V, const N: usize> {
entries: Vec<Bucket<K, V>, N>,
indices: [Option<Pos>; N],
}
impl<K, V, const N: usize> CoreMap<K, V, N> {
const fn new() -> Self {
const INIT: Option<Pos> = None;
CoreMap {
entries: Vec::new(),
indices: [INIT; N],
}
}
}
impl<K, V, const N: usize> CoreMap<K, V, N>
where
K: Eq + Hash,
{
fn capacity() -> usize {
N
}
fn mask() -> usize {
Self::capacity() - 1
}
fn find<Q>(&self, hash: HashValue, query: &Q) -> Option<(usize, usize)>
where
K: Borrow<Q>,
Q: ?Sized + Eq,
{
let mut probe = hash.desired_pos(Self::mask());
let mut dist = 0;
probe_loop!(probe < self.indices.len(), {
if let Some(pos) = self.indices[probe] {
let entry_hash = pos.hash();
// NOTE(i) we use unchecked indexing below
let i = pos.index();
debug_assert!(i < self.entries.len());
if dist > entry_hash.probe_distance(Self::mask(), probe) {
// give up when probe distance is too long
return None;
} else if entry_hash == hash
&& unsafe { self.entries.get_unchecked(i).key.borrow() == query }
{
return Some((probe, i));
}
} else {
return None;
}
dist += 1;
});
}
fn insert(&mut self, hash: HashValue, key: K, value: V) -> Insert<K, V> {
let mut probe = hash.desired_pos(Self::mask());
let mut dist = 0;
probe_loop!(probe < self.indices.len(), {
let pos = &mut self.indices[probe];
if let Some(pos) = *pos {
let entry_hash = pos.hash();
// NOTE(i) we use unchecked indexing below
let i = pos.index();
debug_assert!(i < self.entries.len());
let their_dist = entry_hash.probe_distance(Self::mask(), probe);
if their_dist < dist {
if self.entries.is_full() {
return Insert::Full((key, value));
}
// robin hood: steal the spot if it's better for us
let index = self.entries.len();
unsafe { self.entries.push_unchecked(Bucket { hash, key, value }) };
return Insert::Success(Inserted {
index: self.insert_phase_2(probe, Pos::new(index, hash)),
old_value: None,
});
} else if entry_hash == hash && unsafe { self.entries.get_unchecked(i).key == key }
{
return Insert::Success(Inserted {
index: i,
old_value: Some(mem::replace(
unsafe { &mut self.entries.get_unchecked_mut(i).value },
value,
)),
});
}
} else {
if self.entries.is_full() {
return Insert::Full((key, value));
}
// empty bucket, insert here
let index = self.entries.len();
*pos = Some(Pos::new(index, hash));
unsafe { self.entries.push_unchecked(Bucket { hash, key, value }) };
return Insert::Success(Inserted {
index,
old_value: None,
});
}
dist += 1;
});
}
// phase 2 is post-insert where we forward-shift `Pos` in the indices.
