blob: 77ed52dfd021a50ac9b450362053aea26a4b6949 [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#define PW_LOG_MODULE_NAME "KVS"
#define PW_LOG_LEVEL PW_KVS_LOG_LEVEL
#define PW_LOG_USE_ULTRA_SHORT_NAMES 1
#include "pw_kvs/key_value_store.h"
#include <algorithm>
#include <cinttypes>
#include <cstring>
#include <type_traits>
#include "pw_assert/assert.h"
#include "pw_kvs_private/config.h"
#include "pw_log/log.h"
#include "pw_status/try.h"
namespace pw::kvs {
namespace {
using std::byte;
constexpr bool InvalidKey(Key key) {
return key.empty() || (key.size() > internal::Entry::kMaxKeyLength);
}
} // namespace
KeyValueStore::KeyValueStore(FlashPartition* partition,
std::span<const EntryFormat> formats,
const Options& options,
size_t redundancy,
Vector<SectorDescriptor>& sector_descriptor_list,
const SectorDescriptor** temp_sectors_to_skip,
Vector<KeyDescriptor>& key_descriptor_list,
Address* addresses)
: partition_(*partition),
formats_(formats),
sectors_(sector_descriptor_list, *partition, temp_sectors_to_skip),
entry_cache_(key_descriptor_list, addresses, redundancy),
options_(options),
initialized_(InitializationState::kNotInitialized),
error_detected_(false),
internal_stats_({}),
last_transaction_id_(0) {}
Status KeyValueStore::Init() {
initialized_ = InitializationState::kNotInitialized;
error_detected_ = false;
last_transaction_id_ = 0;
INF("Initializing key value store");
if (partition_.sector_count() > sectors_.max_size()) {
ERR("KVS init failed: kMaxUsableSectors (=%u) must be at least as "
"large as the number of sectors in the flash partition (=%u)",
unsigned(sectors_.max_size()),
unsigned(partition_.sector_count()));
return Status::FailedPrecondition();
}
if (partition_.sector_count() < 2) {
ERR("KVS init failed: FlashParition sector count (=%u) must be at 2. KVS "
"requires at least 1 working sector + 1 free/reserved sector",
unsigned(partition_.sector_count()));
return Status::FailedPrecondition();
}
const size_t sector_size_bytes = partition_.sector_size_bytes();
// TODO: investigate doing this as a static assert/compile-time check.
if (sector_size_bytes > SectorDescriptor::max_sector_size()) {
ERR("KVS init failed: sector_size_bytes (=%u) is greater than maximum "
"allowed sector size (=%u)",
unsigned(sector_size_bytes),
unsigned(SectorDescriptor::max_sector_size()));
return Status::FailedPrecondition();
}
Status metadata_result = InitializeMetadata();
if (!error_detected_) {
initialized_ = InitializationState::kReady;
} else {
initialized_ = InitializationState::kNeedsMaintenance;
if (options_.recovery != ErrorRecovery::kManual) {
size_t pre_fix_redundancy_errors =
internal_stats_.missing_redundant_entries_recovered;
Status recovery_status = FixErrors();
if (recovery_status.ok()) {
if (metadata_result == Status::OutOfRange()) {
internal_stats_.missing_redundant_entries_recovered =
pre_fix_redundancy_errors;
INF("KVS init: Redundancy level successfully updated");
} else {
WRN("KVS init: Corruption detected and fully repaired");
}
initialized_ = InitializationState::kReady;
} else if (recovery_status == Status::ResourceExhausted()) {
WRN("KVS init: Unable to maintain required free sector");
} else {
WRN("KVS init: Corruption detected and unable repair");
}
} else {
WRN("KVS init: Corruption detected, no repair attempted due to options");
}
}
INF("KeyValueStore init complete: active keys %u, deleted keys %u, sectors "
"%u, logical sector size %u bytes",
unsigned(size()),
unsigned(entry_cache_.total_entries() - size()),
unsigned(sectors_.size()),
unsigned(partition_.sector_size_bytes()));
// Report any corruption was not repaired.
if (error_detected_) {
WRN("KVS init: Corruption found but not repaired, KVS unavailable until "
"successful maintenance.");
return Status::DataLoss();
}
return Status::Ok();
}
Status KeyValueStore::InitializeMetadata() {
const size_t sector_size_bytes = partition_.sector_size_bytes();
sectors_.Reset();
entry_cache_.Reset();
DBG("First pass: Read all entries from all sectors");
Address sector_address = 0;
size_t total_corrupt_bytes = 0;
size_t corrupt_entries = 0;
bool empty_sector_found = false;
size_t entry_copies_missing = 0;
for (SectorDescriptor& sector : sectors_) {
Address entry_address = sector_address;
size_t sector_corrupt_bytes = 0;
for (int num_entries_in_sector = 0; true; num_entries_in_sector++) {
DBG("Load entry: sector=%u, entry#=%d, address=%u",
unsigned(sector_address),
num_entries_in_sector,
unsigned(entry_address));
if (!sectors_.AddressInSector(sector, entry_address)) {
DBG("Fell off end of sector; moving to the next sector");
break;
}
Address next_entry_address;
Status status = LoadEntry(entry_address, &next_entry_address);
if (status == Status::NotFound()) {
DBG("Hit un-written data in sector; moving to the next sector");
break;
} else if (!status.ok()) {
// The entry could not be read, indicating likely data corruption within
// the sector. Try to scan the remainder of the sector for other
// entries.
