blob: 5112189f12736587ad7cd5ef6c469bbfa8cb257d [file] [log] [blame]
// Copyright 2024 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include "pw_allocator/first_fit_block_allocator.h"
#include "pw_allocator/block_allocator_testing.h"
#include "pw_allocator/buffer.h"
#include "pw_unit_test/framework.h"
namespace {
using ::pw::allocator::Layout;
using ::pw::allocator::test::Preallocation;
using FirstFitBlockAllocator =
::pw::allocator::FirstFitBlockAllocator<uint16_t>;
using BlockAllocatorTest =
::pw::allocator::test::BlockAllocatorTest<FirstFitBlockAllocator>;
class FirstFitBlockAllocatorTest : public BlockAllocatorTest {
public:
FirstFitBlockAllocatorTest() : BlockAllocatorTest(allocator_) {}
private:
FirstFitBlockAllocator allocator_;
};
TEST_F(FirstFitBlockAllocatorTest, CanAutomaticallyInit) {
FirstFitBlockAllocator allocator(GetBytes());
CanAutomaticallyInit(allocator);
}
TEST_F(FirstFitBlockAllocatorTest, CanExplicitlyInit) {
FirstFitBlockAllocator allocator;
CanExplicitlyInit(allocator);
}
TEST_F(FirstFitBlockAllocatorTest, GetCapacity) { GetCapacity(); }
TEST_F(FirstFitBlockAllocatorTest, AllocateLarge) { AllocateLarge(); }
TEST_F(FirstFitBlockAllocatorTest, AllocateSmall) { AllocateSmall(); }
TEST_F(FirstFitBlockAllocatorTest, AllocateLargeAlignment) {
AllocateLargeAlignment();
}
TEST_F(FirstFitBlockAllocatorTest, AllocateAlignmentFailure) {
AllocateAlignmentFailure();
}
TEST_F(FirstFitBlockAllocatorTest, AllocatesFirstCompatible) {
auto& allocator = GetAllocator({
{kSmallOuterSize, Preallocation::kIndexFree},
{kSmallerOuterSize, 1},
{kSmallOuterSize, Preallocation::kIndexFree},
{kSmallerOuterSize, 3},
{kLargeOuterSize, Preallocation::kIndexFree},
{Preallocation::kSizeRemaining, 5},
});
Store(0, allocator.Allocate(Layout(kSmallInnerSize, 1)));
EXPECT_EQ(NextAfter(0), Fetch(1));
Store(4, allocator.Allocate(Layout(kLargeInnerSize, 1)));
EXPECT_EQ(NextAfter(3), Fetch(4));
EXPECT_EQ(NextAfter(4), Fetch(5));
}
TEST_F(FirstFitBlockAllocatorTest, DeallocateNull) { DeallocateNull(); }
TEST_F(FirstFitBlockAllocatorTest, DeallocateShuffled) { DeallocateShuffled(); }
TEST_F(FirstFitBlockAllocatorTest, IterateOverBlocks) { IterateOverBlocks(); }
TEST_F(FirstFitBlockAllocatorTest, ResizeNull) { ResizeNull(); }
TEST_F(FirstFitBlockAllocatorTest, ResizeLargeSame) { ResizeLargeSame(); }
TEST_F(FirstFitBlockAllocatorTest, ResizeLargeSmaller) { ResizeLargeSmaller(); }
TEST_F(FirstFitBlockAllocatorTest, ResizeLargeLarger) { ResizeLargeLarger(); }
TEST_F(FirstFitBlockAllocatorTest, ResizeLargeLargerFailure) {
ResizeLargeLargerFailure();
}
TEST_F(FirstFitBlockAllocatorTest, ResizeSmallSame) { ResizeSmallSame(); }
TEST_F(FirstFitBlockAllocatorTest, ResizeSmallSmaller) { ResizeSmallSmaller(); }
TEST_F(FirstFitBlockAllocatorTest, ResizeSmallLarger) { ResizeSmallLarger(); }
TEST_F(FirstFitBlockAllocatorTest, ResizeSmallLargerFailure) {
ResizeSmallLargerFailure();
}
TEST_F(FirstFitBlockAllocatorTest, CanGetLayoutFromValidPointer) {
CanGetLayoutFromValidPointer();
}
TEST_F(FirstFitBlockAllocatorTest, CannotGetLayoutFromInvalidPointer) {
CannotGetLayoutFromInvalidPointer();
}
TEST_F(FirstFitBlockAllocatorTest, DisablePoisoning) {
auto& allocator = GetAllocator();
constexpr Layout layout = Layout::Of<std::byte[kSmallInnerSize]>();
// Allocate 3 blocks to prevent the middle one from being merged when freed.
