| // Copyright 2019 The Pigweed Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| // use this file except in compliance with the License. You may obtain a copy of |
| // the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| // License for the specific language governing permissions and limitations under |
| // the License. |
| |
| #include "pw_protobuf/encoder.h" |
| |
| #include "gtest/gtest.h" |
| |
| namespace pw::protobuf { |
| namespace { |
| |
| // The tests in this file use the following proto message schemas. |
| // |
| // message TestProto { |
| // uint32 magic_number = 1; |
| // sint32 ziggy = 2; |
| // fixed64 cycles = 3; |
| // float ratio = 4; |
| // string error_message = 5; |
| // NestedProto nested = 6; |
| // } |
| // |
| // message NestedProto { |
| // string hello = 1; |
| // uint32 id = 2; |
| // repeated DoubleNestedProto pair = 3; |
| // } |
| // |
| // message DoubleNestedProto { |
| // string key = 1; |
| // string value = 2; |
| // } |
| // |
| |
| constexpr uint32_t kTestProtoMagicNumberField = 1; |
| constexpr uint32_t kTestProtoZiggyField = 2; |
| constexpr uint32_t kTestProtoCyclesField = 3; |
| constexpr uint32_t kTestProtoRatioField = 4; |
| constexpr uint32_t kTestProtoErrorMessageField = 5; |
| constexpr uint32_t kTestProtoNestedField = 6; |
| |
| constexpr uint32_t kNestedProtoHelloField = 1; |
| constexpr uint32_t kNestedProtoIdField = 2; |
| constexpr uint32_t kNestedProtoPairField = 3; |
| |
| constexpr uint32_t kDoubleNestedProtoKeyField = 1; |
| constexpr uint32_t kDoubleNestedProtoValueField = 2; |
| |
| TEST(Encoder, EncodePrimitives) { |
| // TestProto tp; |
| // tp.magic_number = 42; |
| // tp.ziggy = -13; |
| // tp.cycles = 0xdeadbeef8badf00d; |
| // tp.ratio = 1.618034; |
| // tp.error_message = "broken 💩"; |
| |
| // Hand-encoded version of the above. |
| // clang-format off |
| constexpr uint8_t encoded_proto[] = { |
| // magic_number [varint k=1] |
| 0x08, 0x2a, |
| // ziggy [varint k=2] |
| 0x10, 0x19, |
| // cycles [fixed64 k=3] |
| 0x19, 0x0d, 0xf0, 0xad, 0x8b, 0xef, 0xbe, 0xad, 0xde, |
| // ratio [fixed32 k=4] |
| 0x25, 0xbd, 0x1b, 0xcf, 0x3f, |
| // error_message [delimited k=5], |
| 0x2a, 0x0b, 'b', 'r', 'o', 'k', 'e', 'n', ' ', |
| // poop! |
| 0xf0, 0x9f, 0x92, 0xa9, |
| }; |
| // clang-format on |
| |
| std::byte encode_buffer[32]; |
| NestedEncoder encoder(encode_buffer); |
| |
| EXPECT_EQ(encoder.WriteUint32(kTestProtoMagicNumberField, 42), OkStatus()); |
| EXPECT_EQ(encoder.WriteSint32(kTestProtoZiggyField, -13), OkStatus()); |
| EXPECT_EQ(encoder.WriteFixed64(kTestProtoCyclesField, 0xdeadbeef8badf00d), |
| OkStatus()); |
| EXPECT_EQ(encoder.WriteFloat(kTestProtoRatioField, 1.618034), OkStatus()); |
| EXPECT_EQ(encoder.WriteString(kTestProtoErrorMessageField, "broken 💩"), |
| OkStatus()); |
| |
| Result result = encoder.Encode(); |
| ASSERT_EQ(result.status(), OkStatus()); |