error_detected_ = true;
corrupt_entries++;
status = ScanForEntry(sector,
entry_address + Entry::kMinAlignmentBytes,
&next_entry_address);
if (!status.ok()) {
// No further entries in this sector. Mark the remaining bytes in the
// sector as corrupt (since we can't reliably know the size of the
// corrupt entry).
sector_corrupt_bytes +=
sector_size_bytes - (entry_address - sector_address);
break;
}
sector_corrupt_bytes += next_entry_address - entry_address;
}
// Entry loaded successfully; so get ready to load the next one.
entry_address = next_entry_address;
// Update of the number of writable bytes in this sector.
sector.set_writable_bytes(sector_size_bytes -
(entry_address - sector_address));
}
if (sector_corrupt_bytes > 0) {
// If the sector contains corrupt data, prevent any further entries from
// being written to it by indicating that it has no space. This should
// also make it a decent GC candidate. Valid keys in the sector are still
// readable as normal.
sector.mark_corrupt();
error_detected_ = true;
WRN("Sector %u contains %uB of corrupt data",
sectors_.Index(sector),
unsigned(sector_corrupt_bytes));
}
if (sector.Empty(sector_size_bytes)) {
empty_sector_found = true;
}
sector_address += sector_size_bytes;
total_corrupt_bytes += sector_corrupt_bytes;
}
DBG("Second pass: Count valid bytes in each sector");
Address newest_key = 0;
// For every valid entry, for each address, count the valid bytes in that
// sector. If the address fails to read, remove the address and mark the
// sector as corrupt. Track which entry has the newest transaction ID for
// initializing last_new_sector_.
for (EntryMetadata& metadata : entry_cache_) {
if (metadata.addresses().size() < redundancy()) {
DBG("Key 0x%08x missing copies, has %u, needs %u",
unsigned(metadata.hash()),
unsigned(metadata.addresses().size()),
unsigned(redundancy()));
entry_copies_missing++;
}
size_t index = 0;
while (index < metadata.addresses().size()) {
Address address = metadata.addresses()[index];
Entry entry;
Status read_result = Entry::Read(partition_, address, formats_, &entry);
SectorDescriptor& sector = sectors_.FromAddress(address);
if (read_result.ok()) {
sector.AddValidBytes(entry.size());
index++;
} else {
corrupt_entries++;
total_corrupt_bytes += sector.writable_bytes();
error_detected_ = true;
sector.mark_corrupt();
// Remove the bad address and stay at this index. The removal
// replaces out the removed address with the back address so
// this index needs to be rechecked with the new address.
metadata.RemoveAddress(address);
}
}
if (metadata.IsNewerThan(last_transaction_id_)) {
last_transaction_id_ = metadata.transaction_id();
newest_key = metadata.addresses().back();
}
}
sectors_.set_last_new_sector(newest_key);
if (!empty_sector_found) {
DBG("No empty sector found");
error_detected_ = true;
}
if (entry_copies_missing > 0) {
bool other_errors = error_detected_;
error_detected_ = true;
if (!other_errors && entry_copies_missing == entry_cache_.total_entries()) {
INF("KVS configuration changed to redundancy of %u total copies per key",
unsigned(redundancy()));
return Status::OutOfRange();
}
}
if (error_detected_) {
WRN("Corruption detected. Found %u corrupt bytes, %u corrupt entries, "
"and %u keys missing redundant copies.",
unsigned(total_corrupt_bytes),
unsigned(corrupt_entries),
unsigned(entry_copies_missing));
return Status::FailedPrecondition();
}
return Status::Ok();
}
KeyValueStore::StorageStats KeyValueStore::GetStorageStats() const {
StorageStats stats{};
const size_t sector_size = partition_.sector_size_bytes();
bool found_empty_sector = false;
stats.sector_erase_count = internal_stats_.sector_erase_count;
stats.corrupt_sectors_recovered = internal_stats_.corrupt_sectors_recovered;
stats.missing_redundant_entries_recovered =
internal_stats_.missing_redundant_entries_recovered;
for (const SectorDescriptor& sector : sectors_) {
stats.in_use_bytes += sector.valid_bytes();
stats.reclaimable_bytes += sector.RecoverableBytes(sector_size);
if (!found_empty_sector && sector.Empty(sector_size)) {
// The KVS tries to always keep an empty sector for GC, so don't count
// the first empty sector seen as writable space. However, a free sector
// cannot always be assumed to exist; if a GC operation fails, all sectors
// may be partially written, in which case the space reported might be
// inaccurate.
found_empty_sector = true;
continue;
}
stats.writable_bytes += sector.writable_bytes();
}
return stats;
}
// Check KVS for any error conditions. Primarily intended for test and
// internal use.
bool KeyValueStore::CheckForErrors() {
// Check for corrupted sectors
for (SectorDescriptor& sector : sectors_) {
if (sector.corrupt()) {
error_detected_ = true;
return error_detected();
}
}
// Check for missing redundancy.
if (redundancy() > 1) {
for (const EntryMetadata& metadata : entry_cache_) {
if (metadata.addresses().size() < redundancy()) {
error_detected_ = true;
return error_detected();
}
}
}
return error_detected();
}
Status KeyValueStore::LoadEntry(Address entry_address,
Address* next_entry_address) {
Entry entry;
PW_TRY(Entry::Read(partition_, entry_address, formats_, &entry));
// Read the key from flash & validate the entry (which reads the value).
Entry::KeyBuffer key_buffer;
PW_TRY_ASSIGN(size_t key_length, entry.ReadKey(key_buffer));
const Key key(key_buffer.data(), key_length);
PW_TRY(entry.VerifyChecksumInFlash());
// A valid entry was found, so update the next entry address before doing any
// of the checks that happen in AddNewOrUpdateExisting.
