blob: bb418755497f4c3cf8d499de0dd6d63e6a5123b6 [file] [log] [blame]
// Copyright 2019 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include "pw_protobuf/encoder.h"
#include "gtest/gtest.h"
namespace pw::protobuf {
namespace {
// The tests in this file use the following proto message schemas.
//
// message TestProto {
// uint32 magic_number = 1;
// sint32 ziggy = 2;
// fixed64 cycles = 3;
// float ratio = 4;
// string error_message = 5;
// NestedProto nested = 6;
// }
//
// message NestedProto {
// string hello = 1;
// uint32 id = 2;
// repeated DoubleNestedProto pair = 3;
// }
//
// message DoubleNestedProto {
// string key = 1;
// string value = 2;
// }
//
constexpr uint32_t kTestProtoMagicNumberField = 1;
constexpr uint32_t kTestProtoZiggyField = 2;
constexpr uint32_t kTestProtoCyclesField = 3;
constexpr uint32_t kTestProtoRatioField = 4;
constexpr uint32_t kTestProtoErrorMessageField = 5;
constexpr uint32_t kTestProtoNestedField = 6;
constexpr uint32_t kNestedProtoHelloField = 1;
constexpr uint32_t kNestedProtoIdField = 2;
constexpr uint32_t kNestedProtoPairField = 3;
constexpr uint32_t kDoubleNestedProtoKeyField = 1;
constexpr uint32_t kDoubleNestedProtoValueField = 2;
TEST(Encoder, EncodePrimitives) {
// TestProto tp;
// tp.magic_number = 42;
// tp.ziggy = -13;
// tp.cycles = 0xdeadbeef8badf00d;
// tp.ratio = 1.618034;
// tp.error_message = "broken 💩";
// Hand-encoded version of the above.
// clang-format off
constexpr uint8_t encoded_proto[] = {
// magic_number [varint k=1]
0x08, 0x2a,
// ziggy [varint k=2]
0x10, 0x19,
// cycles [fixed64 k=3]
0x19, 0x0d, 0xf0, 0xad, 0x8b, 0xef, 0xbe, 0xad, 0xde,
// ratio [fixed32 k=4]
0x25, 0xbd, 0x1b, 0xcf, 0x3f,
// error_message [delimited k=5],
0x2a, 0x0b, 'b', 'r', 'o', 'k', 'e', 'n', ' ',
// poop!
0xf0, 0x9f, 0x92, 0xa9,
};
// clang-format on
std::byte encode_buffer[32];
NestedEncoder encoder(encode_buffer);
EXPECT_EQ(encoder.WriteUint32(kTestProtoMagicNumberField, 42), OkStatus());
EXPECT_EQ(encoder.WriteSint32(kTestProtoZiggyField, -13), OkStatus());
EXPECT_EQ(encoder.WriteFixed64(kTestProtoCyclesField, 0xdeadbeef8badf00d),
OkStatus());
EXPECT_EQ(encoder.WriteFloat(kTestProtoRatioField, 1.618034), OkStatus());
EXPECT_EQ(encoder.WriteString(kTestProtoErrorMessageField, "broken 💩"),
OkStatus());
Result result = encoder.Encode();
ASSERT_EQ(result.status(), OkStatus());
EXPECT_EQ(result.value().size(), sizeof(encoded_proto));
EXPECT_EQ(
std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)),
0);
}
TEST(Encoder, EncodeInsufficientSpace) {
std::byte encode_buffer[12];
NestedEncoder encoder(encode_buffer);
// 2 bytes.
EXPECT_EQ(encoder.WriteUint32(kTestProtoMagicNumberField, 42), OkStatus());
// 2 bytes.
EXPECT_EQ(encoder.WriteSint32(kTestProtoZiggyField, -13), OkStatus());
// 9 bytes; not enough space! The encoder will start writing the field but
// should rollback when it realizes it doesn't have enough space.
EXPECT_EQ(encoder.WriteFixed64(kTestProtoCyclesField, 0xdeadbeef8badf00d),
Status::ResourceExhausted());
// Any further write operations should fail.
EXPECT_EQ(encoder.WriteFloat(kTestProtoRatioField, 1.618034),
Status::ResourceExhausted());
ASSERT_EQ(encoder.Encode().status(), Status::ResourceExhausted());
}
TEST(Encoder, EncodeInvalidArguments) {
std::byte encode_buffer[12];
NestedEncoder encoder(encode_buffer);
EXPECT_EQ(encoder.WriteUint32(kTestProtoMagicNumberField, 42), OkStatus());
// Invalid proto field numbers.