| EXPECT_EQ(result.value().size(), sizeof(encoded_proto)); |
| EXPECT_EQ( |
| std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)), |
| 0); |
| } |
| |
| TEST(Encoder, EncodeInsufficientSpace) { |
| std::byte encode_buffer[12]; |
| NestedEncoder encoder(encode_buffer); |
| |
| // 2 bytes. |
| EXPECT_EQ(encoder.WriteUint32(kTestProtoMagicNumberField, 42), OkStatus()); |
| // 2 bytes. |
| EXPECT_EQ(encoder.WriteSint32(kTestProtoZiggyField, -13), OkStatus()); |
| // 9 bytes; not enough space! The encoder will start writing the field but |
| // should rollback when it realizes it doesn't have enough space. |
| EXPECT_EQ(encoder.WriteFixed64(kTestProtoCyclesField, 0xdeadbeef8badf00d), |
| Status::ResourceExhausted()); |
| // Any further write operations should fail. |
| EXPECT_EQ(encoder.WriteFloat(kTestProtoRatioField, 1.618034), |
| Status::ResourceExhausted()); |
| |
| ASSERT_EQ(encoder.Encode().status(), Status::ResourceExhausted()); |
| } |
| |
| TEST(Encoder, EncodeInvalidArguments) { |
| std::byte encode_buffer[12]; |
| NestedEncoder encoder(encode_buffer); |
| |
| EXPECT_EQ(encoder.WriteUint32(kTestProtoMagicNumberField, 42), OkStatus()); |
| // Invalid proto field numbers. |
| EXPECT_EQ(encoder.WriteUint32(0, 1337), Status::InvalidArgument()); |
| encoder.Clear(); |
| |
| EXPECT_EQ(encoder.WriteString(1u << 31, "ha"), Status::InvalidArgument()); |
| encoder.Clear(); |
| |
| EXPECT_EQ(encoder.WriteBool(19091, false), Status::InvalidArgument()); |
| ASSERT_EQ(encoder.Encode().status(), Status::InvalidArgument()); |
| } |
| |
| TEST(Encoder, Nested) { |
| std::byte encode_buffer[128]; |
| NestedEncoder<5, 5> encoder(encode_buffer); |
| |
| // TestProto test_proto; |
| // test_proto.magic_number = 42; |
| EXPECT_EQ(encoder.WriteUint32(kTestProtoMagicNumberField, 42), OkStatus()); |
| |
| { |
| // NestedProto& nested_proto = test_proto.nested; |
| EXPECT_EQ(encoder.Push(kTestProtoNestedField), OkStatus()); |
| // nested_proto.hello = "world"; |
| EXPECT_EQ(encoder.WriteString(kNestedProtoHelloField, "world"), OkStatus()); |
| // nested_proto.id = 999; |
| EXPECT_EQ(encoder.WriteUint32(kNestedProtoIdField, 999), OkStatus()); |
| |
| { |
| // DoubleNestedProto& double_nested_proto = nested_proto.append_pair(); |
| EXPECT_EQ(encoder.Push(kNestedProtoPairField), OkStatus()); |
| // double_nested_proto.key = "version"; |
| EXPECT_EQ(encoder.WriteString(kDoubleNestedProtoKeyField, "version"), |
| OkStatus()); |
| // double_nested_proto.value = "2.9.1"; |
| EXPECT_EQ(encoder.WriteString(kDoubleNestedProtoValueField, "2.9.1"), |
| OkStatus()); |
| |
| EXPECT_EQ(encoder.Pop(), OkStatus()); |
| } // end DoubleNestedProto |
| |
| { |
| // DoubleNestedProto& double_nested_proto = nested_proto.append_pair(); |
| EXPECT_EQ(encoder.Push(kNestedProtoPairField), OkStatus()); |
| // double_nested_proto.key = "device"; |
| EXPECT_EQ(encoder.WriteString(kDoubleNestedProtoKeyField, "device"), |