*next_entry_address = entry.next_address();
return entry_cache_.AddNewOrUpdateExisting(
entry.descriptor(key), entry.address(), partition_.sector_size_bytes());
}
// Scans flash memory within a sector to find a KVS entry magic.
Status KeyValueStore::ScanForEntry(const SectorDescriptor& sector,
Address start_address,
Address* next_entry_address) {
DBG("Scanning sector %u for entries starting from address %u",
sectors_.Index(sector),
unsigned(start_address));
// Entries must start at addresses which are aligned on a multiple of
// Entry::kMinAlignmentBytes. However, that multiple can vary between entries.
// When scanning, we don't have an entry to tell us what the current alignment
// is, so the minimum alignment is used to be exhaustive.
for (Address address = AlignUp(start_address, Entry::kMinAlignmentBytes);
sectors_.AddressInSector(sector, address);
address += Entry::kMinAlignmentBytes) {
uint32_t magic;
StatusWithSize read_result =
partition_.Read(address, std::as_writable_bytes(std::span(&magic, 1)));
if (!read_result.ok()) {
continue;
}
if (formats_.KnownMagic(magic)) {
DBG("Found entry magic at address %u", unsigned(address));
*next_entry_address = address;
return Status::Ok();
}
}
return Status::NotFound();
}
StatusWithSize KeyValueStore::Get(Key key,
std::span<byte> value_buffer,
size_t offset_bytes) const {
PW_TRY_WITH_SIZE(CheckReadOperation(key));
EntryMetadata metadata;
PW_TRY_WITH_SIZE(FindExisting(key, &metadata));
return Get(key, metadata, value_buffer, offset_bytes);
}
Status KeyValueStore::PutBytes(Key key, std::span<const byte> value) {
PW_TRY(CheckWriteOperation(key));
DBG("Writing key/value; key length=%u, value length=%u",
unsigned(key.size()),
unsigned(value.size()));
if (Entry::size(partition_, key, value) > partition_.sector_size_bytes()) {
DBG("%u B value with %u B key cannot fit in one sector",
unsigned(value.size()),
unsigned(key.size()));
return Status::InvalidArgument();
}
EntryMetadata metadata;
Status status = FindEntry(key, &metadata);
if (status.ok()) {
// TODO: figure out logging how to support multiple addresses.
DBG("Overwriting entry for key 0x%08x in %u sectors including %u",
unsigned(metadata.hash()),
unsigned(metadata.addresses().size()),
sectors_.Index(metadata.first_address()));
return WriteEntryForExistingKey(metadata, EntryState::kValid, key, value);
}
if (status == Status::NotFound()) {
return WriteEntryForNewKey(key, value);
}
return status;
}
Status KeyValueStore::Delete(Key key) {
PW_TRY(CheckWriteOperation(key));
EntryMetadata metadata;
PW_TRY(FindExisting(key, &metadata));
// TODO: figure out logging how to support multiple addresses.
DBG("Writing tombstone for key 0x%08x in %u sectors including %u",
unsigned(metadata.hash()),
unsigned(metadata.addresses().size()),
sectors_.Index(metadata.first_address()));
return WriteEntryForExistingKey(metadata, EntryState::kDeleted, key, {});
}
void KeyValueStore::Item::ReadKey() {
key_buffer_.fill('\0');
Entry entry;
if (kvs_.ReadEntry(*iterator_, entry).ok()) {
entry.ReadKey(key_buffer_);
}
}
KeyValueStore::iterator& KeyValueStore::iterator::operator++() {
// Skip to the next entry that is valid (not deleted).
while (++item_.iterator_ != item_.kvs_.entry_cache_.end() &&
item_.iterator_->state() != EntryState::kValid) {
}
return *this;
}
KeyValueStore::iterator KeyValueStore::begin() const {
internal::EntryCache::const_iterator cache_iterator = entry_cache_.begin();
// Skip over any deleted entries at the start of the descriptor list.
while (cache_iterator != entry_cache_.end() &&
cache_iterator->state() != EntryState::kValid) {
++cache_iterator;
}
return iterator(*this, cache_iterator);
}
StatusWithSize KeyValueStore::ValueSize(Key key) const {
PW_TRY_WITH_SIZE(CheckReadOperation(key));
EntryMetadata metadata;
PW_TRY_WITH_SIZE(FindExisting(key, &metadata));
return ValueSize(metadata);
}
Status KeyValueStore::ReadEntry(const EntryMetadata& metadata,
Entry& entry) const {
// Try to read an entry
Status read_result = Status::DataLoss();
for (Address address : metadata.addresses()) {
read_result = Entry::Read(partition_, address, formats_, &entry);
if (read_result.ok()) {
return read_result;
}
// Found a bad address. Set the sector as corrupt.
error_detected_ = true;
sectors_.FromAddress(address).mark_corrupt();
}
ERR("No valid entries for key. Data has been lost!");
return read_result;
}
Status KeyValueStore::FindEntry(Key key, EntryMetadata* found_entry) const {
StatusWithSize find_result =
entry_cache_.Find(partition_, sectors_, formats_, key, found_entry);
if (find_result.size() > 0u) {
error_detected_ = true;
}
return find_result.status();
}
Status KeyValueStore::FindExisting(Key key, EntryMetadata* metadata) const {
Status status = FindEntry(key, metadata);
// If the key's hash collides with an existing key or if the key is deleted,
// treat it as if it is not in the KVS.
