blob: 1db5d06909e4a1ccb90fb4b9e9ab8d50e5638079 [file] [log] [blame]
.. _module-pw_tokenizer-guides:
======
Guides
======
.. pigweed-module-subpage::
:name: pw_tokenizer
:tagline: Cut your log sizes in half
:nav:
getting started: module-pw_tokenizer-get-started
design: module-pw_tokenizer-design
api: module-pw_tokenizer-api
cli: module-pw_tokenizer-cli
.. _module-pw_tokenizer-get-started:
---------------
Getting started
---------------
Integrating ``pw_tokenizer`` requires a few steps beyond building the code. This
section describes one way ``pw_tokenizer`` might be integrated with a project.
These steps can be adapted as needed.
#. Add ``pw_tokenizer`` to your build. Build files for GN, CMake, and Bazel are
provided. For Make or other build systems, add the files specified in the
BUILD.gn's ``pw_tokenizer`` target to the build.
#. Use the tokenization macros in your code. See :ref:`module-pw_tokenizer-api-tokenization`.
#. Add the contents of ``pw_tokenizer_linker_sections.ld`` to your project's
linker script. In GN and CMake, this step is done automatically.
#. Compile your code to produce an ELF file.
#. Run ``database.py create`` on the ELF file to generate a CSV token
database. See :ref:`module-pw_tokenizer-managing-token-databases`.
#. Commit the token database to your repository. See notes in
:ref:`module-pw_tokenizer-database-management`.
#. Integrate a ``database.py add`` command to your build to automatically update
the committed token database. In GN, use the ``pw_tokenizer_database``
template to do this. See :ref:`module-pw_tokenizer-update-token-database`.
#. Integrate ``detokenize.py`` or the C++ detokenization library with your tools
to decode tokenized logs. See :ref:`module-pw_tokenizer-detokenization`.
Using with Zephyr
=================
When building ``pw_tokenizer`` with Zephyr, 3 Kconfigs can be used currently:
* ``CONFIG_PIGWEED_TOKENIZER`` will automatically link ``pw_tokenizer`` as well
as any dependencies.
* ``CONFIG_PIGWEED_TOKENIZER_BASE64`` will automatically link
``pw_tokenizer.base64`` as well as any dependencies.
* ``CONFIG_PIGWEED_DETOKENIZER`` will automatically link
``pw_tokenizer.decoder`` as well as any dependencies.
Once enabled, the tokenizer headers can be included like any Zephyr headers:
.. code-block:: cpp
#include <pw_tokenizer/tokenize.h>
.. note::
Zephyr handles the additional linker sections via
``pw_tokenizer_zephyr.ld`` which is added to the end of the linker file
via a call to ``zephyr_linker_sources(SECTIONS ...)``.
.. _module-pw_tokenizer-tokenization-guides:
-------------------
Tokenization guides
-------------------
Tokenize a message with arguments in a custom macro
===================================================
The following example implements a custom tokenization macro similar to
:ref:`module-pw_log_tokenized`.
.. code-block:: cpp
#include "pw_tokenizer/tokenize.h"
#ifndef __cplusplus
extern "C" {
#endif
void EncodeTokenizedMessage(uint32_t metadata,
pw_tokenizer_Token token,
pw_tokenizer_ArgTypes types,
...);
#ifndef __cplusplus
} // extern "C"
#endif
#define PW_LOG_TOKENIZED_ENCODE_MESSAGE(metadata, format, ...) \
do { \
PW_TOKENIZE_FORMAT_STRING( \
PW_TOKENIZER_DEFAULT_DOMAIN, UINT32_MAX, format, __VA_ARGS__); \
EncodeTokenizedMessage(payload, \
_pw_tokenizer_token, \
PW_TOKENIZER_ARG_TYPES(__VA_ARGS__) \
PW_COMMA_ARGS(__VA_ARGS__)); \
} while (0)
In this example, the ``EncodeTokenizedMessage`` function would handle encoding
and processing the message. Encoding is done by the
:cpp:class:`pw::tokenizer::EncodedMessage` class or
:cpp:func:`pw::tokenizer::EncodeArgs` function from
``pw_tokenizer/encode_args.h``. The encoded message can then be transmitted or
stored as needed.
