blob: 895675f247ccdb5900f8c2b9a01bd5203220bb57 [file] [log] [blame]
/*
* FreeRTOS Kernel <DEVELOPMENT BRANCH>
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/* Standard includes. */
#include <stdlib.h>
#include <string.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
* all the API functions to use the MPU wrappers. That should only be done when
* task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "stack_macros.h"
/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
* because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
* for the header files above, but not in this file, in order to generate the
* correct privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
* functions but without including stdio.h here. */
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
/* At the bottom of this file are two optional functions that can be used
* to generate human readable text from the raw data generated by the
* uxTaskGetSystemState() function. Note the formatting functions are provided
* for convenience only, and are NOT considered part of the kernel. */
#include <stdio.h>
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
#if ( configUSE_PREEMPTION == 0 )
/* If the cooperative scheduler is being used then a yield should not be
* performed just because a higher priority task has been woken. */
#define taskYIELD_IF_USING_PREEMPTION()
#else
#define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
#endif
/* Values that can be assigned to the ucNotifyState member of the TCB. */
#define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
#define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
#define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
/*
* The value used to fill the stack of a task when the task is created. This
* is used purely for checking the high water mark for tasks.
*/
#define tskSTACK_FILL_BYTE ( 0xa5U )
/* Bits used to record how a task's stack and TCB were allocated. */
#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
#define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
/* If any of the following are set then task stacks are filled with a known
* value so the high water mark can be determined. If none of the following are
* set then don't fill the stack so there is no unnecessary dependency on memset. */
#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
#define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
#else
#define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
#endif
/*
* Macros used by vListTask to indicate which state a task is in.
*/
#define tskRUNNING_CHAR ( 'X' )
#define tskBLOCKED_CHAR ( 'B' )
#define tskREADY_CHAR ( 'R' )
#define tskDELETED_CHAR ( 'D' )
#define tskSUSPENDED_CHAR ( 'S' )
/*
* Some kernel aware debuggers require the data the debugger needs access to to
* be global, rather than file scope.
*/
#ifdef portREMOVE_STATIC_QUALIFIER
#define static
#endif
/* The name allocated to the Idle task. This can be overridden by defining
* configIDLE_TASK_NAME in FreeRTOSConfig.h. */
#ifndef configIDLE_TASK_NAME
#define configIDLE_TASK_NAME "IDLE"
#endif
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
* performed in a generic way that is not optimised to any particular
* microcontroller architecture. */
/* uxTopReadyPriority holds the priority of the highest priority ready
* state task. */
#define taskRECORD_READY_PRIORITY( uxPriority ) \
{ \
if( ( uxPriority ) > uxTopReadyPriority ) \
{ \
uxTopReadyPriority = ( uxPriority ); \
} \
} /* taskRECORD_READY_PRIORITY */
/*-----------------------------------------------------------*/
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
{ \
UBaseType_t uxTopPriority = uxTopReadyPriority; \
\
/* Find the highest priority queue that contains ready tasks. */ \
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
{ \
configASSERT( uxTopPriority ); \
--uxTopPriority; \
} \
\
/* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
* the same priority get an equal share of the processor time. */ \
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
uxTopReadyPriority = uxTopPriority; \
} /* taskSELECT_HIGHEST_PRIORITY_TASK */
/*-----------------------------------------------------------*/
/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
* they are only required when a port optimised method of task selection is
* being used. */
#define taskRESET_READY_PRIORITY( uxPriority )
#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
* performed in a way that is tailored to the particular microcontroller
* architecture being used. */
/* A port optimised version is provided. Call the port defined macros. */
#define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
/*-----------------------------------------------------------*/
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
{ \
UBaseType_t uxTopPriority; \
\
/* Find the highest priority list that contains ready tasks. */ \
portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
} /* taskSELECT_HIGHEST_PRIORITY_TASK() */
/*-----------------------------------------------------------*/
/* A port optimised version is provided, call it only if the TCB being reset
* is being referenced from a ready list. If it is referenced from a delayed
* or suspended list then it won't be in a ready list. */
#define taskRESET_READY_PRIORITY( uxPriority ) \
{ \
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
{ \
portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
} \
}
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
* count overflows. */
#define taskSWITCH_DELAYED_LISTS() \
{ \
List_t * pxTemp; \
\
/* The delayed tasks list should be empty when the lists are switched. */ \
configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\
pxTemp = pxDelayedTaskList; \
pxDelayedTaskList = pxOverflowDelayedTaskList; \
pxOverflowDelayedTaskList = pxTemp; \
xNumOfOverflows++; \
prvResetNextTaskUnblockTime(); \
}
/*-----------------------------------------------------------*/
/*
* Place the task represented by pxTCB into the appropriate ready list for
* the task. It is inserted at the end of the list.
*/
#define prvAddTaskToReadyList( pxTCB ) \
traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
/*-----------------------------------------------------------*/
/*
* Several functions take a TaskHandle_t parameter that can optionally be NULL,
* where NULL is used to indicate that the handle of the currently executing
* task should be used in place of the parameter. This macro simply checks to
* see if the parameter is NULL and returns a pointer to the appropriate TCB.