if (status == Status::AlreadyExists() ||
(status.ok() && metadata->state() == EntryState::kDeleted)) {
return Status::NotFound();
}
return status;
}
StatusWithSize KeyValueStore::Get(Key key,
const EntryMetadata& metadata,
std::span<std::byte> value_buffer,
size_t offset_bytes) const {
Entry entry;
PW_TRY_WITH_SIZE(ReadEntry(metadata, entry));
StatusWithSize result = entry.ReadValue(value_buffer, offset_bytes);
if (result.ok() && options_.verify_on_read && offset_bytes == 0u) {
Status verify_result =
entry.VerifyChecksum(key, value_buffer.first(result.size()));
if (!verify_result.ok()) {
std::memset(value_buffer.data(), 0, result.size());
return StatusWithSize(verify_result, 0);
}
return StatusWithSize(verify_result, result.size());
}
return result;
}
Status KeyValueStore::FixedSizeGet(Key key,
void* value,
size_t size_bytes) const {
PW_TRY(CheckWriteOperation(key));
EntryMetadata metadata;
PW_TRY(FindExisting(key, &metadata));
return FixedSizeGet(key, metadata, value, size_bytes);
}
Status KeyValueStore::FixedSizeGet(Key key,
const EntryMetadata& metadata,
void* value,
size_t size_bytes) const {
// Ensure that the size of the stored value matches the size of the type.
// Otherwise, report error. This check avoids potential memory corruption.
PW_TRY_ASSIGN(const size_t actual_size, ValueSize(metadata));
if (actual_size != size_bytes) {
DBG("Requested %u B read, but value is %u B",
unsigned(size_bytes),
unsigned(actual_size));
return Status::InvalidArgument();
}
StatusWithSize result =
Get(key, metadata, std::span(static_cast<byte*>(value), size_bytes), 0);
return result.status();
}
StatusWithSize KeyValueStore::ValueSize(const EntryMetadata& metadata) const {
Entry entry;
PW_TRY_WITH_SIZE(ReadEntry(metadata, entry));
return StatusWithSize(entry.value_size());
}
Status KeyValueStore::CheckWriteOperation(Key key) const {
if (InvalidKey(key)) {
return Status::InvalidArgument();
}
// For normal write operation the KVS must be fully ready.
if (!initialized()) {
return Status::FailedPrecondition();
}
return Status::Ok();
}
Status KeyValueStore::CheckReadOperation(Key key) const {
if (InvalidKey(key)) {
return Status::InvalidArgument();
}
// Operations that are explicitly read-only can be done after init() has been
// called but not fully ready (when needing maintenance).
if (initialized_ == InitializationState::kNotInitialized) {
return Status::FailedPrecondition();
}
return Status::Ok();
}
Status KeyValueStore::WriteEntryForExistingKey(EntryMetadata& metadata,
EntryState new_state,
Key key,
std::span<const byte> value) {
// Read the original entry to get the size for sector accounting purposes.
Entry entry;
PW_TRY(ReadEntry(metadata, entry));
return WriteEntry(key, value, new_state, &metadata, &entry);
}
Status KeyValueStore::WriteEntryForNewKey(Key key,
std::span<const byte> value) {
if (entry_cache_.full()) {
WRN("KVS full: trying to store a new entry, but can't. Have %u entries",
unsigned(entry_cache_.total_entries()));
return Status::ResourceExhausted();
}
return WriteEntry(key, value, EntryState::kValid);
}
Status KeyValueStore::WriteEntry(Key key,
std::span<const byte> value,
EntryState new_state,
EntryMetadata* prior_metadata,
const Entry* prior_entry) {
// If new entry and prior entry have matching value size, state, and checksum,
// check if the values match. Directly compare the prior and new values
// because the checksum can not be depended on to establish equality, it can
// only be depended on to establish inequality.
if (prior_entry != nullptr && prior_entry->value_size() == value.size() &&
prior_metadata->state() == new_state &&
prior_entry->ValueMatches(value).ok()) {
// The new value matches the prior value, don't need to write anything. Just
// keep the existing entry.
DBG("Write for key 0x%08x with matching value skipped",
unsigned(prior_metadata->hash()));
return Status::Ok();
}
// List of addresses for sectors with space for this entry.
Address* reserved_addresses = entry_cache_.TempReservedAddressesForWrite();
// Find addresses to write the entry to. This may involve garbage collecting
// one or more sectors.
const size_t entry_size = Entry::size(partition_, key, value);
PW_TRY(GetAddressesForWrite(reserved_addresses, entry_size));
// Write the entry at the first address that was found.
Entry entry = CreateEntry(reserved_addresses[0], key, value, new_state);
PW_TRY(AppendEntry(entry, key, value));
// After writing the first entry successfully, update the key descriptors.
// Once a single new the entry is written, the old entries are invalidated.
size_t prior_size = prior_entry != nullptr ? prior_entry->size() : 0;
EntryMetadata new_metadata =
CreateOrUpdateKeyDescriptor(entry, key, prior_metadata, prior_size);
// Write the additional copies of the entry, if redundancy is greater than 1.
for (size_t i = 1; i < redundancy(); ++i) {
entry.set_address(reserved_addresses[i]);
PW_TRY(AppendEntry(entry, key, value));
new_metadata.AddNewAddress(reserved_addresses[i]);
}
return Status::Ok();
}
KeyValueStore::EntryMetadata KeyValueStore::CreateOrUpdateKeyDescriptor(
const Entry& entry,
Key key,
EntryMetadata* prior_metadata,
size_t prior_size) {
// If there is no prior descriptor, create a new one.