fn insert_phase_2(&mut self, mut probe: usize, mut old_pos: Pos) -> usize {
probe_loop!(probe < self.indices.len(), {
let pos = unsafe { self.indices.get_unchecked_mut(probe) };
let mut is_none = true; // work around lack of NLL
if let Some(pos) = pos.as_mut() {
old_pos = mem::replace(pos, old_pos);
is_none = false;
}
if is_none {
*pos = Some(old_pos);
return probe;
}
});
}
fn remove_found(&mut self, probe: usize, found: usize) -> (K, V) {
// index `probe` and entry `found` is to be removed
// use swap_remove, but then we need to update the index that points
// to the other entry that has to move
self.indices[probe] = None;
let entry = unsafe { self.entries.swap_remove_unchecked(found) };
// correct index that points to the entry that had to swap places
if let Some(entry) = self.entries.get(found) {
// was not last element
// examine new element in `found` and find it in indices
let mut probe = entry.hash.desired_pos(Self::mask());
probe_loop!(probe < self.indices.len(), {
if let Some(pos) = self.indices[probe] {
if pos.index() >= self.entries.len() {
// found it
self.indices[probe] = Some(Pos::new(found, entry.hash));
break;
}
}
});
}
self.backward_shift_after_removal(probe);
(entry.key, entry.value)
}
fn backward_shift_after_removal(&mut self, probe_at_remove: usize) {
// backward shift deletion in self.indices
// after probe, shift all non-ideally placed indices backward
let mut last_probe = probe_at_remove;
let mut probe = probe_at_remove + 1;
probe_loop!(probe < self.indices.len(), {
if let Some(pos) = self.indices[probe] {
let entry_hash = pos.hash();
if entry_hash.probe_distance(Self::mask(), probe) > 0 {
unsafe { *self.indices.get_unchecked_mut(last_probe) = self.indices[probe] }
self.indices[probe] = None;
} else {
break;
}
} else {
break;
}
last_probe = probe;
});
}
}
impl<K, V, const N: usize> Clone for CoreMap<K, V, N>
where
K: Eq + Hash + Clone,
V: Clone,
{
fn clone(&self) -> Self {
Self {
entries: self.entries.clone(),
indices: self.indices.clone(),
}
}
}
/// A view into an entry in the map
pub enum Entry<'a, K, V, const N: usize> {
/// The entry corresponding to the key `K` exists in the map
Occupied(OccupiedEntry<'a, K, V, N>),
/// The entry corresponding to the key `K` does not exist in the map
Vacant(VacantEntry<'a, K, V, N>),
}
/// An occupied entry which can be manipulated
pub struct OccupiedEntry<'a, K, V, const N: usize> {
key: K,
probe: usize,
pos: usize,
core: &'a mut CoreMap<K, V, N>,
}
impl<'a, K, V, const N: usize> OccupiedEntry<'a, K, V, N>
where
K: Eq + Hash,
{
/// Gets a reference to the key that this entity corresponds to
pub fn key(&self) -> &K {
&self.key
}
/// Removes this entry from the map and yields its corresponding key and value
pub fn remove_entry(self) -> (K, V) {
self.core.remove_found(self.probe, self.pos)
}
/// Gets a reference to the value associated with this entry
pub fn get(&self) -> &V {
// SAFETY: Already checked existence at instantiation and the only mutable reference
// to the map is internally held.
unsafe { &self.core.entries.get_unchecked(self.pos).value }
}
/// Gets a mutable reference to the value associated with this entry
pub fn get_mut(&mut self) -> &mut V {
// SAFETY: Already checked existence at instantiation and the only mutable reference
// to the map is internally held.
unsafe { &mut self.core.entries.get_unchecked_mut(self.pos).value }
}
/// Consumes this entry and yields a reference to the underlying value
pub fn into_mut(self) -> &'a mut V {
// SAFETY: Already checked existence at instantiation and the only mutable reference
// to the map is internally held.
unsafe { &mut self.core.entries.get_unchecked_mut(self.pos).value }
}
/// Overwrites the underlying map's value with this entry's value
pub fn insert(self, value: V) -> V {
// SAFETY: Already checked existence at instantiation and the only mutable reference
// to the map is internally held.
unsafe {
mem::replace(
&mut self.core.entries.get_unchecked_mut(self.pos).value,
value,
)
}
}
/// Removes this entry from the map and yields its value
pub fn remove(self) -> V {
self.remove_entry().1
}
}
/// A view into an empty slot in the underlying map
pub struct VacantEntry<'a, K, V, const N: usize> {
key: K,
hash_val: HashValue,
core: &'a mut CoreMap<K, V, N>,
}
impl<'a, K, V, const N: usize> VacantEntry<'a, K, V, N>
where
K: Eq + Hash,
{
/// Get the key associated with this entry
pub fn key(&self) -> &K {
&self.key
}
/// Consumes this entry to yield to key associated with it
pub fn into_key(self) -> K {
self.key
}
/// Inserts this entry into to underlying map, yields a mutable reference to the inserted value.
