blob: 2cb4f995fa5093bf4922db04d652d0bb604582e1 [file] [log] [blame]
// Copyright 2021 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include "pw_persistent_ram/persistent.h"
#include <type_traits>
#include "gtest/gtest.h"
#include "pw_random/xor_shift.h"
namespace pw::persistent_ram {
namespace {
class PersistentTest : public ::testing::Test {
protected:
PersistentTest() { ZeroPersistentMemory(); }
// Emulate invalidation of persistent section(s).
void ZeroPersistentMemory() { memset(&buffer_, 0, sizeof(buffer_)); }
// Allocate a chunk of aligned storage that can be independently controlled.
std::aligned_storage_t<sizeof(Persistent<uint32_t>),
alignof(Persistent<uint32_t>)>
buffer_;
};
TEST_F(PersistentTest, DefaultConstructionAndDestruction) {
{ // Emulate a boot where the persistent sections were invalidated.
// Although the fixture always does this, we do this an extra time to be
// 100% confident that an integrity check cannot be accidentally selected
// which results in reporting there is valid data when zero'd.
ZeroPersistentMemory();
auto& persistent = *(new (&buffer_) Persistent<uint32_t>());
EXPECT_FALSE(persistent.has_value());
persistent = 42;
ASSERT_TRUE(persistent.has_value());
EXPECT_EQ(42u, persistent.value());
persistent.~Persistent(); // Emulate shutdown / global destructors.
}
{ // Emulate a boot where persistent memory was kept as is.
auto& persistent = *(new (&buffer_) Persistent<uint32_t>());
ASSERT_TRUE(persistent.has_value());
EXPECT_EQ(42u, persistent.value());
}
}
TEST_F(PersistentTest, Reset) {
{ // Emulate a boot where the persistent sections were invalidated.
auto& persistent = *(new (&buffer_) Persistent<uint32_t>());
persistent = 42u;
EXPECT_TRUE(persistent.has_value());
persistent.Invalidate();
persistent.~Persistent(); // Emulate shutdown / global destructors.
}
{ // Emulate a boot where persistent memory was kept as is.
auto& persistent = *(new (&buffer_) Persistent<uint32_t>());
EXPECT_FALSE(persistent.has_value());
}
}
TEST_F(PersistentTest, Emplace) {
auto& persistent = *(new (&buffer_) Persistent<uint32_t>());
EXPECT_FALSE(persistent.has_value());
persistent.emplace(42u);
ASSERT_TRUE(persistent.has_value());
EXPECT_EQ(42u, persistent.value());
}
class MutablePersistentTest : public ::testing::Test {
protected:
struct Coordinate {
int x;
int y;
int z;
};
MutablePersistentTest() { ZeroPersistentMemory(); }
// Emulate invalidation of persistent section(s).
void ZeroPersistentMemory() { memset(&buffer_, 0, sizeof(buffer_)); }
void RandomFillMemory() {
random::XorShiftStarRng64 rng(0x9ad75);
StatusWithSize sws = rng.Get(span<std::byte>(
reinterpret_cast<std::byte*>(&buffer_), sizeof(buffer_)));
ASSERT_TRUE(sws.ok());
ASSERT_EQ(sws.size(), sizeof(buffer_));
}
// Allocate a chunk of aligned storage that can be independently controlled.
std::aligned_storage_t<sizeof(Persistent<Coordinate>),
alignof(Persistent<Coordinate>)>
buffer_;
};
TEST_F(MutablePersistentTest, DefaultConstructionAndDestruction) {
{
// Emulate a boot where the persistent sections were invalidated.
// Although the fixture always does this, we do this an extra time to be
// 100% confident that an integrity check cannot be accidentally selected
// which results in reporting there is valid data when zero'd.
ZeroPersistentMemory();
auto& persistent = *(new (&buffer_) Persistent<Coordinate>());
EXPECT_FALSE(persistent.has_value());
// Default construct of a Coordinate.
persistent.emplace(Coordinate({.x = 5, .y = 6, .z = 7}));
ASSERT_TRUE(persistent.has_value());
{
auto mutable_persistent = persistent.mutator();
mutable_persistent->x = 42;
(*mutable_persistent).y = 1337;
mutable_persistent->z = -99;
ASSERT_FALSE(persistent.has_value());
}
EXPECT_EQ(1337, persistent.value().y);
EXPECT_EQ(-99, persistent.value().z);
persistent.~Persistent(); // Emulate shutdown / global destructors.
}
{
// Emulate a boot where persistent memory was kept as is.
auto& persistent = *(new (&buffer_) Persistent<Coordinate>());
ASSERT_TRUE(persistent.has_value());
EXPECT_EQ(42, persistent.value().x);
}
}
TEST_F(MutablePersistentTest, ResetObject) {
{
// Emulate a boot where the persistent sections were lost and ended up in
// random data.
RandomFillMemory();
auto& persistent = *(new (&buffer_) Persistent<Coordinate>());
// Default construct of a Coordinate.
ASSERT_FALSE(persistent.has_value());
{
auto mutable_persistent = persistent.mutator(GetterAction::kReset);
mutable_persistent->x = 42;
}
EXPECT_EQ(42, persistent.value().x);
EXPECT_EQ(0, persistent.value().y);
EXPECT_EQ(0, persistent.value().z);
persistent.~Persistent(); // Emulate shutdown / global destructors.
}
{
// Emulate a boot where persistent memory was kept as is.
auto& persistent = *(new (&buffer_) Persistent<Coordinate>());
ASSERT_TRUE(persistent.has_value());
EXPECT_EQ(42, persistent.value().x);
EXPECT_EQ(0, persistent.value().y);
}
}
} // namespace
} // namespace pw::persistent_ram