blob: 1fb9c825962bacf029da3515f0d3c689b9f065d4 [file] [log] [blame]
/*
* FreeRTOS Kernel <DEVELOPMENT BRANCH>
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
/* *INDENT-OFF* */
#ifdef __cplusplus
extern "C" {
#endif
/* *INDENT-ON* */
/* BSP includes. */
#include <mb_interface.h>
#include <xparameters.h>
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#ifdef __arch64__
#define portSTACK_TYPE size_t
typedef uint64_t UBaseType_t;
#else
#define portSTACK_TYPE uint32_t
typedef unsigned long UBaseType_t;
#endif
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
#if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
/* 32-bit tick type on a 32-bit architecture, so reads of the tick count do
* not need to be guarded with a critical section. */
#define portTICK_TYPE_IS_ATOMIC 1
#else
#error configTICK_TYPE_WIDTH_IN_BITS set to unsupported tick type width.
#endif
/*-----------------------------------------------------------*/
/* Interrupt control macros and functions. */
void microblaze_disable_interrupts( void );
void microblaze_enable_interrupts( void );
#define portDISABLE_INTERRUPTS() microblaze_disable_interrupts()
#define portENABLE_INTERRUPTS() microblaze_enable_interrupts()
/*-----------------------------------------------------------*/
/* Critical section macros. */
void vPortEnterCritical( void );
void vPortExitCritical( void );
#define portENTER_CRITICAL() \
{ \
extern volatile UBaseType_t uxCriticalNesting; \
microblaze_disable_interrupts(); \
uxCriticalNesting++; \
}
#define portEXIT_CRITICAL() \
{ \
extern volatile UBaseType_t uxCriticalNesting; \
/* Interrupts are disabled, so we can */ \
/* access the variable directly. */ \
uxCriticalNesting--; \
if( uxCriticalNesting == 0 ) \
{ \
/* The nesting has unwound and we \
* can enable interrupts again. */ \
portENABLE_INTERRUPTS(); \
} \
}
/*-----------------------------------------------------------*/
/* The yield macro maps directly to the vPortYield() function. */
void vPortYield( void );
#define portYIELD() vPortYield()
/* portYIELD_FROM_ISR() does not directly call vTaskSwitchContext(), but instead
* sets a flag to say that a yield has been requested. The interrupt exit code
* then checks this flag, and calls vTaskSwitchContext() before restoring a task
* context, if the flag is not false. This is done to prevent multiple calls to
* vTaskSwitchContext() being made from a single interrupt, as a single interrupt
* can result in multiple peripherals being serviced. */
extern volatile uint32_t ulTaskSwitchRequested;
#define portYIELD_FROM_ISR( x ) \
do { if( ( x ) != pdFALSE ) ulTaskSwitchRequested = 1; } \
while( 0 )
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 1 )
/* Generic helper function. */
__attribute__( ( always_inline ) ) static inline uint8_t ucPortCountLeadingZeros( uint32_t ulBitmap )
{
uint8_t ucReturn;
__asm volatile ( "clz %0, %1" : "=r" ( ucReturn ) : "r" ( ulBitmap ) );
return ucReturn;
}
/* Check the configuration. */
#if ( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
/* Store/clear the ready priorities in a bit map. */
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )
/*-----------------------------------------------------------*/
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31UL - ( uint32_t ) ucPortCountLeadingZeros( ( uxReadyPriorities ) ) )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
/* Hardware specifics. */
#ifdef __arch64__
#define portBYTE_ALIGNMENT 8
#else
#define portBYTE_ALIGNMENT 4
#endif
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portNOP() asm volatile ( "NOP" )
#define portMEMORY_BARRIER() asm volatile ( "" ::: "memory" )
/*-----------------------------------------------------------*/
#if ( XPAR_MICROBLAZE_USE_STACK_PROTECTION )
#define portHAS_STACK_OVERFLOW_CHECKING 1
#endif
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void * pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void * pvParameters )
/*-----------------------------------------------------------*/
/* The following structure is used by the FreeRTOS exception handler. It is
* filled with the MicroBlaze context as it was at the time the exception occurred.
* This is done as an aid to debugging exception occurrences. */
typedef struct PORT_REGISTER_DUMP
{
/* The following structure members hold the values of the MicroBlaze
* registers at the time the exception was raised. */
UINTPTR ulR1_SP;
UINTPTR ulR2_small_data_area;
UINTPTR ulR3;
UINTPTR ulR4;
UINTPTR ulR5;
UINTPTR ulR6;
UINTPTR ulR7;
UINTPTR ulR8;
UINTPTR ulR9;
UINTPTR ulR10;
UINTPTR ulR11;
UINTPTR ulR12;
UINTPTR ulR13_read_write_small_data_area;
UINTPTR ulR14_return_address_from_interrupt;
UINTPTR ulR15_return_address_from_subroutine;
UINTPTR ulR16_return_address_from_trap;
UINTPTR ulR17_return_address_from_exceptions; /* The exception entry code will copy the BTR into R17 if the exception occurred in the delay slot of a branch instruction. */
UINTPTR ulR18;
UINTPTR ulR19;
UINTPTR ulR20;
UINTPTR ulR21;
UINTPTR ulR22;
UINTPTR ulR23;
UINTPTR ulR24;
UINTPTR ulR25;
UINTPTR ulR26;
UINTPTR ulR27;
UINTPTR ulR28;
UINTPTR ulR29;
UINTPTR ulR30;
UINTPTR ulR31;
UINTPTR ulPC;
UINTPTR ulESR;
UINTPTR ulMSR;
UINTPTR ulEAR;
UINTPTR ulFSR;
UINTPTR ulEDR;
/* A human readable description of the exception cause. The strings used
* are the same as the #define constant names found in the
* microblaze_exceptions_i.h header file */
int8_t * pcExceptionCause;
/* The human readable name of the task that was running at the time the
* exception occurred. This is the name that was given to the task when the
* task was created using the FreeRTOS xTaskCreate() API function. */
char * pcCurrentTaskName;
/* The handle of the task that was running a the time the exception
* occurred. */
void * xCurrentTaskHandle;
} xPortRegisterDump;
/*
* Installs pxHandler as the interrupt handler for the peripheral specified by
* the ucInterruptID parameter.