/// If the map is at capacity the value is returned instead.
pub fn insert(self, value: V) -> Result<&'a mut V, V> {
if self.core.entries.is_full() {
Err(value)
} else {
match self.core.insert(self.hash_val, self.key, value) {
Insert::Success(inserted) => {
unsafe {
// SAFETY: Already checked existence at instantiation and the only mutable reference
// to the map is internally held.
Ok(&mut (*self.core.entries.as_mut_ptr().add(inserted.index)).value)
}
}
Insert::Full((_, v)) => Err(v),
}
}
}
}
/// Fixed capacity [`IndexMap`](https://docs.rs/indexmap/1/indexmap/map/struct.IndexMap.html)
///
/// Note that you cannot use `IndexMap` directly, since it is generic around the hashing algorithm
/// in use. Pick a concrete instantiation like [`FnvIndexMap`](./type.FnvIndexMap.html) instead
/// or create your own.
///
/// Note that the capacity of the `IndexMap` must be a power of 2.
///
/// # Examples
/// Since `IndexMap` cannot be used directly, we're using its `FnvIndexMap` instantiation
/// for this example.
///
/// ```
/// use heapless::FnvIndexMap;
///
/// // A hash map with a capacity of 16 key-value pairs allocated on the stack
/// let mut book_reviews = FnvIndexMap::<_, _, 16>::new();
///
/// // review some books.
/// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book.").unwrap();
/// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece.").unwrap();
/// book_reviews.insert("Pride and Prejudice", "Very enjoyable.").unwrap();
/// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.").unwrap();
///
/// // check for a specific one.
/// if !book_reviews.contains_key("Les Misérables") {
/// println!("We've got {} reviews, but Les Misérables ain't one.",
/// book_reviews.len());
/// }
///
/// // oops, this review has a lot of spelling mistakes, let's delete it.
/// book_reviews.remove("The Adventures of Sherlock Holmes");
///
/// // look up the values associated with some keys.
/// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
/// for book in &to_find {
/// match book_reviews.get(book) {
/// Some(review) => println!("{}: {}", book, review),
/// None => println!("{} is unreviewed.", book)
/// }
/// }
///
/// // iterate over everything.
/// for (book, review) in &book_reviews {
/// println!("{}: \"{}\"", book, review);
/// }
/// ```
pub struct IndexMap<K, V, S, const N: usize> {
core: CoreMap<K, V, N>,
build_hasher: S,
}
impl<K, V, S, const N: usize> IndexMap<K, V, BuildHasherDefault<S>, N> {
/// Creates an empty `IndexMap`.
pub const fn new() -> Self {
// Const assert
crate::sealed::greater_than_1::<N>();
crate::sealed::power_of_two::<N>();
IndexMap {
build_hasher: BuildHasherDefault::new(),
core: CoreMap::new(),
}
}
}
impl<K, V, S, const N: usize> IndexMap<K, V, S, N>
where
K: Eq + Hash,
S: BuildHasher,
{
/* Public API */
/// Returns the number of elements the map can hold
pub fn capacity(&self) -> usize {
N
}
/// Return an iterator over the keys of the map, in their order
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 16>::new();
/// map.insert("a", 1).unwrap();
/// map.insert("b", 2).unwrap();
/// map.insert("c", 3).unwrap();
///
/// for key in map.keys() {
/// println!("{}", key);
/// }
/// ```
pub fn keys(&self) -> impl Iterator<Item = &K> {
self.core.entries.iter().map(|bucket| &bucket.key)
}
/// Return an iterator over the values of the map, in their order
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 16>::new();
/// map.insert("a", 1).unwrap();
/// map.insert("b", 2).unwrap();
/// map.insert("c", 3).unwrap();
///
/// for val in map.values() {
/// println!("{}", val);
/// }
/// ```
pub fn values(&self) -> impl Iterator<Item = &V> {
self.core.entries.iter().map(|bucket| &bucket.value)
}
/// Return an iterator over mutable references to the the values of the map, in their order
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 16>::new();
/// map.insert("a", 1).unwrap();
/// map.insert("b", 2).unwrap();