*/
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
/* The item value of the event list item is normally used to hold the priority
* of the task to which it belongs (coded to allow it to be held in reverse
* priority order). However, it is occasionally borrowed for other purposes. It
* is important its value is not updated due to a task priority change while it is
* being used for another purpose. The following bit definition is used to inform
* the scheduler that the value should not be changed - in which case it is the
* responsibility of whichever module is using the value to ensure it gets set back
* to its original value when it is released. */
#if ( configUSE_16_BIT_TICKS == 1 )
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
#else
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
#endif
/*
* Task control block. A task control block (TCB) is allocated for each task,
* and stores task state information, including a pointer to the task's context
* (the task's run time environment, including register values)
*/
typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
{
volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
#if ( portUSING_MPU_WRAPPERS == 1 )
xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
#endif
ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
StackType_t * pxStack; /*< Points to the start of the stack. */
char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
#endif
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
#endif
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
#endif
#if ( configUSE_MUTEXES == 1 )
UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
UBaseType_t uxMutexesHeld;
#endif
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t pxTaskTag;
#endif
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
#endif
#if ( configUSE_NEWLIB_REENTRANT == 1 )
/* Allocate a Newlib reent structure that is specific to this task.
* Note Newlib support has been included by popular demand, but is not
* used by the FreeRTOS maintainers themselves. FreeRTOS is not
* responsible for resulting newlib operation. User must be familiar with
* newlib and must provide system-wide implementations of the necessary
* stubs. Be warned that (at the time of writing) the current newlib design
* implements a system-wide malloc() that must be provided with locks.
*
* See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
* for additional information. */
struct _reent xNewLib_reent;
#endif
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
#endif
/* See the comments in FreeRTOS.h with the definition of
* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
#endif
#if ( INCLUDE_xTaskAbortDelay == 1 )
uint8_t ucDelayAborted;
#endif
#if ( configUSE_POSIX_ERRNO == 1 )
int iTaskErrno;
#endif
} tskTCB;
/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
* below to enable the use of older kernel aware debuggers. */
typedef tskTCB TCB_t;
/*lint -save -e956 A manual analysis and inspection has been used to determine
* which static variables must be declared volatile. */
PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
/* Lists for ready and blocked tasks. --------------------
* xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
* doing so breaks some kernel aware debuggers and debuggers that rely on removing
* the static qualifier. */
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
#if ( INCLUDE_vTaskDelete == 1 )
PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
#endif
/* Global POSIX errno. Its value is changed upon context switching to match
* the errno of the currently running task. */
#if ( configUSE_POSIX_ERRNO == 1 )
int FreeRTOS_errno = 0;
#endif
/* Other file private variables. --------------------------------*/
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
/* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
* For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
* to determine the number of priority lists to read back from the remote target. */
const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
/* Context switches are held pending while the scheduler is suspended. Also,
* interrupts must not manipulate the xStateListItem of a TCB, or any of the
* lists the xStateListItem can be referenced from, if the scheduler is suspended.
* If an interrupt needs to unblock a task while the scheduler is suspended then it
* moves the task's event list item into the xPendingReadyList, ready for the
* kernel to move the task from the pending ready list into the real ready list
* when the scheduler is unsuspended. The pending ready list itself can only be
* accessed from a critical section. */
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
#if ( configGENERATE_RUN_TIME_STATS == 1 )
/* Do not move these variables to function scope as doing so prevents the
* code working with debuggers that need to remove the static qualifier. */
PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
#endif
/*lint -restore */
/*-----------------------------------------------------------*/
/* File private functions. --------------------------------*/
/**
* Utility task that simply returns pdTRUE if the task referenced by xTask is
* currently in the Suspended state, or pdFALSE if the task referenced by xTask
* is in any other state.
*/
#if ( INCLUDE_vTaskSuspend == 1 )
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
#endif /* INCLUDE_vTaskSuspend */
/*
* Utility to ready all the lists used by the scheduler. This is called
* automatically upon the creation of the first task.
*/
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
/*
* The idle task, which as all tasks is implemented as a never ending loop.
* The idle task is automatically created and added to the ready lists upon
* creation of the first user task.
*
* The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
* language extensions. The equivalent prototype for this function is:
*
* void prvIdleTask( void *pvParameters );
*
*/
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
/*
* Utility to free all memory allocated by the scheduler to hold a TCB,
* including the stack pointed to by the TCB.
*
* This does not free memory allocated by the task itself (i.e. memory
* allocated by calls to pvPortMalloc from within the tasks application code).
*/
#if ( INCLUDE_vTaskDelete == 1 )
static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
#endif
/*
* Used only by the idle task. This checks to see if anything has been placed
* in the list of tasks waiting to be deleted. If so the task is cleaned up
* and its TCB deleted.
*/
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
/*
* The currently executing task is entering the Blocked state. Add the task to
* either the current or the overflow delayed task list.
*/
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
/*
* Fills an TaskStatus_t structure with information on each task that is
* referenced from the pxList list (which may be a ready list, a delayed list,
* a suspended list, etc.).
*
* THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
* NORMAL APPLICATION CODE.
*/
#if ( configUSE_TRACE_FACILITY == 1 )
static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
List_t * pxList,
eTaskState eState ) PRIVILEGED_FUNCTION;
#endif
/*
* Searches pxList for a task with name pcNameToQuery - returning a handle to
* the task if it is found, or NULL if the task is not found.
*/
#if ( INCLUDE_xTaskGetHandle == 1 )
static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
#endif
/*
* When a task is created, the stack of the task is filled with a known value.
* This function determines the 'high water mark' of the task stack by
* determining how much of the stack remains at the original preset value.
*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
#endif
/*
* Return the amount of time, in ticks, that will pass before the kernel will
* next move a task from the Blocked state to the Running state.
*
* This conditional compilation should use inequality to 0, not equality to 1.