.. code-block:: cpp
#include "pw_log_tokenized/log_tokenized.h"
#include "pw_tokenizer/encode_args.h"
void HandleTokenizedMessage(pw::log_tokenized::Metadata metadata,
pw::span<std::byte> message);
extern "C" void EncodeTokenizedMessage(const uint32_t metadata,
const pw_tokenizer_Token token,
const pw_tokenizer_ArgTypes types,
.. _module-pw_tokenizer-base64-guides:
-------------
Base64 guides
-------------
See :ref:`module-pw_tokenizer-base64-format` for a conceptual overview of
Base64.
Encoding Base64
===============
To encode with the Base64 format, add a call to
``pw::tokenizer::PrefixedBase64Encode`` or ``pw_tokenizer_PrefixedBase64Encode``
in the tokenizer handler function. For example,
.. code-block:: cpp
void TokenizedMessageHandler(const uint8_t encoded_message[],
size_t size_bytes) {
pw::InlineBasicString base64 = pw::tokenizer::PrefixedBase64Encode(
pw::span(encoded_message, size_bytes));
TransmitLogMessage(base64.data(), base64.size());
}
Decoding Base64
===============
The Python ``Detokenizer`` class supports decoding and detokenizing prefixed
Base64 messages with ``detokenize_base64`` and related methods.
.. tip::
The Python detokenization tools support recursive detokenization for prefixed
Base64 text. Tokenized strings found in detokenized text are detokenized, so
prefixed Base64 messages can be passed as ``%s`` arguments.
For example, the tokenized string for "Wow!" is ``$RhYjmQ==``. This could be
passed as an argument to the printf-style string ``Nested message: %s``, which
encodes to ``$pEVTYQkkUmhZam1RPT0=``. The detokenizer would decode the message
as follows:
::
"$pEVTYQkkUmhZam1RPT0=" "Nested message: $RhYjmQ==" "Nested message: Wow!"
Base64 decoding is supported in C++ or C with the
``pw::tokenizer::PrefixedBase64Decode`` or ``pw_tokenizer_PrefixedBase64Decode``
functions.
Investigating undecoded messages
================================
Tokenized messages cannot be decoded if the token is not recognized. The Python
package includes the ``parse_message`` tool, which parses tokenized Base64
messages without looking up the token in a database. This tool attempts to guess
the types of the arguments and displays potential ways to decode them.
This tool can be used to extract argument information from an otherwise unusable
message. It could help identify which statement in the code produced the
message. This tool is not particularly helpful for tokenized messages without
arguments, since all it can do is show the value of the unknown token.
The tool is executed by passing Base64 tokenized messages, with or without the
``$`` prefix, to ``pw_tokenizer.parse_message``. Pass ``-h`` or ``--help`` to
see full usage information.
Example
-------
.. code-block::
$ python -m pw_tokenizer.parse_message '$329JMwA=' koSl524TRkFJTEVEX1BSRUNPTkRJVElPTgJPSw== --specs %s %d
INF Decoding arguments for '$329JMwA='
INF Binary: b'\xdfoI3\x00' [df 6f 49 33 00] (5 bytes)
INF Token: 0x33496fdf
INF Args: b'\x00' [00] (1 bytes)
INF Decoding with up to 8 %s or %d arguments
INF Attempt 1: [%s]
INF Attempt 2: [%d] 0
INF Decoding arguments for '$koSl524TRkFJTEVEX1BSRUNPTkRJVElPTgJPSw=='
INF Binary: b'\x92\x84\xa5\xe7n\x13FAILED_PRECONDITION\x02OK' [92 84 a5 e7 6e 13 46 41 49 4c 45 44 5f 50 52 45 43 4f 4e 44 49 54 49 4f 4e 02 4f 4b] (28 bytes)
INF Token: 0xe7a58492
INF Args: b'n\x13FAILED_PRECONDITION\x02OK' [6e 13 46 41 49 4c 45 44 5f 50 52 45 43 4f 4e 44 49 54 49 4f 4e 02 4f 4b] (24 bytes)
INF Decoding with up to 8 %s or %d arguments
INF Attempt 1: [%d %s %d %d %d] 55 FAILED_PRECONDITION 1 -40 -38
INF Attempt 2: [%d %s %s] 55 FAILED_PRECONDITION OK
Detokenizing command line utilities
-----------------------------------
See :ref:`module-pw_tokenizer-cli-detokenizing`.