/// map.insert("c", 3).unwrap();
///
/// for val in map.values_mut() {
/// *val += 10;
/// }
///
/// for val in map.values() {
/// println!("{}", val);
/// }
/// ```
pub fn values_mut(&mut self) -> impl Iterator<Item = &mut V> {
self.core.entries.iter_mut().map(|bucket| &mut bucket.value)
}
/// Return an iterator over the key-value pairs of the map, in their order
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 16>::new();
/// map.insert("a", 1).unwrap();
/// map.insert("b", 2).unwrap();
/// map.insert("c", 3).unwrap();
///
/// for (key, val) in map.iter() {
/// println!("key: {} val: {}", key, val);
/// }
/// ```
pub fn iter(&self) -> Iter<'_, K, V> {
Iter {
iter: self.core.entries.iter(),
}
}
/// Return an iterator over the key-value pairs of the map, in their order
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 16>::new();
/// map.insert("a", 1).unwrap();
/// map.insert("b", 2).unwrap();
/// map.insert("c", 3).unwrap();
///
/// for (_, val) in map.iter_mut() {
/// *val = 2;
/// }
///
/// for (key, val) in &map {
/// println!("key: {} val: {}", key, val);
/// }
/// ```
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
IterMut {
iter: self.core.entries.iter_mut(),
}
}
/// Get the first key-value pair
///
/// Computes in **O(1)** time
pub fn first(&self) -> Option<(&K, &V)> {
self.core
.entries
.first()
.map(|bucket| (&bucket.key, &bucket.value))
}
/// Get the first key-value pair, with mutable access to the value
///
/// Computes in **O(1)** time
pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
self.core
.entries
.first_mut()
.map(|bucket| (&bucket.key, &mut bucket.value))
}
/// Get the last key-value pair
///
/// Computes in **O(1)** time
pub fn last(&self) -> Option<(&K, &V)> {
self.core
.entries
.last()
.map(|bucket| (&bucket.key, &bucket.value))
}
/// Get the last key-value pair, with mutable access to the value
///
/// Computes in **O(1)** time
pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
self.core
.entries
.last_mut()
.map(|bucket| (&bucket.key, &mut bucket.value))
}
/// Returns an entry for the corresponding key
/// ```
/// use heapless::FnvIndexMap;
/// use heapless::Entry;
/// let mut map = FnvIndexMap::<_, _, 16>::new();
/// if let Entry::Vacant(v) = map.entry("a") {
/// v.insert(1).unwrap();
/// }
/// if let Entry::Occupied(mut o) = map.entry("a") {
/// println!("found {}", *o.get()); // Prints 1
/// o.insert(2);
/// }
/// // Prints 2
/// println!("val: {}", *map.get("a").unwrap());
/// ```
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, N> {
let hash_val = hash_with(&key, &self.build_hasher);
if let Some((probe, pos)) = self.core.find(hash_val, &key) {
Entry::Occupied(OccupiedEntry {
key,
probe,
pos,
core: &mut self.core,
})
} else {
Entry::Vacant(VacantEntry {
key,
hash_val,
core: &mut self.core,
})
}
}
/// Return the number of key-value pairs in the map.
///
/// Computes in **O(1)** time.
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut a = FnvIndexMap::<_, _, 16>::new();
/// assert_eq!(a.len(), 0);
/// a.insert(1, "a").unwrap();
/// assert_eq!(a.len(), 1);
/// ```
pub fn len(&self) -> usize {
self.core.entries.len()
}
/// Returns true if the map contains no elements.
///
/// Computes in **O(1)** time.
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut a = FnvIndexMap::<_, _, 16>::new();
/// assert!(a.is_empty());
/// a.insert(1, "a");
/// assert!(!a.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Remove all key-value pairs in the map, while preserving its capacity.
///
/// Computes in **O(n)** time.
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut a = FnvIndexMap::<_, _, 16>::new();
/// a.insert(1, "a");
/// a.clear();
/// assert!(a.is_empty());
/// ```
pub fn clear(&mut self) {
self.core.entries.clear();
for pos in self.core.indices.iter_mut() {
*pos = None;
}
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed
/// form *must* match those for the key type.
