| // Copyright 2021 The Pigweed Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| // use this file except in compliance with the License. You may obtain a copy of |
| // the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| // License for the specific language governing permissions and limitations under |
| // the License. |
| #include "pw_analog/microvolt_input.h" |
| |
| #include "gtest/gtest.h" |
| |
| namespace pw { |
| namespace analog { |
| namespace { |
| |
| using namespace std::chrono_literals; |
| |
| constexpr int32_t kLimitsMax = 4096; |
| constexpr int32_t kLimitsMin = 0; |
| constexpr int32_t kReferenceMaxVoltageUv = 1800000; |
| constexpr int32_t kReferenceMinVoltageUv = 0; |
| constexpr chrono::SystemClock::duration kTimeout = 1ms; |
| |
| constexpr int32_t kBipolarLimitsMax = 4096; |
| constexpr int32_t kBipolarLimitsMin = -4096; |
| constexpr int32_t kBipolarReferenceMaxVoltageUv = 1800000; |
| constexpr int32_t kBipolarReferenceMinVoltageUv = -1800000; |
| |
| constexpr int32_t kCornerLimitsMax = std::numeric_limits<int32_t>::max(); |
| constexpr int32_t kCornerLimitsMin = std::numeric_limits<int32_t>::min(); |
| constexpr int32_t kCornerReferenceMaxVoltageUv = |
| std::numeric_limits<int32_t>::max(); |
| constexpr int32_t kCornerReferenceMinVoltageUv = |
| std::numeric_limits<int32_t>::min(); |
| |
| constexpr int32_t kInvertedLimitsMax = std::numeric_limits<int32_t>::max(); |
| constexpr int32_t kInvertedLimitsMin = std::numeric_limits<int32_t>::min(); |
| constexpr int32_t kInvertedReferenceMaxVoltageUv = |
| std::numeric_limits<int32_t>::min(); |
| constexpr int32_t kInvertedReferenceMinVoltageUv = |
| std::numeric_limits<int32_t>::max(); |
| |
| // Fake voltage input that's used for testing. |
| class TestMicrovoltInput : public MicrovoltInput { |
| public: |
| constexpr explicit TestMicrovoltInput(AnalogInput::Limits limits, |
| MicrovoltInput::References reference) |
| : sample_(0), limits_(limits), reference_(reference) {} |
| |
| void SetSampleValue(int32_t sample) { sample_ = sample; } |
| |
| private: |
| Result<int32_t> TryReadUntil(chrono::SystemClock::time_point) override { |
| return sample_; |
| } |
| |
| Limits GetLimits() const override { return limits_; } |
| References GetReferences() const override { return reference_; } |
| |
| uint32_t sample_; |
| const Limits limits_; |
| const References reference_; |
| }; |
| |
| TEST(MicrovoltInputTest, Construction) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kLimitsMin, .max = kLimitsMax}, |
| {.max_voltage_uv = kReferenceMaxVoltageUv, |
| .min_voltage_uv = kReferenceMinVoltageUv}); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithSampleAtMin) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kLimitsMin, .max = kLimitsMax}, |
| {.max_voltage_uv = kReferenceMaxVoltageUv, |
| .min_voltage_uv = kReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kLimitsMin); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), 0); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithSampleAtMax) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kLimitsMin, .max = kLimitsMax}, |
| {.max_voltage_uv = kReferenceMaxVoltageUv, |
| .min_voltage_uv = kReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kLimitsMax); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kReferenceMaxVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithSampleAtHalf) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kLimitsMin, .max = kLimitsMax}, |
| {.max_voltage_uv = kReferenceMaxVoltageUv, |
| .min_voltage_uv = kReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kLimitsMax / 2); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kReferenceMaxVoltageUv / 2); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarAdcAtZero) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kBipolarLimitsMin, .max = kBipolarLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(0); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), 0); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarAdcAtMin) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kBipolarLimitsMin, .max = kBipolarLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kBipolarLimitsMin); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kBipolarReferenceMinVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarAdcAtMax) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kBipolarLimitsMin, .max = kBipolarLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kBipolarLimitsMax); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kBipolarReferenceMaxVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarAdcAtUpperHalf) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kBipolarLimitsMin, .max = kBipolarLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kBipolarLimitsMax / 2); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kBipolarReferenceMaxVoltageUv / 2); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarAdcAtLowerHalf) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kBipolarLimitsMin, .max = kBipolarLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kBipolarLimitsMin / 2); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kBipolarReferenceMinVoltageUv / 2); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarReferenceAtZero) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kLimitsMin, .max = kLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(0); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kBipolarReferenceMinVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarReferenceAtMin) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kLimitsMin, .max = kLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kLimitsMin); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kBipolarReferenceMinVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarReferenceAtMax) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kLimitsMin, .max = kLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kLimitsMax); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kBipolarReferenceMaxVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithBipolarReferenceAtHalf) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kLimitsMin, .max = kLimitsMax}, |
| {.max_voltage_uv = kBipolarReferenceMaxVoltageUv, |
| .min_voltage_uv = kBipolarReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kLimitsMax / 2); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), 0); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithSampleAtMinCornerCase) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kCornerLimitsMin, .max = kCornerLimitsMax}, |
| {.max_voltage_uv = kCornerReferenceMaxVoltageUv, |
| .min_voltage_uv = kCornerReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kCornerLimitsMin); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kCornerReferenceMinVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithSampleAtMaxCornerCase) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kCornerLimitsMin, .max = kCornerLimitsMax}, |
| {.max_voltage_uv = kCornerReferenceMaxVoltageUv, |
| .min_voltage_uv = kCornerReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kCornerLimitsMax); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kCornerReferenceMaxVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithInvertedReferenceAtMax) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kInvertedLimitsMin, .max = kInvertedLimitsMax}, |
| {.max_voltage_uv = kInvertedReferenceMaxVoltageUv, |
| .min_voltage_uv = kInvertedReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kInvertedLimitsMax); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kInvertedReferenceMaxVoltageUv); |
| } |
| |
| TEST(MicrovoltInputTest, ReadMicrovoltsWithInvertedReferenceAtMin) { |
| TestMicrovoltInput voltage_input = |
| TestMicrovoltInput({.min = kInvertedLimitsMin, .max = kInvertedLimitsMax}, |
| {.max_voltage_uv = kInvertedReferenceMaxVoltageUv, |
| .min_voltage_uv = kInvertedReferenceMinVoltageUv}); |
| voltage_input.SetSampleValue(kInvertedLimitsMin); |
| |
| Result<int32_t> result = voltage_input.TryReadMicrovoltsFor(kTimeout); |
| ASSERT_TRUE(result.status().ok()); |
| |
| EXPECT_EQ(result.value(), kInvertedReferenceMinVoltageUv); |
| } |
| } // namespace |
| } // namespace analog |
| } // namespace pw |