| OkStatus()); |
| // double_nested_proto.value = "left-soc"; |
| EXPECT_EQ(encoder.WriteString(kDoubleNestedProtoValueField, "left-soc"), |
| OkStatus()); |
| |
| EXPECT_EQ(encoder.Pop(), OkStatus()); |
| } // end DoubleNestedProto |
| |
| EXPECT_EQ(encoder.Pop(), OkStatus()); |
| } // end NestedProto |
| |
| // test_proto.ziggy = -13; |
| EXPECT_EQ(encoder.WriteSint32(kTestProtoZiggyField, -13), OkStatus()); |
| |
| // clang-format off |
| constexpr uint8_t encoded_proto[] = { |
| // magic_number |
| 0x08, 0x2a, |
| // nested header (key, size) |
| 0x32, 0x30, |
| // nested.hello |
| 0x0a, 0x05, 'w', 'o', 'r', 'l', 'd', |
| // nested.id |
| 0x10, 0xe7, 0x07, |
| // nested.pair[0] header (key, size) |
| 0x1a, 0x10, |
| // nested.pair[0].key |
| 0x0a, 0x07, 'v', 'e', 'r', 's', 'i', 'o', 'n', |
| // nested.pair[0].value |
| 0x12, 0x05, '2', '.', '9', '.', '1', |
| // nested.pair[1] header (key, size) |
| 0x1a, 0x12, |
| // nested.pair[1].key |
| 0x0a, 0x06, 'd', 'e', 'v', 'i', 'c', 'e', |
| // nested.pair[1].value |
| 0x12, 0x08, 'l', 'e', 'f', 't', '-', 's', 'o', 'c', |
| // ziggy |
| 0x10, 0x19 |
| }; |
| // clang-format on |
| |
| Result result = encoder.Encode(); |
| ASSERT_EQ(result.status(), OkStatus()); |
| EXPECT_EQ(result.value().size(), sizeof(encoded_proto)); |
| EXPECT_EQ( |
| std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)), |
| 0); |
| } |
| |
| TEST(Encoder, NestedDepthLimit) { |
| std::byte encode_buffer[128]; |
| NestedEncoder<2, 2> encoder(encode_buffer); |
| |
| // One level of nesting. |
| EXPECT_EQ(encoder.Push(2), OkStatus()); |
| // Two levels of nesting. |
| EXPECT_EQ(encoder.Push(1), OkStatus()); |
| // Three levels of nesting: error! |
| EXPECT_EQ(encoder.Push(1), Status::ResourceExhausted()); |
| |
| // Further operations should fail. |
| EXPECT_EQ(encoder.Pop(), Status::ResourceExhausted()); |
| EXPECT_EQ(encoder.Pop(), Status::ResourceExhausted()); |
| EXPECT_EQ(encoder.Pop(), Status::ResourceExhausted()); |
| } |
| |
| TEST(Encoder, NestedBlobLimit) { |
| std::byte encode_buffer[128]; |
| NestedEncoder<3, 3> encoder(encode_buffer); |
| |
| // Write first blob. |
| EXPECT_EQ(encoder.Push(1), OkStatus()); |
| EXPECT_EQ(encoder.Pop(), OkStatus()); |
| |
| // Write second blob. |
| EXPECT_EQ(encoder.Push(2), OkStatus()); |
| |
| // Write nested third blob. |
| EXPECT_EQ(encoder.Push(3), OkStatus()); |
| EXPECT_EQ(encoder.Pop(), OkStatus()); |
| |
| // End second blob. |
| EXPECT_EQ(encoder.Pop(), OkStatus()); |
| |
| // Write fourth blob: OK |
| EXPECT_EQ(encoder.Push(4), OkStatus()); |
| EXPECT_EQ(encoder.Pop(), OkStatus()); |
| } |
| |
| TEST(Encoder, RepeatedField) { |
| std::byte encode_buffer[32]; |
| NestedEncoder encoder(encode_buffer); |
| |
| // repeated uint32 values = 1; |
| constexpr uint32_t values[] = {0, 50, 100, 150, 200}; |
| for (int i = 0; i < 5; ++i) { |
| encoder.WriteUint32(1, values[i]); |