///
/// Computes in **O(1)** time (average).
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 16>::new();
/// map.insert(1, "a").unwrap();
/// assert_eq!(map.get(&1), Some(&"a"));
/// assert_eq!(map.get(&2), None);
/// ```
pub fn get<Q>(&self, key: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: ?Sized + Hash + Eq,
{
self.find(key)
.map(|(_, found)| unsafe { &self.core.entries.get_unchecked(found).value })
}
/// Returns true if the map contains a value for the specified key.
///
/// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed
/// form *must* match those for the key type.
///
/// Computes in **O(1)** time (average).
///
/// # Examples
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 8>::new();
/// map.insert(1, "a").unwrap();
/// assert_eq!(map.contains_key(&1), true);
/// assert_eq!(map.contains_key(&2), false);
/// ```
pub fn contains_key<Q>(&self, key: &Q) -> bool
where
K: Borrow<Q>,
Q: ?Sized + Eq + Hash,
{
self.find(key).is_some()
}
/// Returns a mutable reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed
/// form *must* match those for the key type.
///
/// Computes in **O(1)** time (average).
///
/// # Examples
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 8>::new();
/// map.insert(1, "a").unwrap();
/// if let Some(x) = map.get_mut(&1) {
/// *x = "b";
/// }
/// assert_eq!(map[&1], "b");
/// ```
pub fn get_mut<'v, Q>(&'v mut self, key: &Q) -> Option<&'v mut V>
where
K: Borrow<Q>,
Q: ?Sized + Hash + Eq,
{
if let Some((_, found)) = self.find(key) {
Some(unsafe { &mut self.core.entries.get_unchecked_mut(found).value })
} else {
None
}
}
/// Inserts a key-value pair into the map.
///
/// If an equivalent key already exists in the map: the key remains and retains in its place in
/// the order, its corresponding value is updated with `value` and the older value is returned
/// inside `Some(_)`.
///
/// If no equivalent key existed in the map: the new key-value pair is inserted, last in order,
/// and `None` is returned.
///
/// Computes in **O(1)** time (average).
///
/// See also entry if you you want to insert or modify or if you need to get the index of the
/// corresponding key-value pair.
///
/// # Examples
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 8>::new();
/// assert_eq!(map.insert(37, "a"), Ok(None));
/// assert_eq!(map.is_empty(), false);
///
/// map.insert(37, "b");
/// assert_eq!(map.insert(37, "c"), Ok(Some("b")));
/// assert_eq!(map[&37], "c");
/// ```
pub fn insert(&mut self, key: K, value: V) -> Result<Option<V>, (K, V)> {
let hash = hash_with(&key, &self.build_hasher);
match self.core.insert(hash, key, value) {
Insert::Success(inserted) => Ok(inserted.old_value),
Insert::Full((k, v)) => Err((k, v)),
}
}
/// Same as [`swap_remove`](struct.IndexMap.html#method.swap_remove)
///
/// Computes in **O(1)** time (average).
///
/// # Examples
///
/// ```
/// use heapless::FnvIndexMap;
///
/// let mut map = FnvIndexMap::<_, _, 8>::new();
/// map.insert(1, "a").unwrap();
/// assert_eq!(map.remove(&1), Some("a"));
/// assert_eq!(map.remove(&1), None);
/// ```
pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: ?Sized + Hash + Eq,
{
self.swap_remove(key)
}
/// Remove the key-value pair equivalent to `key` and return its value.