.. _module-pw_tokenizer-masks:
---------------------------
Smaller tokens with masking
---------------------------
``pw_tokenizer`` uses 32-bit tokens. On 32-bit or 64-bit architectures, using
fewer than 32 bits does not improve runtime or code size efficiency. However,
when tokens are packed into data structures or stored in arrays, the size of the
token directly affects memory usage. In those cases, every bit counts, and it
may be desireable to use fewer bits for the token.
``pw_tokenizer`` allows users to provide a mask to apply to the token. This
masked token is used in both the token database and the code. The masked token
is not a masked version of the full 32-bit token, the masked token is the token.
This makes it trivial to decode tokens that use fewer than 32 bits.
Masking functionality is provided through the ``*_MASK`` versions of the macros.
For example, the following generates 16-bit tokens and packs them into an
existing value.
.. code-block:: cpp
constexpr uint32_t token = PW_TOKENIZE_STRING_MASK("domain", 0xFFFF, "Pigweed!");
uint32_t packed_word = (other_bits << 16) | token;
Tokens are hashes, so tokens of any size have a collision risk. The fewer bits
used for tokens, the more likely two strings are to hash to the same token. See
:ref:`module-pw_tokenizer-collisions`.
Masked tokens without arguments may be encoded in fewer bytes. For example, the
16-bit token ``0x1234`` may be encoded as two little-endian bytes (``34 12``)
rather than four (``34 12 00 00``). The detokenizer tools zero-pad data smaller
than four bytes. Tokens with arguments must always be encoded as four bytes.
.. _module-pw_tokenizer-domains:
---------------------------------------------------------------------
Keep tokens from different sources separate with tokenization domains
---------------------------------------------------------------------
``pw_tokenizer`` supports having multiple tokenization domains. Domains are a
string label associated with each tokenized string. This allows projects to keep
tokens from different sources separate. Potential use cases include the
following:
* Keep large sets of tokenized strings separate to avoid collisions.
* Create a separate database for a small number of strings that use truncated
tokens, for example only 10 or 16 bits instead of the full 32 bits.
If no domain is specified, the domain is empty (``""``). For many projects, this
default domain is sufficient, so no additional configuration is required.
.. code-block:: cpp
// Tokenizes this string to the default ("") domain.
PW_TOKENIZE_STRING("Hello, world!");
// Tokenizes this string to the "my_custom_domain" domain.
PW_TOKENIZE_STRING_DOMAIN("my_custom_domain", "Hello, world!");
The database and detokenization command line tools default to reading from the
default domain. The domain may be specified for ELF files by appending
``#DOMAIN_NAME`` to the file path. Use ``#.*`` to read from all domains. For
example, the following reads strings in ``some_domain`` from ``my_image.elf``.
.. code-block:: sh
./database.py create --database my_db.csv path/to/my_image.elf#some_domain
See :ref:`module-pw_tokenizer-managing-token-databases` for information about
the ``database.py`` command line tool.
.. _module-pw_tokenizer-managing-token-databases:
------------------------
Managing token databases
------------------------
Background: :ref:`module-pw_tokenizer-token-databases`
Token databases are managed with the ``database.py`` script. This script can be
used to extract tokens from compilation artifacts and manage database files.
Invoke ``database.py`` with ``-h`` for full usage information.
An example ELF file with tokenized logs is provided at
``pw_tokenizer/py/example_binary_with_tokenized_strings.elf``. You can use that
file to experiment with the ``database.py`` commands.