EXPECT_EQ(encoder.WriteUint32(0, 1337), Status::InvalidArgument());
encoder.Clear();
EXPECT_EQ(encoder.WriteString(1u << 31, "ha"), Status::InvalidArgument());
encoder.Clear();
EXPECT_EQ(encoder.WriteBool(19091, false), Status::InvalidArgument());
ASSERT_EQ(encoder.Encode().status(), Status::InvalidArgument());
}
TEST(Encoder, Nested) {
std::byte encode_buffer[128];
NestedEncoder<5, 5> encoder(encode_buffer);
// TestProto test_proto;
// test_proto.magic_number = 42;
EXPECT_EQ(encoder.WriteUint32(kTestProtoMagicNumberField, 42), OkStatus());
{
// NestedProto& nested_proto = test_proto.nested;
EXPECT_EQ(encoder.Push(kTestProtoNestedField), OkStatus());
// nested_proto.hello = "world";
EXPECT_EQ(encoder.WriteString(kNestedProtoHelloField, "world"), OkStatus());
// nested_proto.id = 999;
EXPECT_EQ(encoder.WriteUint32(kNestedProtoIdField, 999), OkStatus());
{
// DoubleNestedProto& double_nested_proto = nested_proto.append_pair();
EXPECT_EQ(encoder.Push(kNestedProtoPairField), OkStatus());
// double_nested_proto.key = "version";
EXPECT_EQ(encoder.WriteString(kDoubleNestedProtoKeyField, "version"),
OkStatus());
// double_nested_proto.value = "2.9.1";
EXPECT_EQ(encoder.WriteString(kDoubleNestedProtoValueField, "2.9.1"),
OkStatus());
EXPECT_EQ(encoder.Pop(), OkStatus());
} // end DoubleNestedProto
{
// DoubleNestedProto& double_nested_proto = nested_proto.append_pair();
EXPECT_EQ(encoder.Push(kNestedProtoPairField), OkStatus());
// double_nested_proto.key = "device";
EXPECT_EQ(encoder.WriteString(kDoubleNestedProtoKeyField, "device"),
OkStatus());
// double_nested_proto.value = "left-soc";
EXPECT_EQ(encoder.WriteString(kDoubleNestedProtoValueField, "left-soc"),
OkStatus());
EXPECT_EQ(encoder.Pop(), OkStatus());
} // end DoubleNestedProto
EXPECT_EQ(encoder.Pop(), OkStatus());
} // end NestedProto
// test_proto.ziggy = -13;
EXPECT_EQ(encoder.WriteSint32(kTestProtoZiggyField, -13), OkStatus());
// clang-format off
constexpr uint8_t encoded_proto[] = {
// magic_number
0x08, 0x2a,
// nested header (key, size)
0x32, 0x30,
// nested.hello
0x0a, 0x05, 'w', 'o', 'r', 'l', 'd',
// nested.id
0x10, 0xe7, 0x07,
// nested.pair[0] header (key, size)
0x1a, 0x10,
// nested.pair[0].key
0x0a, 0x07, 'v', 'e', 'r', 's', 'i', 'o', 'n',
// nested.pair[0].value
0x12, 0x05, '2', '.', '9', '.', '1',
// nested.pair[1] header (key, size)
0x1a, 0x12,
// nested.pair[1].key
0x0a, 0x06, 'd', 'e', 'v', 'i', 'c', 'e',
// nested.pair[1].value
0x12, 0x08, 'l', 'e', 'f', 't', '-', 's', 'o', 'c',
// ziggy
0x10, 0x19
};
// clang-format on
Result result = encoder.Encode();
ASSERT_EQ(result.status(), OkStatus());
EXPECT_EQ(result.value().size(), sizeof(encoded_proto));
EXPECT_EQ(
std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)),
0);
}
TEST(Encoder, NestedDepthLimit) {
std::byte encode_buffer[128];
NestedEncoder<2, 2> encoder(encode_buffer);
// One level of nesting.
EXPECT_EQ(encoder.Push(2), OkStatus());
// Two levels of nesting.
EXPECT_EQ(encoder.Push(1), OkStatus());
// Three levels of nesting: error!
EXPECT_EQ(encoder.Push(1), Status::ResourceExhausted());
// Further operations should fail.