if (prior_metadata == nullptr) {
return entry_cache_.AddNew(entry.descriptor(key), entry.address());
}
return UpdateKeyDescriptor(
entry, entry.address(), prior_metadata, prior_size);
}
KeyValueStore::EntryMetadata KeyValueStore::UpdateKeyDescriptor(
const Entry& entry,
Address new_address,
EntryMetadata* prior_metadata,
size_t prior_size) {
// Remove valid bytes for the old entry and its copies, which are now stale.
for (Address address : prior_metadata->addresses()) {
sectors_.FromAddress(address).RemoveValidBytes(prior_size);
}
prior_metadata->Reset(entry.descriptor(prior_metadata->hash()), new_address);
return *prior_metadata;
}
Status KeyValueStore::GetAddressesForWrite(Address* write_addresses,
size_t write_size) {
for (size_t i = 0; i < redundancy(); i++) {
SectorDescriptor* sector;
PW_TRY(
GetSectorForWrite(&sector, write_size, std::span(write_addresses, i)));
write_addresses[i] = sectors_.NextWritableAddress(*sector);
DBG("Found space for entry in sector %u at address %u",
sectors_.Index(sector),
unsigned(write_addresses[i]));
}
return Status::Ok();
}
// Finds a sector to use for writing a new entry to. Does automatic garbage
// collection if needed and allowed.
//
// OK: Sector found with needed space.
// RESOURCE_EXHAUSTED: No sector available with the needed space.
Status KeyValueStore::GetSectorForWrite(SectorDescriptor** sector,
size_t entry_size,
std::span<const Address> reserved) {
Status result = sectors_.FindSpace(sector, entry_size, reserved);
size_t gc_sector_count = 0;
bool do_auto_gc = options_.gc_on_write != GargbageCollectOnWrite::kDisabled;
// Do garbage collection as needed, so long as policy allows.
while (result == Status::ResourceExhausted() && do_auto_gc) {
if (options_.gc_on_write == GargbageCollectOnWrite::kOneSector) {
// If GC config option is kOneSector clear the flag to not do any more
// GC after this try.
do_auto_gc = false;
}
// Garbage collect and then try again to find the best sector.
Status gc_status = GarbageCollect(reserved);
if (!gc_status.ok()) {
if (gc_status == Status::NotFound()) {
// Not enough space, and no reclaimable bytes, this KVS is full!
return Status::ResourceExhausted();
}
return gc_status;
}
result = sectors_.FindSpace(sector, entry_size, reserved);
gc_sector_count++;
// Allow total sectors + 2 number of GC cycles so that once reclaimable
// bytes in all the sectors have been reclaimed can try and free up space by
// moving entries for keys other than the one being worked on in to sectors
// that have copies of the key trying to be written.
if (gc_sector_count > (partition_.sector_count() + 2)) {
ERR("Did more GC sectors than total sectors!!!!");
return Status::ResourceExhausted();
}
}
if (!result.ok()) {
WRN("Unable to find sector to write %u B", unsigned(entry_size));
}
return result;
}
Status KeyValueStore::MarkSectorCorruptIfNotOk(Status status,
SectorDescriptor* sector) {
if (!status.ok()) {
DBG(" Sector %u corrupt", sectors_.Index(sector));
sector->mark_corrupt();
error_detected_ = true;
}
return status;
}
Status KeyValueStore::AppendEntry(const Entry& entry,
Key key,
std::span<const byte> value) {
const StatusWithSize result = entry.Write(key, value);
SectorDescriptor& sector = sectors_.FromAddress(entry.address());
if (!result.ok()) {
ERR("Failed to write %u bytes at %#x. %u actually written",
unsigned(entry.size()),
unsigned(entry.address()),
unsigned(result.size()));
PW_TRY(MarkSectorCorruptIfNotOk(result.status(), &sector));
}
if (options_.verify_on_write) {
PW_TRY(MarkSectorCorruptIfNotOk(entry.VerifyChecksumInFlash(), &sector));
}
sector.RemoveWritableBytes(result.size());
sector.AddValidBytes(result.size());
return Status::Ok();
}
StatusWithSize KeyValueStore::CopyEntryToSector(Entry& entry,
SectorDescriptor* new_sector,
Address new_address) {
const StatusWithSize result = entry.Copy(new_address);
PW_TRY_WITH_SIZE(MarkSectorCorruptIfNotOk(result.status(), new_sector));
if (options_.verify_on_write) {
Entry new_entry;
PW_TRY_WITH_SIZE(MarkSectorCorruptIfNotOk(
Entry::Read(partition_, new_address, formats_, &new_entry),
new_sector));
// TODO: add test that catches doing the verify on the old entry.
PW_TRY_WITH_SIZE(MarkSectorCorruptIfNotOk(new_entry.VerifyChecksumInFlash(),
new_sector));
}
// Entry was written successfully; update descriptor's address and the sector
// descriptors to reflect the new entry.
new_sector->RemoveWritableBytes(result.size());
new_sector->AddValidBytes(result.size());
return result;
}
Status KeyValueStore::RelocateEntry(
const EntryMetadata& metadata,
KeyValueStore::Address& address,
std::span<const Address> reserved_addresses) {
Entry entry;
PW_TRY(ReadEntry(metadata, entry));
// Find a new sector for the entry and write it to the new location. For
// relocation the find should not not be a sector already containing the key
// but can be the always empty sector, since this is part of the GC process
// that will result in a new empty sector. Also find a sector that does not
// have reclaimable space (mostly for the full GC, where that would result in
// an immediate extra relocation).