.. _module-pw_tokenizer-database-creation:
Create a database
=================
The ``create`` command makes a new token database from ELF files (.elf, .o, .so,
etc.), archives (.a), existing token databases (CSV or binary), or a JSON file
containing an array of strings.
.. code-block:: sh
./database.py create --database DATABASE_NAME ELF_OR_DATABASE_FILE...
Two database output formats are supported: CSV and binary. Provide
``--type binary`` to ``create`` to generate a binary database instead of the
default CSV. CSV databases are great for checking into a source control or for
human review. Binary databases are more compact and simpler to parse. The C++
detokenizer library only supports binary databases currently.
.. _module-pw_tokenizer-update-token-database:
Update a database
=================
As new tokenized strings are added, update the database with the ``add``
command.
.. code-block:: sh
./database.py add --database DATABASE_NAME ELF_OR_DATABASE_FILE...
This command adds new tokens from ELF files or other databases to the database.
Adding tokens already present in the database updates the date removed, if any,
to the latest.
A CSV token database can be checked into a source repository and updated as code
changes are made. The build system can invoke ``database.py`` to update the
database after each build.
GN integration
==============
Token databases may be updated or created as part of a GN build. The
``pw_tokenizer_database`` template provided by
``$dir_pw_tokenizer/database.gni`` automatically updates an in-source tokenized
strings database or creates a new database with artifacts from one or more GN
targets or other database files.
To create a new database, set the ``create`` variable to the desired database
type (``"csv"`` or ``"binary"``). The database will be created in the output
directory. To update an existing database, provide the path to the database with
the ``database`` variable.
.. code-block::
import("//build_overrides/pigweed.gni")
import("$dir_pw_tokenizer/database.gni")
pw_tokenizer_database("my_database") {
database = "database_in_the_source_tree.csv"
targets = [ "//firmware/image:foo(//targets/my_board:some_toolchain)" ]
input_databases = [ "other_database.csv" ]
}
Instead of specifying GN targets, paths or globs to output files may be provided
with the ``paths`` option.
.. code-block::
pw_tokenizer_database("my_database") {
database = "database_in_the_source_tree.csv"
deps = [ ":apps" ]
optional_paths = [ "$root_build_dir/**/*.elf" ]
}
.. note::
The ``paths`` and ``optional_targets`` arguments do not add anything to
``deps``, so there is no guarantee that the referenced artifacts will exist
when the database is updated. Provide ``targets`` or ``deps`` or build other
GN targets first if this is a concern.
CMake integration
=================
Token databases may be updated or created as part of a CMake build. The
``pw_tokenizer_database`` template provided by
``$dir_pw_tokenizer/database.cmake`` automatically updates an in-source tokenized
strings database or creates a new database with artifacts from a CMake target.
To create a new database, set the ``CREATE`` variable to the desired database
type (``"csv"`` or ``"binary"``). The database will be created in the output
directory.
.. code-block::
include("$dir_pw_tokenizer/database.cmake")
pw_tokenizer_database("my_database") {
CREATE binary
TARGET my_target.ext
DEPS ${deps_list}
}
To update an existing database, provide the path to the database with
the ``database`` variable.
.. code-block::
pw_tokenizer_database("my_database") {
DATABASE database_in_the_source_tree.csv
TARGET my_target.ext
DEPS ${deps_list}
}
.. _module-pw_tokenizer-collisions-guide:
-----------------------------
Working with token collisions
-----------------------------
See :ref:`module-pw_tokenizer-collisions` for a conceptual overview of token
collisions.
Collisions may occur occasionally. Run the command
``python -m pw_tokenizer.database report <database>`` to see information about a
token database, including any collisions.
If there are collisions, take the following steps to resolve them.
- Change one of the colliding strings slightly to give it a new token.
- In C (not C++), artificial collisions may occur if strings longer than
``PW_TOKENIZER_CFG_C_HASH_LENGTH`` are hashed. If this is happening, consider
setting ``PW_TOKENIZER_CFG_C_HASH_LENGTH`` to a larger value. See
``pw_tokenizer/public/pw_tokenizer/config.h``.
