blob: 2676139659457e1c944841651ab11e5ab1a904c9 [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include "pw_allocator/freelist_heap.h"
#include "pw_bytes/alignment.h"
#include "pw_unit_test/framework.h"
namespace {
// Test fixtures.
using ::pw::allocator::FreeListHeapBuffer;
class FreeListHeapBufferTest : public ::testing::Test {
protected:
using BlockType = ::pw::allocator::Block<>;
static constexpr size_t kN = 2048;
alignas(BlockType) std::array<std::byte, kN> buffer_;
};
// Unit tests.
TEST_F(FreeListHeapBufferTest, CanAllocate) {
FreeListHeapBuffer allocator(buffer_);
void* ptr = allocator.Allocate(kN / 4);
ASSERT_NE(ptr, nullptr);
// The returned memory should be a chunk of the allocator's memory...
EXPECT_GE(ptr, buffer_.data());
EXPECT_LT(ptr, buffer_.data() + buffer_.size());
// ...and should be usable.
std::memset(ptr, 0xff, kN / 4);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr);
}
TEST_F(FreeListHeapBufferTest, AllocationsDontOverlap) {
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Allocate(kN / 4);
ASSERT_NE(ptr1, nullptr);
uintptr_t ptr1_start = reinterpret_cast<uintptr_t>(ptr1);
uintptr_t ptr1_end = ptr1_start + (kN / 4);
void* ptr2 = allocator.Allocate(kN / 4);
ASSERT_NE(ptr2, nullptr);
uintptr_t ptr2_start = reinterpret_cast<uintptr_t>(ptr2);
uintptr_t ptr2_end = ptr2_start + (kN / 4);
if (ptr1 < ptr2) {
EXPECT_LT(ptr1_end, ptr2_start);
} else {
EXPECT_LT(ptr2_end, ptr1_start);
}
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr1);
allocator.Free(ptr2);
}
TEST_F(FreeListHeapBufferTest, CanFreeAndRealloc) {
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Allocate(kN / 4);
allocator.Free(ptr1);
// There's not really a nice way to test that Free works, apart from to try
// and get that value back again.
void* ptr2 = allocator.Allocate(kN / 4);
EXPECT_EQ(ptr1, ptr2);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr2);
}
TEST_F(FreeListHeapBufferTest, ReturnsNullWhenAllocationTooLarge) {
FreeListHeapBuffer allocator(buffer_);
EXPECT_EQ(allocator.Allocate(kN), nullptr);
}
TEST_F(FreeListHeapBufferTest, ReturnsNullWhenFull) {
FreeListHeapBuffer allocator(buffer_);
auto start = reinterpret_cast<uintptr_t>(buffer_.data());
uintptr_t usable =
pw::AlignUp(start + BlockType::kBlockOverhead, alignof(std::max_align_t));
void* ptr1 = allocator.Allocate(kN - (usable - start));
ASSERT_NE(ptr1, nullptr);
void* ptr2 = allocator.Allocate(1);
EXPECT_EQ(ptr2, nullptr);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr1);
}
TEST_F(FreeListHeapBufferTest, ReturnedPointersAreAligned) {
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Allocate(1);
// Should be aligned to native pointer alignment
uintptr_t ptr1_start = reinterpret_cast<uintptr_t>(ptr1);
size_t alignment = alignof(void*);
EXPECT_EQ(ptr1_start % alignment, static_cast<size_t>(0));
void* ptr2 = allocator.Allocate(1);
uintptr_t ptr2_start = reinterpret_cast<uintptr_t>(ptr2);
EXPECT_EQ(ptr2_start % alignment, static_cast<size_t>(0));
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr1);
allocator.Free(ptr2);
}
TEST_F(FreeListHeapBufferTest, CanRealloc) {
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Allocate(kN / 4);
ASSERT_NE(ptr1, nullptr);
void* ptr2 = allocator.Realloc(ptr1, (kN * 3) / 8);
ASSERT_NE(ptr2, nullptr);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr2);
}
TEST_F(FreeListHeapBufferTest, ReallocHasSameContent) {
FreeListHeapBuffer allocator(buffer_);
size_t val1 = 42;
void* ptr1 = allocator.Allocate(sizeof(size_t));
ASSERT_NE(ptr1, nullptr);
std::memcpy(ptr1, &val1, sizeof(size_t));
size_t val2;
void* ptr2 = allocator.Realloc(ptr1, sizeof(size_t) * 2);
ASSERT_NE(ptr2, nullptr);
std::memcpy(&val2, ptr2, sizeof(size_t));
// Verify that data inside the allocated and reallocated chunks are the same.
EXPECT_EQ(val1, val2);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr2);
}
TEST_F(FreeListHeapBufferTest, ReallocSmallerSize) {
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Allocate(kN / 4);
ASSERT_NE(ptr1, nullptr);
// For smaller sizes, Realloc will not shrink the block.
void* ptr2 = allocator.Realloc(ptr1, kN / 8);
EXPECT_EQ(ptr1, ptr2);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr2);
}
TEST_F(FreeListHeapBufferTest, ReallocTooLarge) {
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Allocate(kN / 4);
ASSERT_NE(ptr1, nullptr);
// Realloc() will not invalidate the original pointer if it fails
void* ptr2 = allocator.Realloc(ptr1, kN * 2);
EXPECT_EQ(ptr2, nullptr);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr1);
}
TEST_F(FreeListHeapBufferTest, CanCalloc) {
constexpr size_t kNum = 4;
constexpr size_t kSize = 128;
constexpr std::array<std::byte, kNum * kSize> kZero = {std::byte(0)};
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Calloc(kNum, kSize);
ASSERT_NE(ptr1, nullptr);
// Calloc'd content is zero.
EXPECT_EQ(std::memcmp(ptr1, kZero.data(), kZero.size()), 0);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr1);
}
TEST_F(FreeListHeapBufferTest, CanCallocWeirdSize) {
constexpr size_t kNum = 4;
constexpr size_t kSize = 128;
constexpr std::array<std::byte, kNum * kSize> kZero = {std::byte(0)};
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Calloc(kNum, kSize);
ASSERT_NE(ptr1, nullptr);
// Calloc'd content is zero.
EXPECT_EQ(std::memcmp(ptr1, kZero.data(), kZero.size()), 0);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr1);
}
TEST_F(FreeListHeapBufferTest, CallocTooLarge) {
FreeListHeapBuffer allocator(buffer_);
void* ptr1 = allocator.Calloc(1, kN + 1);
EXPECT_EQ(ptr1, nullptr);
// All pointers must be freed before the allocator goes out of scope.
allocator.Free(ptr1);
}
} // namespace