EXPECT_EQ(encoder.Pop(), Status::ResourceExhausted());
EXPECT_EQ(encoder.Pop(), Status::ResourceExhausted());
EXPECT_EQ(encoder.Pop(), Status::ResourceExhausted());
}
TEST(Encoder, NestedBlobLimit) {
std::byte encode_buffer[128];
NestedEncoder<3, 3> encoder(encode_buffer);
// Write first blob.
EXPECT_EQ(encoder.Push(1), OkStatus());
EXPECT_EQ(encoder.Pop(), OkStatus());
// Write second blob.
EXPECT_EQ(encoder.Push(2), OkStatus());
// Write nested third blob.
EXPECT_EQ(encoder.Push(3), OkStatus());
EXPECT_EQ(encoder.Pop(), OkStatus());
// End second blob.
EXPECT_EQ(encoder.Pop(), OkStatus());
// Write fourth blob: OK
EXPECT_EQ(encoder.Push(4), OkStatus());
EXPECT_EQ(encoder.Pop(), OkStatus());
}
TEST(Encoder, RepeatedField) {
std::byte encode_buffer[32];
NestedEncoder encoder(encode_buffer);
// repeated uint32 values = 1;
constexpr uint32_t values[] = {0, 50, 100, 150, 200};
for (int i = 0; i < 5; ++i) {
encoder.WriteUint32(1, values[i]);
}
constexpr uint8_t encoded_proto[] = {
0x08, 0x00, 0x08, 0x32, 0x08, 0x64, 0x08, 0x96, 0x01, 0x08, 0xc8, 0x01};
Result result = encoder.Encode();
ASSERT_EQ(result.status(), OkStatus());
EXPECT_EQ(result.value().size(), sizeof(encoded_proto));
EXPECT_EQ(
std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)),
0);
}
TEST(Encoder, PackedVarint) {
std::byte encode_buffer[32];
NestedEncoder encoder(encode_buffer);
// repeated uint32 values = 1;
constexpr uint32_t values[] = {0, 50, 100, 150, 200};
encoder.WritePackedUint32(1, values);
constexpr uint8_t encoded_proto[] = {
0x0a, 0x07, 0x00, 0x32, 0x64, 0x96, 0x01, 0xc8, 0x01};
// key size v[0] v[1] v[2] v[3] v[4]
Result result = encoder.Encode();
ASSERT_EQ(result.status(), OkStatus());
EXPECT_EQ(result.value().size(), sizeof(encoded_proto));
EXPECT_EQ(
std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)),
0);
}
TEST(Encoder, PackedVarintInsufficientSpace) {
std::byte encode_buffer[8];
NestedEncoder encoder(encode_buffer);
constexpr uint32_t values[] = {0, 50, 100, 150, 200};
encoder.WritePackedUint32(1, values);
EXPECT_EQ(encoder.Encode().status(), Status::ResourceExhausted());
}
TEST(Encoder, PackedFixed) {
std::byte encode_buffer[32];
NestedEncoder encoder(encode_buffer);
// repeated fixed32 values = 1;
constexpr uint32_t values[] = {0, 50, 100, 150, 200};
encoder.WritePackedFixed32(1, values);
// repeated fixed64 values64 = 2;
constexpr uint64_t values64[] = {0x0102030405060708};
encoder.WritePackedFixed64(2, values64);
constexpr uint8_t encoded_proto[] = {
0x0a, 0x14, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x64,
0x00, 0x00, 0x00, 0x96, 0x00, 0x00, 0x00, 0xc8, 0x00, 0x00, 0x00,
0x12, 0x08, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01};
Result result = encoder.Encode();
ASSERT_EQ(result.status(), OkStatus());
EXPECT_EQ(result.value().size(), sizeof(encoded_proto));
EXPECT_EQ(
std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)),
0);
}
TEST(Encoder, PackedZigzag) {
std::byte encode_buffer[32];
NestedEncoder encoder(encode_buffer);
// repeated sint32 values = 1;
constexpr int32_t values[] = {-100, -25, -1, 0, 1, 25, 100};
encoder.WritePackedSint32(1, values);
constexpr uint8_t encoded_proto[] = {
0x0a, 0x09, 0xc7, 0x01, 0x31, 0x01, 0x00, 0x02, 0x32, 0xc8, 0x01};
Result result = encoder.Encode();
ASSERT_EQ(result.status(), OkStatus());
EXPECT_EQ(result.value().size(), sizeof(encoded_proto));
EXPECT_EQ(
std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)),
0);
}
} // namespace
} // namespace pw::protobuf