SectorDescriptor* new_sector;
PW_TRY(sectors_.FindSpaceDuringGarbageCollection(
&new_sector, entry.size(), metadata.addresses(), reserved_addresses));
Address new_address = sectors_.NextWritableAddress(*new_sector);
PW_TRY_ASSIGN(const size_t result_size,
CopyEntryToSector(entry, new_sector, new_address));
sectors_.FromAddress(address).RemoveValidBytes(result_size);
address = new_address;
return Status::Ok();
}
Status KeyValueStore::FullMaintenanceHelper(MaintenanceType maintenance_type) {
if (initialized_ == InitializationState::kNotInitialized) {
return Status::FailedPrecondition();
}
// Full maintenance can be a potentially heavy operation, and should be
// relatively infrequent, so log start/end at INFO level.
INF("Beginning full maintenance");
CheckForErrors();
if (error_detected_) {
PW_TRY(Repair());
}
StatusWithSize update_status = UpdateEntriesToPrimaryFormat();
Status overall_status = update_status.status();
// Make sure all the entries are on the primary format.
if (!overall_status.ok()) {
ERR("Failed to update all entries to the primary format");
}
SectorDescriptor* sector = sectors_.last_new();
// Calculate number of bytes for the threshold.
size_t threshold_bytes =
(partition_.size_bytes() * kGcUsageThresholdPercentage) / 100;
// Is bytes in use over the threshold.
StorageStats stats = GetStorageStats();
bool over_usage_threshold = stats.in_use_bytes > threshold_bytes;
bool heavy = (maintenance_type == MaintenanceType::kHeavy);
bool force_gc = heavy || over_usage_threshold || (update_status.size() > 0);
// TODO: look in to making an iterator method for cycling through sectors
// starting from last_new_sector_.
Status gc_status;
for (size_t j = 0; j < sectors_.size(); j++) {
sector += 1;
if (sector == sectors_.end()) {
sector = sectors_.begin();
}
if (sector->RecoverableBytes(partition_.sector_size_bytes()) > 0 &&
(force_gc || sector->valid_bytes() == 0)) {
gc_status = GarbageCollectSector(*sector, {});
if (!gc_status.ok()) {
ERR("Failed to garbage collect all sectors");
break;
}
}
}
if (overall_status.ok()) {
overall_status = gc_status;
}
if (overall_status.ok()) {
INF("Full maintenance complete");
} else {
ERR("Full maintenance finished with some errors");
}
return overall_status;
}
Status KeyValueStore::PartialMaintenance() {
if (initialized_ == InitializationState::kNotInitialized) {
return Status::FailedPrecondition();
}
CheckForErrors();
// Do automatic repair, if KVS options allow for it.
if (error_detected_ && options_.recovery != ErrorRecovery::kManual) {
PW_TRY(Repair());
}
return GarbageCollect(std::span<const Address>());
}
Status KeyValueStore::GarbageCollect(
std::span<const Address> reserved_addresses) {
DBG("Garbage Collect a single sector");
for (Address address : reserved_addresses) {
DBG(" Avoid address %u", unsigned(address));
}
// Step 1: Find the sector to garbage collect
SectorDescriptor* sector_to_gc =
sectors_.FindSectorToGarbageCollect(reserved_addresses);
if (sector_to_gc == nullptr) {
// Nothing to GC.
return Status::NotFound();
}
// Step 2: Garbage collect the selected sector.
return GarbageCollectSector(*sector_to_gc, reserved_addresses);
}
Status KeyValueStore::RelocateKeyAddressesInSector(
SectorDescriptor& sector_to_gc,
const EntryMetadata& metadata,
std::span<const Address> reserved_addresses) {
for (FlashPartition::Address& address : metadata.addresses()) {
if (sectors_.AddressInSector(sector_to_gc, address)) {
DBG(" Relocate entry for Key 0x%08" PRIx32 ", sector %u",
metadata.hash(),
sectors_.Index(sectors_.FromAddress(address)));
PW_TRY(RelocateEntry(metadata, address, reserved_addresses));
}
}
return Status::Ok();
};
Status KeyValueStore::GarbageCollectSector(
SectorDescriptor& sector_to_gc,
std::span<const Address> reserved_addresses) {
DBG(" Garbage Collect sector %u", sectors_.Index(sector_to_gc));
// Step 1: Move any valid entries in the GC sector to other sectors
if (sector_to_gc.valid_bytes() != 0) {
for (EntryMetadata& metadata : entry_cache_) {
PW_TRY(RelocateKeyAddressesInSector(
sector_to_gc, metadata, reserved_addresses));
}
}
if (sector_to_gc.valid_bytes() != 0) {
ERR(" Failed to relocate valid entries from sector being garbage "
"collected, %u valid bytes remain",
unsigned(sector_to_gc.valid_bytes()));
return Status::Internal();
}
// Step 2: Reinitialize the sector
if (!sector_to_gc.Empty(partition_.sector_size_bytes())) {
sector_to_gc.mark_corrupt();
internal_stats_.sector_erase_count++;
PW_TRY(partition_.Erase(sectors_.BaseAddress(sector_to_gc), 1));
sector_to_gc.set_writable_bytes(partition_.sector_size_bytes());
}
DBG(" Garbage Collect sector %u complete", sectors_.Index(sector_to_gc));
return Status::Ok();
}
StatusWithSize KeyValueStore::UpdateEntriesToPrimaryFormat() {
size_t entries_updated = 0;
for (EntryMetadata& prior_metadata : entry_cache_) {
Entry entry;
PW_TRY_WITH_SIZE(ReadEntry(prior_metadata, entry));
if (formats_.primary().magic == entry.magic()) {
// Ignore entries that are already on the primary format.
continue;
}
DBG("Updating entry 0x%08x from old format [0x%08x] to new format "
"[0x%08x]",
unsigned(prior_metadata.hash()),
unsigned(entry.magic()),
unsigned(formats_.primary().magic));
entries_updated++;
last_transaction_id_ += 1;
PW_TRY_WITH_SIZE(entry.Update(formats_.primary(), last_transaction_id_));
// List of addresses for sectors with space for this entry.