* This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
* defined low power mode implementations require configUSE_TICKLESS_IDLE to be
* set to a value other than 1.
*/
#if ( configUSE_TICKLESS_IDLE != 0 )
static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
#endif
/*
* Set xNextTaskUnblockTime to the time at which the next Blocked state task
* will exit the Blocked state.
*/
static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
/*
* Helper function used to pad task names with spaces when printing out
* human readable tables of task information.
*/
static char * prvWriteNameToBuffer( char * pcBuffer,
const char * pcTaskName ) PRIVILEGED_FUNCTION;
#endif
/*
* Called after a Task_t structure has been allocated either statically or
* dynamically to fill in the structure's members.
*/
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
TCB_t * pxNewTCB,
const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
/*
* Called after a new task has been created and initialised to place the task
* under the control of the scheduler.
*/
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
/*
* freertos_tasks_c_additions_init() should only be called if the user definable
* macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
* called by the function.
*/
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
#endif
/*-----------------------------------------------------------*/
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer )
{
TCB_t * pxNewTCB;
TaskHandle_t xReturn;
configASSERT( puxStackBuffer != NULL );
configASSERT( pxTaskBuffer != NULL );
#if ( configASSERT_DEFINED == 1 )
{
/* Sanity check that the size of the structure used to declare a
* variable of type StaticTask_t equals the size of the real task
* structure. */
volatile size_t xSize = sizeof( StaticTask_t );
configASSERT( xSize == sizeof( TCB_t ) );
( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
}
#endif /* configASSERT_DEFINED */
if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
{
/* The memory used for the task's TCB and stack are passed into this
* function - use them. */
pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
{
/* Tasks can be created statically or dynamically, so note this
* task was created statically in case the task is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
prvAddNewTaskToReadyList( pxNewTCB );
}
else
{
xReturn = NULL;
}
return xReturn;
}
#endif /* SUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
{
/* Allocate space for the TCB. Where the memory comes from depends
* on the implementation of the port malloc function and whether or
* not static allocation is being used. */
pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note this
* task was created statically in case the task is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
pxTaskDefinition->pcName,
( uint32_t ) pxTaskDefinition->usStackDepth,
pxTaskDefinition->pvParameters,
pxTaskDefinition->uxPriority,
pxCreatedTask, pxNewTCB,
pxTaskDefinition->xRegions );
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
return xReturn;
}
#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/*-----------------------------------------------------------*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
configASSERT( pxTaskDefinition->puxStackBuffer );
if( pxTaskDefinition->puxStackBuffer != NULL )
{
/* Allocate space for the TCB. Where the memory comes from depends
* on the implementation of the port malloc function and whether or
* not static allocation is being used. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note
* this task had a statically allocated stack in case it is
* later deleted. The TCB was allocated dynamically. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
pxTaskDefinition->pcName,
( uint32_t ) pxTaskDefinition->usStackDepth,
pxTaskDefinition->pvParameters,
pxTaskDefinition->uxPriority,
pxCreatedTask, pxNewTCB,
pxTaskDefinition->xRegions );
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
}
return xReturn;
}
#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/
#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const configSTACK_DEPTH_TYPE usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
/* If the stack grows down then allocate the stack then the TCB so the stack
* does not grow into the TCB. Likewise if the stack grows up then allocate
* the TCB then the stack. */
#if ( portSTACK_GROWTH > 0 )
{
/* Allocate space for the TCB. Where the memory comes from depends on
* the implementation of the port malloc function and whether or not static
* allocation is being used. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
/* Allocate space for the stack used by the task being created.
* The base of the stack memory stored in the TCB so the task can
* be deleted later if required. */
pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
if( pxNewTCB->pxStack == NULL )
{
/* Could not allocate the stack. Delete the allocated TCB. */
vPortFree( pxNewTCB );
pxNewTCB = NULL;
}
}
}
#else /* portSTACK_GROWTH */
{
StackType_t * pxStack;
/* Allocate space for the stack used by the task being created. */
pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
if( pxStack != NULL )
{
/* Allocate space for the TCB. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
if( pxNewTCB != NULL )
{
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxStack;
}
else
{
/* The stack cannot be used as the TCB was not created. Free
* it again. */
vPortFreeStack( pxStack );
}
}
else
{
pxNewTCB = NULL;
}
}
#endif /* portSTACK_GROWTH */
if( pxNewTCB != NULL )
{
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
{
/* Tasks can be created statically or dynamically, so note this
* task was created dynamically in case it is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
return xReturn;
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
/*-----------------------------------------------------------*/
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
TCB_t * pxNewTCB,
const MemoryRegion_t * const xRegions )
{
StackType_t * pxTopOfStack;
UBaseType_t x;
#if ( portUSING_MPU_WRAPPERS == 1 )
/* Should the task be created in privileged mode? */
BaseType_t xRunPrivileged;
if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
{
xRunPrivileged = pdTRUE;
}
else
{
xRunPrivileged = pdFALSE;
}
uxPriority &= ~portPRIVILEGE_BIT;
#endif /* portUSING_MPU_WRAPPERS == 1 */
/* Avoid dependency on memset() if it is not required. */
#if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
{
/* Fill the stack with a known value to assist debugging. */
( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
}
#endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
/* Calculate the top of stack address. This depends on whether the stack
* grows from high memory to low (as per the 80x86) or vice versa.