| } |
| |
| constexpr uint8_t encoded_proto[] = { |
| 0x08, 0x00, 0x08, 0x32, 0x08, 0x64, 0x08, 0x96, 0x01, 0x08, 0xc8, 0x01}; |
| |
| Result result = encoder.Encode(); |
| ASSERT_EQ(result.status(), OkStatus()); |
| EXPECT_EQ(result.value().size(), sizeof(encoded_proto)); |
| EXPECT_EQ( |
| std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)), |
| 0); |
| } |
| |
| TEST(Encoder, PackedVarint) { |
| std::byte encode_buffer[32]; |
| NestedEncoder encoder(encode_buffer); |
| |
| // repeated uint32 values = 1; |
| constexpr uint32_t values[] = {0, 50, 100, 150, 200}; |
| encoder.WritePackedUint32(1, values); |
| |
| constexpr uint8_t encoded_proto[] = { |
| 0x0a, 0x07, 0x00, 0x32, 0x64, 0x96, 0x01, 0xc8, 0x01}; |
| // key size v[0] v[1] v[2] v[3] v[4] |
| |
| Result result = encoder.Encode(); |
| ASSERT_EQ(result.status(), OkStatus()); |
| EXPECT_EQ(result.value().size(), sizeof(encoded_proto)); |
| EXPECT_EQ( |
| std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)), |
| 0); |
| } |
| |
| TEST(Encoder, PackedVarintInsufficientSpace) { |
| std::byte encode_buffer[8]; |
| NestedEncoder encoder(encode_buffer); |
| |
| constexpr uint32_t values[] = {0, 50, 100, 150, 200}; |
| encoder.WritePackedUint32(1, values); |
| |
| EXPECT_EQ(encoder.Encode().status(), Status::ResourceExhausted()); |
| } |
| |
| TEST(Encoder, PackedFixed) { |
| std::byte encode_buffer[32]; |
| NestedEncoder encoder(encode_buffer); |
| |
| // repeated fixed32 values = 1; |
| constexpr uint32_t values[] = {0, 50, 100, 150, 200}; |
| encoder.WritePackedFixed32(1, values); |
| |
| // repeated fixed64 values64 = 2; |
| constexpr uint64_t values64[] = {0x0102030405060708}; |
| encoder.WritePackedFixed64(2, values64); |
| |
| constexpr uint8_t encoded_proto[] = { |
| 0x0a, 0x14, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x64, |
| 0x00, 0x00, 0x00, 0x96, 0x00, 0x00, 0x00, 0xc8, 0x00, 0x00, 0x00, |
| 0x12, 0x08, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01}; |
| |
| Result result = encoder.Encode(); |
| ASSERT_EQ(result.status(), OkStatus()); |
| EXPECT_EQ(result.value().size(), sizeof(encoded_proto)); |
| EXPECT_EQ( |
| std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)), |
| 0); |
| } |
| |
| TEST(Encoder, PackedZigzag) { |
| std::byte encode_buffer[32]; |
| NestedEncoder encoder(encode_buffer); |
| |
| // repeated sint32 values = 1; |
| constexpr int32_t values[] = {-100, -25, -1, 0, 1, 25, 100}; |
| encoder.WritePackedSint32(1, values); |
| |
| constexpr uint8_t encoded_proto[] = { |
| 0x0a, 0x09, 0xc7, 0x01, 0x31, 0x01, 0x00, 0x02, 0x32, 0xc8, 0x01}; |
| |
| Result result = encoder.Encode(); |
| ASSERT_EQ(result.status(), OkStatus()); |
| EXPECT_EQ(result.value().size(), sizeof(encoded_proto)); |
| EXPECT_EQ( |
| std::memcmp(result.value().data(), encoded_proto, sizeof(encoded_proto)), |
| 0); |
| } |
| |
| } // namespace |
| } // namespace pw::protobuf |