///
/// Like `Vec::swap_remove`, the pair is removed by swapping it with the last element of the map
/// and popping it off. **This perturbs the postion of what used to be the last element!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: ?Sized + Hash + Eq,
{
self.find(key)
.map(|(probe, found)| self.core.remove_found(probe, found).1)
}
/* Private API */
/// Return probe (indices) and position (entries)
fn find<Q>(&self, key: &Q) -> Option<(usize, usize)>
where
K: Borrow<Q>,
Q: ?Sized + Hash + Eq,
{
if self.len() == 0 {
return None;
}
let h = hash_with(key, &self.build_hasher);
self.core.find(h, key)
}
}
impl<'a, K, Q, V, S, const N: usize> ops::Index<&'a Q> for IndexMap<K, V, S, N>
where
K: Eq + Hash + Borrow<Q>,
Q: ?Sized + Eq + Hash,
S: BuildHasher,
{
type Output = V;
fn index(&self, key: &Q) -> &V {
self.get(key).expect("key not found")
}
}
impl<'a, K, Q, V, S, const N: usize> ops::IndexMut<&'a Q> for IndexMap<K, V, S, N>
where
K: Eq + Hash + Borrow<Q>,
Q: ?Sized + Eq + Hash,
S: BuildHasher,
{
fn index_mut(&mut self, key: &Q) -> &mut V {
self.get_mut(key).expect("key not found")
}
}
impl<K, V, S, const N: usize> Clone for IndexMap<K, V, S, N>
where
K: Eq + Hash + Clone,
V: Clone,
S: Clone,
{
fn clone(&self) -> Self {
Self {
core: self.core.clone(),
build_hasher: self.build_hasher.clone(),
}
}
}
impl<K, V, S, const N: usize> fmt::Debug for IndexMap<K, V, S, N>
where
K: Eq + Hash + fmt::Debug,
V: fmt::Debug,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_map().entries(self.iter()).finish()
}
}
impl<K, V, S, const N: usize> Default for IndexMap<K, V, S, N>
where
K: Eq + Hash,
S: BuildHasher + Default,
{
fn default() -> Self {
// Const assert
crate::sealed::greater_than_1::<N>();
crate::sealed::power_of_two::<N>();
IndexMap {
build_hasher: <_>::default(),
core: CoreMap::new(),
}
}
}
impl<K, V, S, S2, const N: usize, const N2: usize> PartialEq<IndexMap<K, V, S2, N2>>
for IndexMap<K, V, S, N>
where
K: Eq + Hash,
V: Eq,
S: BuildHasher,
S2: BuildHasher,
{
fn eq(&self, other: &IndexMap<K, V, S2, N2>) -> bool {
self.len() == other.len()
&& self
.iter()
.all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
}
}
impl<K, V, S, const N: usize> Eq for IndexMap<K, V, S, N>
where
K: Eq + Hash,
V: Eq,
S: BuildHasher,
{
}
impl<K, V, S, const N: usize> Extend<(K, V)> for IndexMap<K, V, S, N>
where
K: Eq + Hash,
S: BuildHasher,
{
fn extend<I>(&mut self, iterable: I)
where
I: IntoIterator<Item = (K, V)>,
{
for (k, v) in iterable {
self.insert(k, v).ok().unwrap();
}
}
}
impl<'a, K, V, S, const N: usize> Extend<(&'a K, &'a V)> for IndexMap<K, V, S, N>
where
K: Eq + Hash + Copy,
V: Copy,
S: BuildHasher,
{
fn extend<I>(&mut self, iterable: I)
where
I: IntoIterator<Item = (&'a K, &'a V)>,
{
self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)))
}
}
impl<K, V, S, const N: usize> FromIterator<(K, V)> for IndexMap<K, V, S, N>
where
K: Eq + Hash,
S: BuildHasher + Default,
{
fn from_iter<I>(iterable: I) -> Self
where
I: IntoIterator<Item = (K, V)>,
{
let mut map = IndexMap::default();
map.extend(iterable);
map
}
}
#[derive(Clone)]
pub struct IntoIter<K, V, const N: usize> {
entries: Vec<Bucket<K, V>, N>,
}
impl<K, V, const N: usize> Iterator for IntoIter<K, V, N> {