* portSTACK_GROWTH is used to make the result positive or negative as required
* by the port. */
#if ( portSTACK_GROWTH < 0 )
{
pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
/* Check the alignment of the calculated top of stack is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
#if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
{
/* Also record the stack's high address, which may assist
* debugging. */
pxNewTCB->pxEndOfStack = pxTopOfStack;
}
#endif /* configRECORD_STACK_HIGH_ADDRESS */
}
#else /* portSTACK_GROWTH */
{
pxTopOfStack = pxNewTCB->pxStack;
/* Check the alignment of the stack buffer is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
/* The other extreme of the stack space is required if stack checking is
* performed. */
pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
}
#endif /* portSTACK_GROWTH */
/* Store the task name in the TCB. */
if( pcName != NULL )
{
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
pxNewTCB->pcTaskName[ x ] = pcName[ x ];
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
* configMAX_TASK_NAME_LEN characters just in case the memory after the
* string is not accessible (extremely unlikely). */
if( pcName[ x ] == ( char ) 0x00 )
{
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Ensure the name string is terminated in the case that the string length
* was greater or equal to configMAX_TASK_NAME_LEN. */
pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
}
else
{
/* The task has not been given a name, so just ensure there is a NULL
* terminator when it is read out. */
pxNewTCB->pcTaskName[ 0 ] = 0x00;
}
/* This is used as an array index so must ensure it's not too large. */
configASSERT( uxPriority < configMAX_PRIORITIES );
if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
pxNewTCB->uxPriority = uxPriority;
#if ( configUSE_MUTEXES == 1 )
{
pxNewTCB->uxBasePriority = uxPriority;
pxNewTCB->uxMutexesHeld = 0;
}
#endif /* configUSE_MUTEXES */
vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
/* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
* back to the containing TCB from a generic item in a list. */
listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
/* Event lists are always in priority order. */
listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
{
pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
}
#endif /* portCRITICAL_NESTING_IN_TCB */
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
{
pxNewTCB->pxTaskTag = NULL;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
pxNewTCB->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
}
#endif /* configGENERATE_RUN_TIME_STATS */
#if ( portUSING_MPU_WRAPPERS == 1 )
{
vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
}
#else
{
/* Avoid compiler warning about unreferenced parameter. */
( void ) xRegions;
}
#endif
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
{
memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
}
#endif
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
}
#endif
#if ( configUSE_NEWLIB_REENTRANT == 1 )
{
/* Initialise this task's Newlib reent structure.
* See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
* for additional information. */
_REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
}
#endif
#if ( INCLUDE_xTaskAbortDelay == 1 )
{
pxNewTCB->ucDelayAborted = pdFALSE;
}
#endif
/* Initialize the TCB stack to look as if the task was already running,
* but had been interrupted by the scheduler. The return address is set
* to the start of the task function. Once the stack has been initialised
* the top of stack variable is updated. */
#if ( portUSING_MPU_WRAPPERS == 1 )
{
/* If the port has capability to detect stack overflow,
* pass the stack end address to the stack initialization
* function as well. */
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
{
#if ( portSTACK_GROWTH < 0 )
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
}
#else /* portSTACK_GROWTH */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
}
#endif /* portSTACK_GROWTH */
}
#else /* portHAS_STACK_OVERFLOW_CHECKING */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
}
#endif /* portHAS_STACK_OVERFLOW_CHECKING */
}
#else /* portUSING_MPU_WRAPPERS */
{
/* If the port has capability to detect stack overflow,
* pass the stack end address to the stack initialization
* function as well. */
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
{
#if ( portSTACK_GROWTH < 0 )
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
}
#else /* portSTACK_GROWTH */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
}
#endif /* portSTACK_GROWTH */
}
#else /* portHAS_STACK_OVERFLOW_CHECKING */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
}
#endif /* portHAS_STACK_OVERFLOW_CHECKING */
}
#endif /* portUSING_MPU_WRAPPERS */
if( pxCreatedTask != NULL )
{
/* Pass the handle out in an anonymous way. The handle can be used to
* change the created task's priority, delete the created task, etc.*/
*pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/*-----------------------------------------------------------*/
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
{
/* Ensure interrupts don't access the task lists while the lists are being
* updated. */
taskENTER_CRITICAL();
{
uxCurrentNumberOfTasks++;
if( pxCurrentTCB == NULL )
{
/* There are no other tasks, or all the other tasks are in
* the suspended state - make this the current task. */
pxCurrentTCB = pxNewTCB;
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
{
/* This is the first task to be created so do the preliminary
* initialisation required. We will not recover if this call
* fails, but we will report the failure. */
prvInitialiseTaskLists();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* If the scheduler is not already running, make this task the
* current task if it is the highest priority task to be created
* so far. */
if( xSchedulerRunning == pdFALSE )
{
if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
{
pxCurrentTCB = pxNewTCB;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
uxTaskNumber++;
#if ( configUSE_TRACE_FACILITY == 1 )
{
/* Add a counter into the TCB for tracing only. */
pxNewTCB->uxTCBNumber = uxTaskNumber;
}
#endif /* configUSE_TRACE_FACILITY */
traceTASK_CREATE( pxNewTCB );
prvAddTaskToReadyList( pxNewTCB );
portSETUP_TCB( pxNewTCB );
}
taskEXIT_CRITICAL();
if( xSchedulerRunning != pdFALSE )
{
/* If the created task is of a higher priority than the current task
* then it should run now. */
if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
{
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelete == 1 )
void vTaskDelete( TaskHandle_t xTaskToDelete )
{
TCB_t * pxTCB;
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the calling task that is
* being deleted. */
pxTCB = prvGetTCBFromHandle( xTaskToDelete );
/* Remove task from the ready/delayed list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Is the task waiting on an event also? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Increment the uxTaskNumber also so kernel aware debuggers can
* detect that the task lists need re-generating. This is done before
* portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
* not return. */
uxTaskNumber++;
if( pxTCB == pxCurrentTCB )
{
/* A task is deleting itself. This cannot complete within the
* task itself, as a context switch to another task is required.
