blob: 760f8149f97e748490657303602a9cafd326b2ca [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include <span>
#include "gtest/gtest.h"
#include "pw_kvs/flash_memory.h"
#include "pw_kvs/flash_test_partition.h"
#include "pw_kvs_private/config.h"
#include "pw_log/log.h"
namespace pw::kvs::PartitionTest {
namespace {
#ifndef PW_FLASH_TEST_ITERATIONS
#define PW_FLASH_TEST_ITERATIONS 2
#endif // PW_FLASH_TEST_ITERATIONS
constexpr size_t kTestIterations = PW_FLASH_TEST_ITERATIONS;
size_t error_count = 0;
void WriteData(FlashPartition& partition, uint8_t fill_byte) {
uint8_t test_data[kMaxFlashAlignment];
memset(test_data, fill_byte, sizeof(test_data));
const size_t alignment = partition.alignment_bytes();
ASSERT_EQ(Status::OK, partition.Erase(0, partition.sector_count()));
const size_t chunks_per_sector = partition.sector_size_bytes() / alignment;
// Fill partition sector by sector. Fill the sector with an integer number
// of alignment-size chunks. If the sector is not evenly divisible by
// alignment-size, the remainder is not written.
for (size_t sector_index = 0; sector_index < partition.sector_count();
sector_index++) {
FlashPartition::Address address =
sector_index * partition.sector_size_bytes();
for (size_t chunk_index = 0; chunk_index < chunks_per_sector;
chunk_index++) {
StatusWithSize status =
partition.Write(address, as_bytes(std::span(test_data, alignment)));
ASSERT_EQ(Status::OK, status.status());
ASSERT_EQ(alignment, status.size());
address += alignment;
}
}
// Check the fill result. Use expect so the test doesn't bail on error.
// Count the errors and print if any errors are found.
for (size_t sector_index = 0; sector_index < partition.sector_count();
sector_index++) {
FlashPartition::Address address =
sector_index * partition.sector_size_bytes();
for (size_t chunk_index = 0; chunk_index < chunks_per_sector;
chunk_index++) {
memset(test_data, 0, sizeof(test_data));
StatusWithSize status = partition.Read(address, alignment, test_data);
EXPECT_EQ(Status::OK, status.status());
EXPECT_EQ(alignment, status.size());
if (!status.ok() || (alignment != status.size())) {
error_count++;
PW_LOG_DEBUG(" Read Error [%s], %u of %u",
status.status().str(),
unsigned(status.size()),
unsigned(alignment));
continue;
}
for (size_t i = 0; i < alignment; i++) {
if (test_data[i] != fill_byte) {
error_count++;
PW_LOG_DEBUG(
" Error %u, Read compare @ address %x, got 0x%02x, "
"expected 0x%02x",
unsigned(error_count),
unsigned(address + i),
unsigned(test_data[i]),
unsigned(fill_byte));
}
}
address += alignment;
}
}
EXPECT_EQ(error_count, 0U);
if (error_count != 0) {
PW_LOG_ERROR("Partition test, fill '%c', %u errors found",
fill_byte,
unsigned(error_count));
}
}
TEST(FlashPartitionTest, FillTest) {
FlashPartition& test_partition = FlashTestPartition();
ASSERT_GE(kMaxFlashAlignment, test_partition.alignment_bytes());
for (size_t i = 0; i < kTestIterations; i++) {
PW_LOG_DEBUG("FillTest iteration %u, write '0'", unsigned(i));
WriteData(test_partition, 0);
PW_LOG_DEBUG("FillTest iteration %u, write '0xff'", unsigned(i));
WriteData(test_partition, 0xff);
PW_LOG_DEBUG("FillTest iteration %u, write '0x55'", unsigned(i));
WriteData(test_partition, 0x55);
PW_LOG_DEBUG("FillTest iteration %u, write '0xa3'", unsigned(i));
WriteData(test_partition, 0xa3);
PW_LOG_DEBUG("Completed iterations %u, Total errors %u",
unsigned(i),
unsigned(error_count));
}
}
TEST(FlashPartitionTest, EraseTest) {
FlashPartition& test_partition = FlashTestPartition();
static const uint8_t fill_byte = 0x55;
uint8_t test_data[kMaxFlashAlignment];
memset(test_data, fill_byte, sizeof(test_data));
ASSERT_GE(kMaxFlashAlignment, test_partition.alignment_bytes());
const size_t block_size =
std::min(sizeof(test_data), test_partition.sector_size_bytes());
auto data_span = std::span(test_data, block_size);
ASSERT_EQ(Status::OK, test_partition.Erase(0, test_partition.sector_count()));
// Write to the first page of each sector.
