blob: 4be398c0586dc5e6a309cdf907df36e9b5097b6b [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#pragma once
#include <climits>
#include <cstddef>
#include <cstdint>
#include <limits>
#include "pw_assert/check.h"
#include "pw_bytes/span.h"
#include "pw_span/span.h"
#include "pw_status/status_with_size.h"
namespace pw::random {
// A random generator uses injected entropy to generate random values. Many of
// the guarantees for this interface are provided at the level of the
// implementations. In general:
// * DO assume a generator will always succeed.
// * DO NOT assume a generator is cryptographically secure.
// * DO NOT assume uniformity of generated data.
class RandomGenerator {
public:
virtual ~RandomGenerator() = default;
template <class T>
void GetInt(T& dest) {
static_assert(std::is_integral<T>::value,
"Use Get() for non-integral types");
Get({reinterpret_cast<std::byte*>(&dest), sizeof(T)});
}
// Calculate a uniformly distributed random number in the range [0,
// exclusive_upper_bound). This avoids modulo biasing. Uniformity is only
// guaranteed if the underlying generator generates uniform data. Uniformity
// is achieved by generating new random numbers until one is generated in the
// desired range (with optimizations).
template <class T>
void GetInt(T& dest, const T& exclusive_upper_bound) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned integer");
PW_DCHECK(exclusive_upper_bound != 0);
if (exclusive_upper_bound < 2) {
dest = 0;
return;
}
const uint8_t leading_zeros_in_upper_bound =
CountLeadingZeros(exclusive_upper_bound);
// Create a mask that discards the higher order bits of the random number.
const T mask =
std::numeric_limits<T>::max() >> leading_zeros_in_upper_bound;
// This loop should end fairly soon. It discards all the values that aren't
// below exclusive_upper_bound. The probability of values being greater or
// equal than exclusive_upper_bound is less than 1/2, which means that the
// expected amount of iterations is less than 2.
while (true) {
GetInt(dest);
dest &= mask;
if (dest < exclusive_upper_bound) {
return;
}
}
}
// Populates the destination buffer with a randomly generated value.
virtual void Get(ByteSpan dest) = 0;
// Injects entropy into the pool. `data` may have up to 32 bits of random
// entropy. If the number of bits of entropy is less than 32, entropy is
// assumed to be stored in the least significant bits of `data`.
virtual void InjectEntropyBits(uint32_t data, uint_fast8_t num_bits) = 0;
// Injects entropy into the pool byte-by-byte.
void InjectEntropy(ConstByteSpan data) {
for (std::byte b : data) {
InjectEntropyBits(std::to_integer<uint32_t>(b), /*num_bits=*/8);
}
}
private:
template <class T>
uint8_t CountLeadingZeros(T value) {
if constexpr (std::is_same_v<T, unsigned>) {
return static_cast<uint8_t>(__builtin_clz(value));
} else if constexpr (std::is_same_v<T, unsigned long>) {
return static_cast<uint8_t>(__builtin_clzl(value));
} else if constexpr (std::is_same_v<T, unsigned long long>) {
return static_cast<uint8_t>(__builtin_clzll(value));
} else {
static_assert(sizeof(T) < sizeof(unsigned));
// __builtin_clz returns the count of leading zeros in an unsigned , so we
// need to subtract the size difference of T in bits.
return static_cast<uint8_t>(__builtin_clz(value) -
((sizeof(unsigned) - sizeof(T)) * CHAR_BIT));
}
}
};
} // namespace pw::random