* Place the task in the termination list. The idle task will
* check the termination list and free up any memory allocated by
* the scheduler for the TCB and stack of the deleted task. */
vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
/* Increment the ucTasksDeleted variable so the idle task knows
* there is a task that has been deleted and that it should therefore
* check the xTasksWaitingTermination list. */
++uxDeletedTasksWaitingCleanUp;
/* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
* portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
traceTASK_DELETE( pxTCB );
/* The pre-delete hook is primarily for the Windows simulator,
* in which Windows specific clean up operations are performed,
* after which it is not possible to yield away from this task -
* hence xYieldPending is used to latch that a context switch is
* required. */
portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
}
else
{
--uxCurrentNumberOfTasks;
traceTASK_DELETE( pxTCB );
/* Reset the next expected unblock time in case it referred to
* the task that has just been deleted. */
prvResetNextTaskUnblockTime();
}
}
taskEXIT_CRITICAL();
/* If the task is not deleting itself, call prvDeleteTCB from outside of
* critical section. If a task deletes itself, prvDeleteTCB is called
* from prvCheckTasksWaitingTermination which is called from Idle task. */
if( pxTCB != pxCurrentTCB )
{
prvDeleteTCB( pxTCB );
}
/* Force a reschedule if it is the currently running task that has just
* been deleted. */
if( xSchedulerRunning != pdFALSE )
{
if( pxTCB == pxCurrentTCB )
{
configASSERT( uxSchedulerSuspended == 0 );
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskDelayUntil == 1 )
BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
const TickType_t xTimeIncrement )
{
TickType_t xTimeToWake;
BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
configASSERT( pxPreviousWakeTime );
configASSERT( ( xTimeIncrement > 0U ) );
configASSERT( uxSchedulerSuspended == 0 );
vTaskSuspendAll();
{
/* Minor optimisation. The tick count cannot change in this
* block. */
const TickType_t xConstTickCount = xTickCount;
/* Generate the tick time at which the task wants to wake. */
xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
if( xConstTickCount < *pxPreviousWakeTime )
{
/* The tick count has overflowed since this function was
* lasted called. In this case the only time we should ever
* actually delay is if the wake time has also overflowed,
* and the wake time is greater than the tick time. When this
* is the case it is as if neither time had overflowed. */
if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
{
xShouldDelay = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* The tick time has not overflowed. In this case we will
* delay if either the wake time has overflowed, and/or the
* tick time is less than the wake time. */
if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
{
xShouldDelay = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Update the wake time ready for the next call. */
*pxPreviousWakeTime = xTimeToWake;
if( xShouldDelay != pdFALSE )
{
traceTASK_DELAY_UNTIL( xTimeToWake );
/* prvAddCurrentTaskToDelayedList() needs the block time, not
* the time to wake, so subtract the current tick count. */
prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
xAlreadyYielded = xTaskResumeAll();
/* Force a reschedule if xTaskResumeAll has not already done so, we may
* have put ourselves to sleep. */
if( xAlreadyYielded == pdFALSE )
{
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xShouldDelay;
}
#endif /* INCLUDE_xTaskDelayUntil */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelay == 1 )
void vTaskDelay( const TickType_t xTicksToDelay )
{
BaseType_t xAlreadyYielded = pdFALSE;
/* A delay time of zero just forces a reschedule. */
if( xTicksToDelay > ( TickType_t ) 0U )
{
configASSERT( uxSchedulerSuspended == 0 );
vTaskSuspendAll();
{
traceTASK_DELAY();
/* A task that is removed from the event list while the
* scheduler is suspended will not get placed in the ready
* list or removed from the blocked list until the scheduler
* is resumed.