std::array<void*, 3> ptrs;
for (auto& ptr : ptrs) {
ptr = allocator.Allocate(layout);
ASSERT_NE(ptr, nullptr);
}
// Modify the contents of the block and check if it is still valid.
auto* bytes = std::launder(reinterpret_cast<uint8_t*>(ptrs[1]));
auto* block = BlockType::FromUsableSpace(bytes);
allocator.Deallocate(bytes);
EXPECT_FALSE(block->Used());
EXPECT_TRUE(block->IsValid());
bytes[0] = ~bytes[0];
EXPECT_TRUE(block->IsValid());
allocator.Deallocate(ptrs[0]);
allocator.Deallocate(ptrs[2]);
}
TEST(PoisonedFirstFitBlockAllocatorTest, PoisonEveryFreeBlock) {
using PoisonedFirstFitBlockAllocator =
::pw::allocator::FirstFitBlockAllocator<uintptr_t, 1>;
using BlockType = PoisonedFirstFitBlockAllocator::BlockType;
pw::allocator::WithBuffer<PoisonedFirstFitBlockAllocator,
FirstFitBlockAllocatorTest::kCapacity>
allocator;
EXPECT_EQ(allocator->Init(allocator.as_bytes()), pw::OkStatus());
constexpr Layout layout =
Layout::Of<std::byte[FirstFitBlockAllocatorTest::kSmallInnerSize]>();
// Allocate 3 blocks to prevent the middle one from being merged when freed.
std::array<void*, 3> ptrs;
for (auto& ptr : ptrs) {
ptr = allocator->Allocate(layout);
ASSERT_NE(ptr, nullptr);
}
// Modify the contents of the block and check if it is still valid.
auto* bytes = std::launder(reinterpret_cast<uint8_t*>(ptrs[1]));
auto* block = BlockType::FromUsableSpace(bytes);
allocator->Deallocate(bytes);
EXPECT_FALSE(block->Used());
EXPECT_TRUE(block->IsValid());
bytes[0] = ~bytes[0];
EXPECT_FALSE(block->IsValid());
allocator->Deallocate(ptrs[0]);
allocator->Deallocate(ptrs[2]);
}
TEST(PoisonedFirstFitBlockAllocatorTest, PoisonPeriodically) {
using PoisonedFirstFitBlockAllocator =
::pw::allocator::FirstFitBlockAllocator<uintptr_t, 4>;
using BlockType = PoisonedFirstFitBlockAllocator::BlockType;
pw::allocator::WithBuffer<PoisonedFirstFitBlockAllocator,
FirstFitBlockAllocatorTest::kCapacity>
allocator;
EXPECT_EQ(allocator->Init(allocator.as_bytes()), pw::OkStatus());
constexpr Layout layout =
Layout::Of<std::byte[FirstFitBlockAllocatorTest::kSmallInnerSize]>();
// Allocate 9 blocks to prevent every other from being merged when freed.
std::array<void*, 9> ptrs;
for (auto& ptr : ptrs) {
ptr = allocator->Allocate(layout);
ASSERT_NE(ptr, nullptr);
}
for (size_t i = 1; i < ptrs.size(); i += 2) {
auto* bytes = std::launder(reinterpret_cast<uint8_t*>(ptrs[i]));
auto* block = BlockType::FromUsableSpace(bytes);
allocator->Deallocate(bytes);
EXPECT_FALSE(block->Used());
EXPECT_TRUE(block->IsValid());
bytes[0] = ~bytes[0];
// Corruption is only detected on the fourth freed block.
if (i == 7) {
EXPECT_FALSE(block->IsValid());
} else {
EXPECT_TRUE(block->IsValid());
}
}
for (size_t i = 0; i < ptrs.size(); i += 2) {
allocator->Deallocate(ptrs[i]);
}
}
} // namespace