for (size_t sector_index = 0; sector_index < test_partition.sector_count();
sector_index++) {
FlashPartition::Address address =
sector_index * test_partition.sector_size_bytes();
StatusWithSize status = test_partition.Write(address, as_bytes(data_span));
ASSERT_EQ(Status::OK, status.status());
ASSERT_EQ(block_size, status.size());
}
// Preset the flag to make sure the check actually sets it.
bool is_erased = true;
ASSERT_EQ(Status::OK, test_partition.IsErased(&is_erased));
ASSERT_EQ(false, is_erased);
ASSERT_EQ(Status::OK, test_partition.Erase());
// Preset the flag to make sure the check actually sets it.
is_erased = false;
ASSERT_EQ(Status::OK, test_partition.IsErased(&is_erased));
ASSERT_EQ(true, is_erased);
// Read the first page of each sector and make sure it has been erased.
for (size_t sector_index = 0; sector_index < test_partition.sector_count();
sector_index++) {
FlashPartition::Address address =
sector_index * test_partition.sector_size_bytes();
StatusWithSize status =
test_partition.Read(address, data_span.size_bytes(), data_span.data());
EXPECT_EQ(Status::OK, status.status());
EXPECT_EQ(data_span.size_bytes(), status.size());
EXPECT_EQ(true, test_partition.AppearsErased(as_bytes(data_span)));
}
}
TEST(FlashPartitionTest, AlignmentCheck) {
FlashPartition& test_partition = FlashTestPartition();
const size_t alignment = test_partition.alignment_bytes();
const size_t sector_size_bytes = test_partition.sector_size_bytes();
EXPECT_LE(alignment, kMaxFlashAlignment);
EXPECT_EQ(kMaxFlashAlignment % alignment, 0U);
EXPECT_LE(kMaxFlashAlignment, sector_size_bytes);
EXPECT_LE(sector_size_bytes % kMaxFlashAlignment, 0U);
}
TEST(FlashPartitionTest, IsErased) {
FlashPartition& test_partition = FlashTestPartition();
const size_t alignment = test_partition.alignment_bytes();
// Make sure the partition is big enough to do this test.
ASSERT_GE(test_partition.size_bytes(), 3 * kMaxFlashAlignment);
ASSERT_EQ(Status::OK, test_partition.Erase());
bool is_erased = true;
ASSERT_EQ(Status::OK, test_partition.IsErased(&is_erased));
ASSERT_EQ(true, is_erased);
static const uint8_t fill_byte = 0x55;
uint8_t test_data[kMaxFlashAlignment];
memset(test_data, fill_byte, sizeof(test_data));
auto data_span = std::span(test_data);
// Write the chunk with fill byte.
StatusWithSize status = test_partition.Write(alignment, as_bytes(data_span));
ASSERT_EQ(Status::OK, status.status());
ASSERT_EQ(data_span.size_bytes(), status.size());
EXPECT_EQ(Status::OK, test_partition.IsErased(&is_erased));
EXPECT_EQ(false, is_erased);
// Check the chunk that was written.
EXPECT_EQ(Status::OK,
test_partition.IsRegionErased(
alignment, data_span.size_bytes(), &is_erased));
EXPECT_EQ(false, is_erased);
// Check a region that starts erased but later has been written.
EXPECT_EQ(Status::OK,
test_partition.IsRegionErased(0, 2 * alignment, &is_erased));
EXPECT_EQ(false, is_erased);
// Check erased for a region smaller than kMaxFlashAlignment. This has been a
// bug in the past.
EXPECT_EQ(Status::OK,
test_partition.IsRegionErased(0, alignment, &is_erased));
EXPECT_EQ(true, is_erased);
}
} // namespace
} // namespace pw::kvs::PartitionTest