*
* This task cannot be in an event list as it is the currently
* executing task. */
prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
}
xAlreadyYielded = xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Force a reschedule if xTaskResumeAll has not already done so, we may
* have put ourselves to sleep. */
if( xAlreadyYielded == pdFALSE )
{
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* INCLUDE_vTaskDelay */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
eTaskState eTaskGetState( TaskHandle_t xTask )
{
eTaskState eReturn;
List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
const TCB_t * const pxTCB = xTask;
configASSERT( pxTCB );
if( pxTCB == pxCurrentTCB )
{
/* The task calling this function is querying its own state. */
eReturn = eRunning;
}
else
{
taskENTER_CRITICAL();
{
pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
pxDelayedList = pxDelayedTaskList;
pxOverflowedDelayedList = pxOverflowDelayedTaskList;
}
taskEXIT_CRITICAL();
if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
{
/* The task being queried is referenced from one of the Blocked
* lists. */
eReturn = eBlocked;
}
#if ( INCLUDE_vTaskSuspend == 1 )
else if( pxStateList == &xSuspendedTaskList )
{
/* The task being queried is referenced from the suspended
* list. Is it genuinely suspended or is it blocked
* indefinitely? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
{
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
/* The task does not appear on the event list item of
* and of the RTOS objects, but could still be in the
* blocked state if it is waiting on its notification
* rather than waiting on an object. If not, is
* suspended. */
eReturn = eSuspended;
for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
eReturn = eBlocked;
break;
}
}
}
#else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
{
eReturn = eSuspended;
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
}
else
{
eReturn = eBlocked;
}
}
#endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
#if ( INCLUDE_vTaskDelete == 1 )
else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
{
/* The task being queried is referenced from the deleted
* tasks list, or it is not referenced from any lists at
* all. */
eReturn = eDeleted;
}
#endif
else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
{
/* If the task is not in any other state, it must be in the
* Ready (including pending ready) state. */
eReturn = eReady;
}
}
return eReturn;
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
#endif /* INCLUDE_eTaskGetState */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskPriorityGet == 1 )
UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn;
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the priority of the task
* that called uxTaskPriorityGet() that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxPriority;
}
taskEXIT_CRITICAL();
return uxReturn;
}
#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskPriorityGet == 1 )
UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn, uxSavedInterruptState;
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
{
/* If null is passed in here then it is the priority of the calling
* task that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxPriority;
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
return uxReturn;
}
#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskPrioritySet == 1 )
void vTaskPrioritySet( TaskHandle_t xTask,
UBaseType_t uxNewPriority )
{
TCB_t * pxTCB;
UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
BaseType_t xYieldRequired = pdFALSE;
configASSERT( uxNewPriority < configMAX_PRIORITIES );
/* Ensure the new priority is valid. */
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the priority of the calling
* task that is being changed. */
pxTCB = prvGetTCBFromHandle( xTask );
traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
#if ( configUSE_MUTEXES == 1 )
{
uxCurrentBasePriority = pxTCB->uxBasePriority;
}
#else
{
uxCurrentBasePriority = pxTCB->uxPriority;
}
#endif
if( uxCurrentBasePriority != uxNewPriority )
{
/* The priority change may have readied a task of higher
* priority than the calling task. */
if( uxNewPriority > uxCurrentBasePriority )
{
if( pxTCB != pxCurrentTCB )
{
/* The priority of a task other than the currently
* running task is being raised. Is the priority being
* raised above that of the running task? */
if( uxNewPriority >= pxCurrentTCB->uxPriority )
{
xYieldRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* The priority of the running task is being raised,
* but the running task must already be the highest
* priority task able to run so no yield is required. */
}
}
else if( pxTCB == pxCurrentTCB )
{
/* Setting the priority of the running task down means
* there may now be another task of higher priority that
* is ready to execute. */
xYieldRequired = pdTRUE;
}
else
{
/* Setting the priority of any other task down does not
* require a yield as the running task must be above the
* new priority of the task being modified. */
}
/* Remember the ready list the task might be referenced from
* before its uxPriority member is changed so the
* taskRESET_READY_PRIORITY() macro can function correctly. */
uxPriorityUsedOnEntry = pxTCB->uxPriority;
#if ( configUSE_MUTEXES == 1 )
{
/* Only change the priority being used if the task is not
* currently using an inherited priority. */
if( pxTCB->uxBasePriority == pxTCB->uxPriority )
{
pxTCB->uxPriority = uxNewPriority;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The base priority gets set whatever. */
pxTCB->uxBasePriority = uxNewPriority;
}
#else /* if ( configUSE_MUTEXES == 1 ) */
{
pxTCB->uxPriority = uxNewPriority;
}
#endif /* if ( configUSE_MUTEXES == 1 ) */
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the task is in the blocked or suspended list we need do
* nothing more than change its priority variable. However, if
* the task is in a ready list it needs to be removed and placed
* in the list appropriate to its new priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* The task is currently in its ready list - remove before
* adding it to its new ready list. As we are in a critical
* section we can do this even if the scheduler is suspended. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
prvAddTaskToReadyList( pxTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( xYieldRequired != pdFALSE )
{
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Remove compiler warning about unused variables when the port
* optimised task selection is not being used. */
( void ) uxPriorityUsedOnEntry;
}
}
taskEXIT_CRITICAL();
}
#endif /* INCLUDE_vTaskPrioritySet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
void vTaskSuspend( TaskHandle_t xTaskToSuspend )
{
TCB_t * pxTCB;
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the running task that is
* being suspended. */
pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
traceTASK_SUSPEND( pxTCB );
/* Remove task from the ready/delayed list and place in the
* suspended list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Is the task waiting on an event also? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
/* The task was blocked to wait for a notification, but is
* now suspended, so no notification was received. */
pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
}
}
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
}
taskEXIT_CRITICAL();
if( xSchedulerRunning != pdFALSE )
{