*
* ucInterruptID:
*
* The ID of the peripheral that will have pxHandler assigned as its interrupt
* handler. Peripheral IDs are defined in the xparameters.h header file, which
* is itself part of the BSP project. For example, in the official demo
* application for this port, xparameters.h defines the following IDs for the
* four possible interrupt sources:
*
* XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral.
* XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral.
* XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral.
* XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs.
*
*
* pxHandler:
*
* A pointer to the interrupt handler function itself. This must be a void
* function that takes a (void *) parameter.
*
*
* pvCallBackRef:
*
* The parameter passed into the handler function. In many cases this will not
* be used and can be NULL. Some times it is used to pass in a reference to
* the peripheral instance variable, so it can be accessed from inside the
* handler function.
*
*
* pdPASS is returned if the function executes successfully. Any other value
* being returned indicates that the function did not execute correctly.
*/
BaseType_t xPortInstallInterruptHandler( uint8_t ucInterruptID,
XInterruptHandler pxHandler,
void * pvCallBackRef );
/*
* Enables the interrupt, within the interrupt controller, for the peripheral
* specified by the ucInterruptID parameter.
*
* ucInterruptID:
*
* The ID of the peripheral that will have its interrupt enabled in the
* interrupt controller. Peripheral IDs are defined in the xparameters.h header
* file, which is itself part of the BSP project. For example, in the official
* demo application for this port, xparameters.h defines the following IDs for
* the four possible interrupt sources:
*
* XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral.
* XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral.
* XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral.
* XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs.
*
*/
void vPortEnableInterrupt( uint8_t ucInterruptID );
/*
* Disables the interrupt, within the interrupt controller, for the peripheral
* specified by the ucInterruptID parameter.
*
* ucInterruptID:
*
* The ID of the peripheral that will have its interrupt disabled in the
* interrupt controller. Peripheral IDs are defined in the xparameters.h header
* file, which is itself part of the BSP project. For example, in the official
* demo application for this port, xparameters.h defines the following IDs for
* the four possible interrupt sources:
*
* XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral.
* XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral.
* XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral.
* XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs.
*
*/
void vPortDisableInterrupt( uint8_t ucInterruptID );
/*
* This is an application defined callback function used to install the tick
* interrupt handler. It is provided as an application callback because the
* kernel will run on lots of different MicroBlaze and FPGA configurations - not
* all of which will have the same timer peripherals defined or available. This
* example uses the AXI Timer 0. If that is available on your hardware platform
* then this example callback implementation should not require modification.
* The name of the interrupt handler that should be installed is vPortTickISR(),
* which the function below declares as an extern.
*/
void vApplicationSetupTimerInterrupt( void );
/*
* This is an application defined callback function used to clear whichever
* interrupt was installed by the the vApplicationSetupTimerInterrupt() callback
* function - in this case the interrupt generated by the AXI timer. It is
* provided as an application callback because the kernel will run on lots of
* different MicroBlaze and FPGA configurations - not all of which will have the
* same timer peripherals defined or available. This example uses the AXI Timer 0.
* If that is available on your hardware platform then this example callback
* implementation should not require modification provided the example definition
* of vApplicationSetupTimerInterrupt() is also not modified.
*/
void vApplicationClearTimerInterrupt( void );
/*
* vPortExceptionsInstallHandlers() is only available when the MicroBlaze
* is configured to include exception functionality, and
* configINSTALL_EXCEPTION_HANDLERS is set to 1 in FreeRTOSConfig.h.
*
* vPortExceptionsInstallHandlers() installs the FreeRTOS exception handler
* for every possible exception cause.
*
* vPortExceptionsInstallHandlers() can be called explicitly from application
* code. After that is done, the default FreeRTOS exception handler that will
* have been installed can be replaced for any specific exception cause by using
* the standard Xilinx library function microblaze_register_exception_handler().
*
* If vPortExceptionsInstallHandlers() is not called explicitly by the
* application, it will be called automatically by the kernel the first time
* xPortInstallInterruptHandler() is called. At that time, any exception
* handlers that may have already been installed will be replaced.
*
* See the description of vApplicationExceptionRegisterDump() for information
* on the processing performed by the FreeRTOS exception handler.
*/
void vPortExceptionsInstallHandlers( void );
/*
* The FreeRTOS exception handler fills an xPortRegisterDump structure (defined
* in portmacro.h) with the MicroBlaze context, as it was at the time the
* exception occurred. The exception handler then calls
* vApplicationExceptionRegisterDump(), passing in the completed
* xPortRegisterDump structure as its parameter.
*
* The FreeRTOS kernel provides its own implementation of
* vApplicationExceptionRegisterDump(), but the kernel provided implementation
* is declared as being 'weak'. The weak definition allows the application
* writer to provide their own implementation, should they wish to use the
* register dump information. For example, an implementation could be provided
* that wrote the register dump data to a display, or a UART port.
*/
void vApplicationExceptionRegisterDump( xPortRegisterDump * xRegisterDump );
/* *INDENT-OFF* */
#ifdef __cplusplus
}
#endif
/* *INDENT-ON* */
#endif /* PORTMACRO_H */