type Item = (K, V);
fn next(&mut self) -> Option<Self::Item> {
self.entries.pop().map(|bucket| (bucket.key, bucket.value))
}
}
impl<K, V, S, const N: usize> IntoIterator for IndexMap<K, V, S, N>
where
K: Eq + Hash,
S: BuildHasher,
{
type Item = (K, V);
type IntoIter = IntoIter<K, V, N>;
fn into_iter(self) -> Self::IntoIter {
IntoIter {
entries: self.core.entries,
}
}
}
impl<'a, K, V, S, const N: usize> IntoIterator for &'a IndexMap<K, V, S, N>
where
K: Eq + Hash,
S: BuildHasher,
{
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, K, V, S, const N: usize> IntoIterator for &'a mut IndexMap<K, V, S, N>
where
K: Eq + Hash,
S: BuildHasher,
{
type Item = (&'a K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
pub struct Iter<'a, K, V> {
iter: slice::Iter<'a, Bucket<K, V>>,
}
impl<'a, K, V> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|bucket| (&bucket.key, &bucket.value))
}
}
impl<'a, K, V> Clone for Iter<'a, K, V> {
fn clone(&self) -> Self {
Self {
iter: self.iter.clone(),
}
}
}
pub struct IterMut<'a, K, V> {
iter: slice::IterMut<'a, Bucket<K, V>>,
}
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
fn next(&mut self) -> Option<Self::Item> {
self.iter
.next()
.map(|bucket| (&bucket.key, &mut bucket.value))
}
}
fn hash_with<K, S>(key: &K, build_hasher: &S) -> HashValue
where
K: ?Sized + Hash,
S: BuildHasher,
{
let mut h = build_hasher.build_hasher();
key.hash(&mut h);
HashValue(h.finish() as u16)
}
#[cfg(test)]
mod tests {
use crate::{indexmap::Entry, FnvIndexMap};
use core::mem;
#[test]
fn size() {
const CAP: usize = 4;
assert_eq!(
mem::size_of::<FnvIndexMap<i16, u16, CAP>>(),
CAP * mem::size_of::<u32>() + // indices
CAP * (mem::size_of::<i16>() + // key
mem::size_of::<u16>() + // value
mem::size_of::<u16>() // hash
) + // buckets
mem::size_of::<usize>() // entries.length
)
}
#[test]
fn partial_eq() {
{
let mut a: FnvIndexMap<_, _, 4> = FnvIndexMap::new();
a.insert("k1", "v1").unwrap();
let mut b: FnvIndexMap<_, _, 4> = FnvIndexMap::new();
b.insert("k1", "v1").unwrap();
assert!(a == b);
b.insert("k2", "v2").unwrap();
assert!(a != b);
}
{
let mut a: FnvIndexMap<_, _, 4> = FnvIndexMap::new();
a.insert("k1", "v1").unwrap();
a.insert("k2", "v2").unwrap();
let mut b: FnvIndexMap<_, _, 4> = FnvIndexMap::new();
b.insert("k2", "v2").unwrap();
b.insert("k1", "v1").unwrap();
assert!(a == b);
}
}
#[test]
fn into_iter() {
let mut src: FnvIndexMap<_, _, 4> = FnvIndexMap::new();
src.insert("k1", "v1").unwrap();
src.insert("k2", "v2").unwrap();
src.insert("k3", "v3").unwrap();
src.insert("k4", "v4").unwrap();
let clone = src.clone();
for (k, v) in clone.into_iter() {
assert_eq!(v, *src.get(k).unwrap());
}
}
#[test]
fn insert_replaces_on_full_map() {
let mut a: FnvIndexMap<_, _, 2> = FnvIndexMap::new();
a.insert("k1", "v1").unwrap();
a.insert("k2", "v2").unwrap();
a.insert("k1", "v2").unwrap();
assert_eq!(a.get("k1"), a.get("k2"));
}
const MAP_SLOTS: usize = 4096;
fn almost_filled_map() -> FnvIndexMap<usize, usize, MAP_SLOTS> {
let mut almost_filled = FnvIndexMap::new();
for i in 1..MAP_SLOTS {
almost_filled.insert(i, i).unwrap();
}
almost_filled
}
#[test]
fn entry_find() {
let key = 0;
let value = 0;