Address* reserved_addresses = entry_cache_.TempReservedAddressesForWrite();
// Find addresses to write the entry to. This may involve garbage collecting
// one or more sectors.
PW_TRY_WITH_SIZE(GetAddressesForWrite(reserved_addresses, entry.size()));
PW_TRY_WITH_SIZE(
CopyEntryToSector(entry,
&sectors_.FromAddress(reserved_addresses[0]),
reserved_addresses[0]));
// After writing the first entry successfully, update the key descriptors.
// Once a single new the entry is written, the old entries are invalidated.
EntryMetadata new_metadata = UpdateKeyDescriptor(
entry, reserved_addresses[0], &prior_metadata, entry.size());
// Write the additional copies of the entry, if redundancy is greater
// than 1.
for (size_t i = 1; i < redundancy(); ++i) {
PW_TRY_WITH_SIZE(
CopyEntryToSector(entry,
&sectors_.FromAddress(reserved_addresses[i]),
reserved_addresses[i]));
new_metadata.AddNewAddress(reserved_addresses[i]);
}
}
return StatusWithSize(entries_updated);
}
// Add any missing redundant entries/copies for a key.
Status KeyValueStore::AddRedundantEntries(EntryMetadata& metadata) {
Entry entry;
PW_TRY(ReadEntry(metadata, entry));
PW_TRY(entry.VerifyChecksumInFlash());
while (metadata.addresses().size() < redundancy()) {
SectorDescriptor* new_sector;
PW_TRY(GetSectorForWrite(&new_sector, entry.size(), metadata.addresses()));
Address new_address = sectors_.NextWritableAddress(*new_sector);
PW_TRY(CopyEntryToSector(entry, new_sector, new_address));
metadata.AddNewAddress(new_address);
}
return Status::Ok();
}
Status KeyValueStore::RepairCorruptSectors() {
// Try to GC each corrupt sector, even if previous sectors fail. If GC of a
// sector failed on the first pass, then do a second pass, since a later
// sector might have cleared up space or otherwise unblocked the earlier
// failed sector.
Status repair_status = Status::Ok();
size_t loop_count = 0;
do {
loop_count++;
// Error of RESOURCE_EXHAUSTED indicates no space found for relocation.
// Reset back to OK for the next pass.
if (repair_status == Status::ResourceExhausted()) {
repair_status = Status::Ok();
}
DBG(" Pass %u", unsigned(loop_count));
for (SectorDescriptor& sector : sectors_) {
if (sector.corrupt()) {
DBG(" Found sector %u with corruption", sectors_.Index(sector));
Status sector_status = GarbageCollectSector(sector, {});
if (sector_status.ok()) {
internal_stats_.corrupt_sectors_recovered += 1;
} else if (repair_status.ok() ||
repair_status == Status::ResourceExhausted()) {
repair_status = sector_status;
}
}
}
DBG(" Pass %u complete", unsigned(loop_count));
} while (!repair_status.ok() && loop_count < 2);
return repair_status;
}
Status KeyValueStore::EnsureFreeSectorExists() {
Status repair_status = Status::Ok();
bool empty_sector_found = false;
DBG(" Find empty sector");
for (SectorDescriptor& sector : sectors_) {
if (sector.Empty(partition_.sector_size_bytes())) {
empty_sector_found = true;
DBG(" Empty sector found");
break;
}
}
if (empty_sector_found == false) {
DBG(" No empty sector found, attempting to GC a free sector");
Status sector_status = GarbageCollect(std::span<const Address, 0>());
if (repair_status.ok() && !sector_status.ok()) {
DBG(" Unable to free an empty sector");
repair_status = sector_status;
}
}
return repair_status;
}
Status KeyValueStore::EnsureEntryRedundancy() {
Status repair_status = Status::Ok();
if (redundancy() == 1) {
DBG(" Redundancy not in use, nothting to check");
return Status::Ok();
}
DBG(" Write any needed additional duplicate copies of keys to fulfill %u"
" redundancy",
unsigned(redundancy()));
for (EntryMetadata& metadata : entry_cache_) {
if (metadata.addresses().size() >= redundancy()) {
continue;
}
DBG(" Key with %u of %u copies found, adding missing copies",
unsigned(metadata.addresses().size()),
unsigned(redundancy()));
Status fill_status = AddRedundantEntries(metadata);
if (fill_status.ok()) {
internal_stats_.missing_redundant_entries_recovered += 1;
DBG(" Key missing copies added");
} else {
DBG(" Failed to add key missing copies");
if (repair_status.ok()) {
repair_status = fill_status;
}
}
}
return repair_status;
}
Status KeyValueStore::FixErrors() {
DBG("Fixing KVS errors");
// Step 1: Garbage collect any sectors marked as corrupt.
Status overall_status = RepairCorruptSectors();
// Step 2: Make sure there is at least 1 empty sector. This needs to be a
// seperate check of sectors from step 1, because a found empty sector might
// get written to by a later GC that fails and does not result in a free
// sector.