/* Reset the next expected unblock time in case it referred to the
* task that is now in the Suspended state. */
taskENTER_CRITICAL();
{
prvResetNextTaskUnblockTime();
}
taskEXIT_CRITICAL();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( pxTCB == pxCurrentTCB )
{
if( xSchedulerRunning != pdFALSE )
{
/* The current task has just been suspended. */
configASSERT( uxSchedulerSuspended == 0 );
portYIELD_WITHIN_API();
}
else
{
/* The scheduler is not running, but the task that was pointed
* to by pxCurrentTCB has just been suspended and pxCurrentTCB
* must be adjusted to point to a different task. */
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
{
/* No other tasks are ready, so set pxCurrentTCB back to
* NULL so when the next task is created pxCurrentTCB will
* be set to point to it no matter what its relative priority
* is. */
pxCurrentTCB = NULL;
}
else
{
vTaskSwitchContext();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
{
BaseType_t xReturn = pdFALSE;
const TCB_t * const pxTCB = xTask;
/* Accesses xPendingReadyList so must be called from a critical
* section. */
/* It does not make sense to check if the calling task is suspended. */
configASSERT( xTask );
/* Is the task being resumed actually in the suspended list? */
if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* Has the task already been resumed from within an ISR? */
if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
{
/* Is it in the suspended list because it is in the Suspended
* state, or because is is blocked with no timeout? */
if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
{
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xReturn;
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
void vTaskResume( TaskHandle_t xTaskToResume )
{
TCB_t * const pxTCB = xTaskToResume;
/* It does not make sense to resume the calling task. */
configASSERT( xTaskToResume );
/* The parameter cannot be NULL as it is impossible to resume the
* currently executing task. */
if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
{
taskENTER_CRITICAL();
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
traceTASK_RESUME( pxTCB );
/* The ready list can be accessed even if the scheduler is
* suspended because this is inside a critical section. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* A higher priority task may have just been resumed. */
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
{
/* This yield may not cause the task just resumed to run,
* but will leave the lists in the correct state for the
* next yield. */
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
{
BaseType_t xYieldRequired = pdFALSE;
TCB_t * const pxTCB = xTaskToResume;
UBaseType_t uxSavedInterruptStatus;
configASSERT( xTaskToResume );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
traceTASK_RESUME_FROM_ISR( pxTCB );
/* Check the ready lists can be accessed. */
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
{
/* Ready lists can be accessed so move the task from the
* suspended list to the ready list directly. */
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
{
xYieldRequired = pdTRUE;
/* Mark that a yield is pending in case the user is not
* using the return value to initiate a context switch
* from the ISR using portYIELD_FROM_ISR. */
xYieldPending = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed or ready lists cannot be accessed so the task
* is held in the pending ready list until the scheduler is
* unsuspended. */
vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xYieldRequired;
}
#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
/*-----------------------------------------------------------*/
void vTaskStartScheduler( void )
{
BaseType_t xReturn;
/* Add the idle task at the lowest priority. */
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
StaticTask_t * pxIdleTaskTCBBuffer = NULL;
StackType_t * pxIdleTaskStackBuffer = NULL;
uint32_t ulIdleTaskStackSize;
/* The Idle task is created using user provided RAM - obtain the
* address of the RAM then create the idle task. */
vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
configIDLE_TASK_NAME,
ulIdleTaskStackSize,
( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
pxIdleTaskStackBuffer,
pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
if( xIdleTaskHandle != NULL )
{
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
}
}
#else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
{
/* The Idle task is being created using dynamically allocated RAM. */
xReturn = xTaskCreate( prvIdleTask,
configIDLE_TASK_NAME,
configMINIMAL_STACK_SIZE,
( void * ) NULL,
portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
&xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
#if ( configUSE_TIMERS == 1 )
{
if( xReturn == pdPASS )
{
xReturn = xTimerCreateTimerTask();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TIMERS */
if( xReturn == pdPASS )
{
/* freertos_tasks_c_additions_init() should only be called if the user
* definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
* the only macro called by the function. */
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
{
freertos_tasks_c_additions_init();
}
#endif
/* Interrupts are turned off here, to ensure a tick does not occur
* before or during the call to xPortStartScheduler(). The stacks of
* the created tasks contain a status word with interrupts switched on
* so interrupts will automatically get re-enabled when the first task
* starts to run. */
portDISABLE_INTERRUPTS();
#if ( configUSE_NEWLIB_REENTRANT == 1 )
{
/* Switch Newlib's _impure_ptr variable to point to the _reent
* structure specific to the task that will run first.
* See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
* for additional information. */
_impure_ptr = &( pxCurrentTCB->xNewLib_reent );
}
#endif /* configUSE_NEWLIB_REENTRANT */
xNextTaskUnblockTime = portMAX_DELAY;
xSchedulerRunning = pdTRUE;
xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
/* If configGENERATE_RUN_TIME_STATS is defined then the following
* macro must be defined to configure the timer/counter used to generate
* the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
* is set to 0 and the following line fails to build then ensure you do not
* have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
* FreeRTOSConfig.h file. */
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
traceTASK_SWITCHED_IN();
/* Setting up the timer tick is hardware specific and thus in the
* portable interface. */
if( xPortStartScheduler() != pdFALSE )
{
/* Should not reach here as if the scheduler is running the
* function will not return. */
}
else
{
/* Should only reach here if a task calls xTaskEndScheduler(). */
}
}
else
{
/* This line will only be reached if the kernel could not be started,
* because there was not enough FreeRTOS heap to create the idle task
* or the timer task. */
configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
}
/* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
* meaning xIdleTaskHandle is not used anywhere else. */
( void ) xIdleTaskHandle;
/* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
* from getting optimized out as it is no longer used by the kernel. */
( void ) uxTopUsedPriority;
}
/*-----------------------------------------------------------*/
void vTaskEndScheduler( void )
{
/* Stop the scheduler interrupts and call the portable scheduler end
* routine so the original ISRs can be restored if necessary. The port
