blob: fb08083cb7ca701099a0f42636f5551ae154a49d [file] [log] [blame]
// Copyright 2024 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include "pw_allocator/dual_first_fit_block_allocator.h"
#include "pw_allocator/block_allocator_testing.h"
#include "pw_unit_test/framework.h"
namespace {
// Test fixtures.
using ::pw::allocator::Layout;
using ::pw::allocator::test::Preallocation;
using DualFirstFitBlockAllocator =
::pw::allocator::DualFirstFitBlockAllocator<uint16_t>;
using BlockAllocatorTest =
::pw::allocator::test::BlockAllocatorTest<DualFirstFitBlockAllocator>;
// Minimum size of a "large" allocation; allocation less than this size are
// considered "small" when using the DualFirstFit strategy.
static constexpr size_t kDualFitThreshold =
BlockAllocatorTest::kSmallInnerSize * 2;
class DualFirstFitBlockAllocatorTest : public BlockAllocatorTest {
public:
DualFirstFitBlockAllocatorTest() : BlockAllocatorTest(allocator_) {}
private:
DualFirstFitBlockAllocator allocator_;
};
// Unit tests.
TEST_F(DualFirstFitBlockAllocatorTest, CanAutomaticallyInit) {
DualFirstFitBlockAllocator allocator(GetBytes(), kDualFitThreshold);
CanAutomaticallyInit(allocator);
}
TEST_F(DualFirstFitBlockAllocatorTest, CanExplicitlyInit) {
DualFirstFitBlockAllocator allocator;
CanExplicitlyInit(allocator);
}
TEST_F(DualFirstFitBlockAllocatorTest, GetCapacity) { GetCapacity(); }
TEST_F(DualFirstFitBlockAllocatorTest, AllocateLarge) { AllocateLarge(); }
TEST_F(DualFirstFitBlockAllocatorTest, AllocateSmall) { AllocateSmall(); }
TEST_F(DualFirstFitBlockAllocatorTest, AllocateLargeAlignment) {
AllocateLargeAlignment();
}
TEST_F(DualFirstFitBlockAllocatorTest, AllocateAlignmentFailure) {
AllocateAlignmentFailure();
}
TEST_F(DualFirstFitBlockAllocatorTest, AllocatesUsingThreshold) {
auto& allocator = GetAllocator({
{kLargerOuterSize, Preallocation::kIndexFree},
{kSmallerOuterSize, 1},
{kSmallOuterSize, Preallocation::kIndexFree},
{Preallocation::kSizeRemaining, 3},
{kLargeOuterSize, Preallocation::kIndexFree},
{kSmallerOuterSize, 5},
{kSmallOuterSize, Preallocation::kIndexFree},
});
auto& dual_first_fit_block_allocator =
static_cast<DualFirstFitBlockAllocator&>(allocator);
dual_first_fit_block_allocator.set_threshold(kDualFitThreshold);
Store(0, allocator.Allocate(Layout(kLargeInnerSize, 1)));
EXPECT_EQ(NextAfter(0), Fetch(1));
Store(4, allocator.Allocate(Layout(kLargeInnerSize, 1)));
EXPECT_EQ(NextAfter(3), Fetch(4));
EXPECT_EQ(NextAfter(4), Fetch(5));
Store(6, allocator.Allocate(Layout(kSmallInnerSize, 1)));
EXPECT_EQ(NextAfter(5), Fetch(6));
EXPECT_EQ(NextAfter(6), Fetch(7));
Store(2, allocator.Allocate(Layout(kSmallInnerSize, 1)));
EXPECT_EQ(NextAfter(1), Fetch(2));
EXPECT_EQ(NextAfter(2), Fetch(3));
}
TEST_F(DualFirstFitBlockAllocatorTest, DeallocateNull) { DeallocateNull(); }
TEST_F(DualFirstFitBlockAllocatorTest, DeallocateShuffled) {
DeallocateShuffled();
}
TEST_F(DualFirstFitBlockAllocatorTest, IterateOverBlocks) {
IterateOverBlocks();
}
TEST_F(DualFirstFitBlockAllocatorTest, ResizeNull) { ResizeNull(); }
TEST_F(DualFirstFitBlockAllocatorTest, ResizeLargeSame) { ResizeLargeSame(); }
TEST_F(DualFirstFitBlockAllocatorTest, ResizeLargeSmaller) {
ResizeLargeSmaller();
}
TEST_F(DualFirstFitBlockAllocatorTest, ResizeLargeLarger) {
ResizeLargeLarger();
}
TEST_F(DualFirstFitBlockAllocatorTest, ResizeLargeLargerFailure) {
ResizeLargeLargerFailure();
}
TEST_F(DualFirstFitBlockAllocatorTest, ResizeSmallSame) { ResizeSmallSame(); }
TEST_F(DualFirstFitBlockAllocatorTest, ResizeSmallSmaller) {
ResizeSmallSmaller();
}
TEST_F(DualFirstFitBlockAllocatorTest, ResizeSmallLarger) {
ResizeSmallLarger();
}
TEST_F(DualFirstFitBlockAllocatorTest, ResizeSmallLargerFailure) {
ResizeSmallLargerFailure();
}
TEST_F(DualFirstFitBlockAllocatorTest, CanGetLayoutFromValidPointer) {
CanGetLayoutFromValidPointer();
}
TEST_F(DualFirstFitBlockAllocatorTest, CannotGetLayoutFromInvalidPointer) {
CannotGetLayoutFromInvalidPointer();
}
TEST_F(DualFirstFitBlockAllocatorTest, ResizeLargeSmallerAcrossThreshold) {
auto& allocator = GetAllocator({{kDualFitThreshold * 2, 0}});
// Shrinking succeeds, and the pointer is unchanged even though it is now
// below the threshold.
size_t new_size = kDualFitThreshold / 2;
ASSERT_TRUE(allocator.Resize(Fetch(0), new_size));
UseMemory(Fetch(0), kDualFitThreshold / 2);
}
TEST_F(DualFirstFitBlockAllocatorTest, ResizeSmallLargerAcrossThreshold) {
auto& allocator = GetAllocator({
{Preallocation::kSizeRemaining, Preallocation::kIndexNext},
{kDualFitThreshold / 2, 1},
{kDualFitThreshold * 2, Preallocation::kIndexFree},
});
// Growing succeeds, and the pointer is unchanged even though it is now
// above the threshold.
size_t new_size = kDualFitThreshold * 2;
ASSERT_TRUE(allocator.Resize(Fetch(1), new_size));
UseMemory(Fetch(1), kDualFitThreshold * 2);
}
} // namespace