blob: ca838808608df34513c4a6c8eb832bcb885770ca [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include <chrono>
#include "gtest/gtest.h"
#include "pw_chrono/system_clock.h"
#include "pw_thread/id.h"
#include "pw_thread/sleep.h"
using pw::chrono::SystemClock;
using namespace std::chrono_literals;
namespace pw::this_thread {
namespace {
extern "C" {
// Functions defined in sleep_facade_test_c.c which call the API from C.
void pw_this_thread_CallSleepFor(pw_chrono_SystemClock_Duration sleep_duration);
void pw_this_thread_CallSleepUntil(pw_chrono_SystemClock_TimePoint wakeup_time);
} // extern "C"
// We can't control the SystemClock's period configuration, so just in case
// duration cannot be accurately expressed in integer ticks, round the
// duration up.
constexpr SystemClock::duration kRoundedArbitraryDuration =
SystemClock::for_at_least(42ms);
constexpr pw_chrono_SystemClock_Duration kRoundedArbitraryDurationInC =
PW_SYSTEM_CLOCK_MS(42);
TEST(Sleep, SleepForPositiveDuration) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
SystemClock::time_point before = SystemClock::now();
sleep_for(kRoundedArbitraryDuration);
SystemClock::duration time_elapsed = SystemClock::now() - before;
EXPECT_GE(time_elapsed, kRoundedArbitraryDuration);
}
TEST(Sleep, SleepForZeroLengthDuration) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
// Ensure it doesn't sleep when a zero length duration is used.
SystemClock::time_point before = SystemClock::now();
sleep_for(SystemClock::duration::zero());
SystemClock::duration time_elapsed = SystemClock::now() - before;
EXPECT_LT(time_elapsed, kRoundedArbitraryDuration);
}
TEST(Sleep, SleepForNegativeDuration) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
// Ensure it doesn't sleep when a negative duration is used.
SystemClock::time_point before = SystemClock::now();
sleep_for(-kRoundedArbitraryDuration);
SystemClock::duration time_elapsed = SystemClock::now() - before;
EXPECT_LT(time_elapsed, kRoundedArbitraryDuration);
}
TEST(Sleep, SleepUntilFutureWakeupTime) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
SystemClock::time_point deadline =
SystemClock::now() + kRoundedArbitraryDuration;
sleep_until(deadline);
EXPECT_GE(SystemClock::now(), deadline);
}
TEST(Sleep, SleepUntilCurrentWakeupTime) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
// Ensure it doesn't sleep when now is used.
SystemClock::time_point deadline =
SystemClock::now() + kRoundedArbitraryDuration;
sleep_until(SystemClock::now());
EXPECT_LT(SystemClock::now(), deadline);
}
TEST(Sleep, SleepUntilPastWakeupTime) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
// Ensure it doesn't sleep when a timestamp in the past is used.
SystemClock::time_point deadline =
SystemClock::now() + kRoundedArbitraryDuration;
sleep_until(SystemClock::now() - kRoundedArbitraryDuration);
EXPECT_LT(SystemClock::now(), deadline);
}
TEST(Sleep, SleepForPositiveDurationInC) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
pw_this_thread_SleepFor(kRoundedArbitraryDurationInC);
pw_chrono_SystemClock_Duration time_elapsed =
pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
EXPECT_GE(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}
TEST(Sleep, SleepForZeroLengthDurationInC) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
// Ensure it doesn't sleep when a zero length duration is used.
pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
pw_this_thread_SleepFor(PW_SYSTEM_CLOCK_MS(0));
pw_chrono_SystemClock_Duration time_elapsed =
pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}
TEST(Sleep, SleepForNegativeDurationInC) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
// Ensure it doesn't sleep when a negative duration is used.
pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
pw_this_thread_SleepFor(
PW_SYSTEM_CLOCK_MS(-kRoundedArbitraryDurationInC.ticks));
pw_chrono_SystemClock_Duration time_elapsed =
pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}
TEST(Sleep, SleepUntilFutureWakeupTimeInC) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
pw_chrono_SystemClock_TimePoint deadline;
deadline.duration_since_epoch.ticks =
pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
kRoundedArbitraryDurationInC.ticks;
pw_this_thread_CallSleepUntil(deadline);
EXPECT_GE(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
deadline.duration_since_epoch.ticks);
}
TEST(Sleep, SleepUntilCurrentWakeupTimeInC) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
// Ensure it doesn't sleep when now is used.
pw_chrono_SystemClock_TimePoint deadline;
deadline.duration_since_epoch.ticks =
pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
kRoundedArbitraryDurationInC.ticks;
pw_this_thread_CallSleepUntil(pw_chrono_SystemClock_Now());
EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
deadline.duration_since_epoch.ticks);
}
TEST(Sleep, SleepUntilPastWakeupTimeInC) {
// Ensure we are in a thread context, meaning we are permitted to sleep.
ASSERT_NE(get_id(), thread::Id());
// Ensure it doesn't sleep when a timestamp in the past is used.
pw_chrono_SystemClock_TimePoint deadline;
deadline.duration_since_epoch.ticks =
pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
kRoundedArbitraryDurationInC.ticks;
pw_chrono_SystemClock_TimePoint old_timestamp;
old_timestamp.duration_since_epoch.ticks =
pw_chrono_SystemClock_Now().duration_since_epoch.ticks -
kRoundedArbitraryDurationInC.ticks;
pw_this_thread_CallSleepUntil(old_timestamp);
EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
deadline.duration_since_epoch.ticks);
}
} // namespace
} // namespace pw::this_thread