- Run the ``mark_removed`` command with the latest version of the build
artifacts to mark missing strings as removed. This deprioritizes them in
collision resolution.
.. code-block:: sh
python -m pw_tokenizer.database mark_removed --database <database> <ELF files>
The ``purge`` command may be used to delete these tokens from the database.
.. _module-pw_tokenizer-detokenization-guides:
---------------------
Detokenization guides
---------------------
See :ref:`module-pw_tokenizer-detokenization` for a conceptual overview
of detokenization.
Python
======
To detokenize in Python, import ``Detokenizer`` from the ``pw_tokenizer``
package, and instantiate it with paths to token databases or ELF files.
.. code-block:: python
import pw_tokenizer
detokenizer = pw_tokenizer.Detokenizer('path/to/database.csv', 'other/path.elf')
def process_log_message(log_message):
result = detokenizer.detokenize(log_message.payload)
self._log(str(result))
The ``pw_tokenizer`` package also provides the ``AutoUpdatingDetokenizer``
class, which can be used in place of the standard ``Detokenizer``. This class
monitors database files for changes and automatically reloads them when they
change. This is helpful for long-running tools that use detokenization. The
class also supports token domains for the given database files in the
``<path>#<domain>`` format.
For messages that are optionally tokenized and may be encoded as binary,
Base64, or plaintext UTF-8, use
:func:`pw_tokenizer.proto.decode_optionally_tokenized`. This will attempt to
determine the correct method to detokenize and always provide a printable
string. For more information on this feature, see
:ref:`module-pw_tokenizer-proto`.
C++
===
The C++ detokenization libraries can be used in C++ or any language that can
call into C++ with a C-linkage wrapper, such as Java or Rust. A reference
Java Native Interface (JNI) implementation is provided.
The C++ detokenization library uses binary-format token databases (created with
``database.py create --type binary``). Read a binary format database from a
file or include it in the source code. Pass the database array to
``TokenDatabase::Create``, and construct a detokenizer.
.. code-block:: cpp
Detokenizer detokenizer(TokenDatabase::Create(token_database_array));
std::string ProcessLog(span<uint8_t> log_data) {
return detokenizer.Detokenize(log_data).BestString();
}
The ``TokenDatabase`` class verifies that its data is valid before using it. If
it is invalid, the ``TokenDatabase::Create`` returns an empty database for which
``ok()`` returns false. If the token database is included in the source code,
this check can be done at compile time.
.. code-block:: cpp
// This line fails to compile with a static_assert if the database is invalid.
constexpr TokenDatabase kDefaultDatabase = TokenDatabase::Create<kData>();
Detokenizer OpenDatabase(std::string_view path) {
std::vector<uint8_t> data = ReadWholeFile(path);
TokenDatabase database = TokenDatabase::Create(data);
// This checks if the file contained a valid database. It is safe to use a
// TokenDatabase that failed to load (it will be empty), but it may be
// desirable to provide a default database or otherwise handle the error.
if (database.ok()) {
return Detokenizer(database);
}
return Detokenizer(kDefaultDatabase);
}
TypeScript
==========
To detokenize in TypeScript, import ``Detokenizer`` from the ``pigweedjs``
package, and instantiate it with a CSV token database.
.. code-block:: typescript
import { pw_tokenizer, pw_hdlc } from 'pigweedjs';
const { Detokenizer } = pw_tokenizer;
const { Frame } = pw_hdlc;
const detokenizer = new Detokenizer(String(tokenCsv));
function processLog(frame: Frame){
const result = detokenizer.detokenize(frame);
console.log(result);
}
For messages that are encoded in Base64, use ``Detokenizer::detokenizeBase64``.
`detokenizeBase64` will also attempt to detokenize nested Base64 tokens. There
is also `detokenizeUint8Array` that works just like `detokenize` but expects
`Uint8Array` instead of a `Frame` argument.
Protocol buffers
================
``pw_tokenizer`` provides utilities for handling tokenized fields in protobufs.
See :ref:`module-pw_tokenizer-proto` for details.