let mut src = almost_filled_map();
let entry = src.entry(key);
match entry {
Entry::Occupied(_) => {
panic!("Found entry without inserting");
}
Entry::Vacant(v) => {
assert_eq!(&key, v.key());
assert_eq!(key, v.into_key());
}
}
src.insert(key, value).unwrap();
let entry = src.entry(key);
match entry {
Entry::Occupied(mut o) => {
assert_eq!(&key, o.key());
assert_eq!(&value, o.get());
assert_eq!(&value, o.get_mut());
assert_eq!(&value, o.into_mut());
}
Entry::Vacant(_) => {
panic!("Entry not found");
}
}
}
#[test]
fn entry_vacant_insert() {
let key = 0;
let value = 0;
let mut src = almost_filled_map();
assert_eq!(MAP_SLOTS - 1, src.len());
let entry = src.entry(key);
match entry {
Entry::Occupied(_) => {
panic!("Entry found when empty");
}
Entry::Vacant(v) => {
v.insert(value).unwrap();
}
};
assert_eq!(value, *src.get(&key).unwrap())
}
#[test]
fn entry_occupied_insert() {
let key = 0;
let value = 0;
let value2 = 5;
let mut src = almost_filled_map();
assert_eq!(MAP_SLOTS - 1, src.len());
src.insert(key, value).unwrap();
let entry = src.entry(key);
match entry {
Entry::Occupied(o) => {
assert_eq!(value, o.insert(value2));
}
Entry::Vacant(_) => {
panic!("Entry not found");
}
};
assert_eq!(value2, *src.get(&key).unwrap())
}
#[test]
fn entry_remove_entry() {
let key = 0;
let value = 0;
let mut src = almost_filled_map();
src.insert(key, value).unwrap();
assert_eq!(MAP_SLOTS, src.len());
let entry = src.entry(key);
match entry {
Entry::Occupied(o) => {
assert_eq!((key, value), o.remove_entry());
}
Entry::Vacant(_) => {
panic!("Entry not found")
}
};
assert_eq!(MAP_SLOTS - 1, src.len());
}
#[test]
fn entry_remove() {
let key = 0;
let value = 0;
let mut src = almost_filled_map();
src.insert(key, value).unwrap();
assert_eq!(MAP_SLOTS, src.len());
let entry = src.entry(key);
match entry {
Entry::Occupied(o) => {
assert_eq!(value, o.remove());
}
Entry::Vacant(_) => {
panic!("Entry not found");
}
};
assert_eq!(MAP_SLOTS - 1, src.len());
}
#[test]
fn entry_roll_through_all() {
let mut src: FnvIndexMap<usize, usize, MAP_SLOTS> = FnvIndexMap::new();
for i in 0..MAP_SLOTS {
match src.entry(i) {
Entry::Occupied(_) => {
panic!("Entry found before insert");
}
Entry::Vacant(v) => {
v.insert(i).unwrap();
}
}
}
let add_mod = 99;
for i in 0..MAP_SLOTS {
match src.entry(i) {
Entry::Occupied(o) => {
assert_eq!(i, o.insert(i + add_mod));
}
Entry::Vacant(_) => {
panic!("Entry not found after insert");
}
}
}
for i in 0..MAP_SLOTS {
match src.entry(i) {
Entry::Occupied(o) => {
assert_eq!((i, i + add_mod), o.remove_entry());
}
Entry::Vacant(_) => {
panic!("Entry not found after insert");
}
}
}
for i in 0..MAP_SLOTS {
assert!(matches!(src.entry(i), Entry::Vacant(_)));
}
assert!(src.is_empty());
}
#[test]
fn first_last() {
let mut map = FnvIndexMap::<_, _, 4>::new();
assert_eq!(None, map.first());
assert_eq!(None, map.last());
map.insert(0, 0).unwrap();
map.insert(2, 2).unwrap();
assert_eq!(Some((&0, &0)), map.first());
assert_eq!(Some((&2, &2)), map.last());
map.insert(1, 1).unwrap();
assert_eq!(Some((&1, &1)), map.last());
*map.first_mut().unwrap().1 += 1;
*map.last_mut().unwrap().1 += 1;
assert_eq!(Some((&0, &1)), map.first());
assert_eq!(Some((&1, &2)), map.last());
}
}