Status repair_status = EnsureFreeSectorExists();
if (overall_status.ok()) {
overall_status = repair_status;
}
// Step 3: Make sure each stored key has the full number of redundant
// entries.
repair_status = EnsureEntryRedundancy();
if (overall_status.ok()) {
overall_status = repair_status;
}
if (overall_status.ok()) {
error_detected_ = false;
initialized_ = InitializationState::kReady;
}
return overall_status;
}
Status KeyValueStore::Repair() {
// If errors have been detected, just reinit the KVS metadata. This does a
// full deep error check and any needed repairs. Then repair any errors.
INF("Starting KVS repair");
DBG("Reinitialize KVS metadata");
InitializeMetadata();
return FixErrors();
}
KeyValueStore::Entry KeyValueStore::CreateEntry(Address address,
Key key,
std::span<const byte> value,
EntryState state) {
// Always bump the transaction ID when creating a new entry.
//
// Burning transaction IDs prevents inconsistencies between flash and memory
// that which could happen if a write succeeds, but for some reason the read
// and verify step fails. Here's how this would happen:
//
// 1. The entry is written but for some reason the flash reports failure OR
// The write succeeds, but the read / verify operation fails.
// 2. The transaction ID is NOT incremented, because of the failure
// 3. (later) A new entry is written, re-using the transaction ID (oops)
//
// By always burning transaction IDs, the above problem can't happen.
last_transaction_id_ += 1;
if (state == EntryState::kDeleted) {
return Entry::Tombstone(
partition_, address, formats_.primary(), key, last_transaction_id_);
}
return Entry::Valid(partition_,
address,
formats_.primary(),
key,
value,
last_transaction_id_);
}
void KeyValueStore::LogDebugInfo() const {
const size_t sector_size_bytes = partition_.sector_size_bytes();
DBG("====================== KEY VALUE STORE DUMP =========================");
DBG(" ");
DBG("Flash partition:");
DBG(" Sector count = %u", unsigned(partition_.sector_count()));
DBG(" Sector max count = %u", unsigned(sectors_.max_size()));
DBG(" Sectors in use = %u", unsigned(sectors_.size()));
DBG(" Sector size = %u", unsigned(sector_size_bytes));
DBG(" Total size = %u", unsigned(partition_.size_bytes()));
DBG(" Alignment = %u", unsigned(partition_.alignment_bytes()));
DBG(" ");
DBG("Key descriptors:");
DBG(" Entry count = %u", unsigned(entry_cache_.total_entries()));
DBG(" Max entry count = %u", unsigned(entry_cache_.max_entries()));
DBG(" ");
DBG(" # hash version address address (hex)");
size_t count = 0;
for (const EntryMetadata& metadata : entry_cache_) {
DBG(" |%3zu: | %8zx |%8zu | %8zu | %8zx",
count++,
size_t(metadata.hash()),
size_t(metadata.transaction_id()),
size_t(metadata.first_address()),
size_t(metadata.first_address()));
}
DBG(" ");
DBG("Sector descriptors:");
DBG(" # tail free valid has_space");
for (const SectorDescriptor& sd : sectors_) {
DBG(" |%3u: | %8zu |%8zu | %s",
sectors_.Index(sd),
size_t(sd.writable_bytes()),
sd.valid_bytes(),
sd.writable_bytes() ? "YES" : "");
}
DBG(" ");
// TODO: This should stop logging after some threshold.
// size_t dumped_bytes = 0;
DBG("Sector raw data:");
for (size_t sector_id = 0; sector_id < sectors_.size(); ++sector_id) {
// Read sector data. Yes, this will blow the stack on embedded.
std::array<byte, 500> raw_sector_data; // TODO!!!
StatusWithSize sws =
partition_.Read(sector_id * sector_size_bytes, raw_sector_data);
DBG("Read: %u bytes", unsigned(sws.size()));
DBG(" base addr offs 0 1 2 3 4 5 6 7");
for (size_t i = 0; i < sector_size_bytes; i += 8) {
DBG(" %3zu %8zx %5zu | %02x %02x %02x %02x %02x %02x %02x %02x",
sector_id,
(sector_id * sector_size_bytes) + i,
i,
static_cast<unsigned int>(raw_sector_data[i + 0]),
static_cast<unsigned int>(raw_sector_data[i + 1]),
static_cast<unsigned int>(raw_sector_data[i + 2]),
static_cast<unsigned int>(raw_sector_data[i + 3]),
static_cast<unsigned int>(raw_sector_data[i + 4]),
static_cast<unsigned int>(raw_sector_data[i + 5]),
static_cast<unsigned int>(raw_sector_data[i + 6]),
static_cast<unsigned int>(raw_sector_data[i + 7]));
// TODO: Fix exit condition.
if (i > 128) {
break;
}
}
DBG(" ");
}
DBG("////////////////////// KEY VALUE STORE DUMP END /////////////////////");
}
void KeyValueStore::LogSectors() const {
DBG("Sector descriptors: count %u", unsigned(sectors_.size()));
for (auto& sector : sectors_) {
DBG(" - Sector %u: valid %u, recoverable %u, free %u",
sectors_.Index(sector),
unsigned(sector.valid_bytes()),
unsigned(sector.RecoverableBytes(partition_.sector_size_bytes())),
unsigned(sector.writable_bytes()));
}
}
void KeyValueStore::LogKeyDescriptor() const {
DBG("Key descriptors: count %u", unsigned(entry_cache_.total_entries()));
for (const EntryMetadata& metadata : entry_cache_) {
DBG(" - Key: %s, hash %#x, transaction ID %u, first address %#x",
metadata.state() == EntryState::kDeleted ? "Deleted" : "Valid",
unsigned(metadata.hash()),
unsigned(metadata.transaction_id()),
unsigned(metadata.first_address()));
}
}
} // namespace pw::kvs