* layer must ensure interrupts enable bit is left in the correct state. */
portDISABLE_INTERRUPTS();
xSchedulerRunning = pdFALSE;
vPortEndScheduler();
}
/*----------------------------------------------------------*/
void vTaskSuspendAll( void )
{
/* A critical section is not required as the variable is of type
* BaseType_t. Please read Richard Barry's reply in the following link to a
* post in the FreeRTOS support forum before reporting this as a bug! -
* https://goo.gl/wu4acr */
/* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
* do not otherwise exhibit real time behaviour. */
portSOFTWARE_BARRIER();
/* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
* is used to allow calls to vTaskSuspendAll() to nest. */
++uxSchedulerSuspended;
/* Enforces ordering for ports and optimised compilers that may otherwise place
* the above increment elsewhere. */
portMEMORY_BARRIER();
}
/*----------------------------------------------------------*/
#if ( configUSE_TICKLESS_IDLE != 0 )
static TickType_t prvGetExpectedIdleTime( void )
{
TickType_t xReturn;
UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
/* uxHigherPriorityReadyTasks takes care of the case where
* configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
* task that are in the Ready state, even though the idle task is
* running. */
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
{
if( uxTopReadyPriority > tskIDLE_PRIORITY )
{
uxHigherPriorityReadyTasks = pdTRUE;
}
}
#else
{
const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
/* When port optimised task selection is used the uxTopReadyPriority
* variable is used as a bit map. If bits other than the least
* significant bit are set then there are tasks that have a priority
* above the idle priority that are in the Ready state. This takes
* care of the case where the co-operative scheduler is in use. */
if( uxTopReadyPriority > uxLeastSignificantBit )
{
uxHigherPriorityReadyTasks = pdTRUE;
}
}
#endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
{
xReturn = 0;
}
else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
{
/* There are other idle priority tasks in the ready state. If
* time slicing is used then the very next tick interrupt must be
* processed. */
xReturn = 0;
}
else if( uxHigherPriorityReadyTasks != pdFALSE )
{
/* There are tasks in the Ready state that have a priority above the
* idle priority. This path can only be reached if
* configUSE_PREEMPTION is 0. */
xReturn = 0;
}
else
{
xReturn = xNextTaskUnblockTime - xTickCount;
}
return xReturn;
}
#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/
BaseType_t xTaskResumeAll( void )
{
TCB_t * pxTCB = NULL;
BaseType_t xAlreadyYielded = pdFALSE;
/* If uxSchedulerSuspended is zero then this function does not match a
* previous call to vTaskSuspendAll(). */
configASSERT( uxSchedulerSuspended );
/* It is possible that an ISR caused a task to be removed from an event
* list while the scheduler was suspended. If this was the case then the
* removed task will have been added to the xPendingReadyList. Once the
* scheduler has been resumed it is safe to move all the pending ready
* tasks from this list into their appropriate ready list. */
taskENTER_CRITICAL();
{
--uxSchedulerSuspended;
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
{
if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
{
/* Move any readied tasks from the pending list into the
* appropriate ready list. */
while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
{
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
portMEMORY_BARRIER();
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* If the moved task has a priority higher than or equal to
* the current task then a yield must be performed. */
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
{
xYieldPending = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
if( pxTCB != NULL )
{
/* A task was unblocked while the scheduler was suspended,
* which may have prevented the next unblock time from being
* re-calculated, in which case re-calculate it now. Mainly
* important for low power tickless implementations, where
* this can prevent an unnecessary exit from low power
* state. */
prvResetNextTaskUnblockTime();
}
/* If any ticks occurred while the scheduler was suspended then
* they should be processed now. This ensures the tick count does
* not slip, and that any delayed tasks are resumed at the correct
* time. */
{
TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
if( xPendedCounts > ( TickType_t ) 0U )
{
do
{
if( xTaskIncrementTick() != pdFALSE )
{
xYieldPending = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
--xPendedCounts;
} while( xPendedCounts > ( TickType_t ) 0U );
xPendedTicks = 0;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
if( xYieldPending != pdFALSE )
{
#if ( configUSE_PREEMPTION != 0 )
{
xAlreadyYielded = pdTRUE;
}
#endif
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
return xAlreadyYielded;
}
/*-----------------------------------------------------------*/
TickType_t xTaskGetTickCount( void )
{
TickType_t xTicks;
/* Critical section required if running on a 16 bit processor. */
portTICK_TYPE_ENTER_CRITICAL();
{
xTicks = xTickCount;
}
portTICK_TYPE_EXIT_CRITICAL();
return xTicks;
}
/*-----------------------------------------------------------*/
TickType_t xTaskGetTickCountFromISR( void )
{
TickType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
/* RTOS ports that support interrupt nesting have the concept of a maximum
* system call (or maximum API call) interrupt priority. Interrupts that are
* above the maximum system call priority are kept permanently enabled, even
* when the RTOS kernel is in a critical section, but cannot make any calls to
* FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
* then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has been
* assigned a priority above the configured maximum system call priority.
* Only FreeRTOS functions that end in FromISR can be called from interrupts
* that have been assigned a priority at or (logically) below the maximum
* system call interrupt priority. FreeRTOS maintains a separate interrupt
* safe API to ensure interrupt entry is as fast and as simple as possible.
* More information (albeit Cortex-M specific) is provided on the following
* link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
{
xReturn = xTickCount;
}
portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xReturn;
}
/*-----------------------------------------------------------*/
UBaseType_t uxTaskGetNumberOfTasks( void )
{
/* A critical section is not required because the variables are of type
* BaseType_t. */
return uxCurrentNumberOfTasks;
}
/*-----------------------------------------------------------*/
char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
TCB_t * pxTCB;
/* If null is passed in here then the name of the calling task is being
* queried. */
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
configASSERT( pxTCB );
return &( pxTCB->pcTaskName[ 0 ] );
}
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetHandle == 1 )
static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
const char pcNameToQuery[] )
{
TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
UBaseType_t x;
char cNextChar;
BaseType_t xBreakLoop;
/* This function is called with the scheduler suspended. */
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
{
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
do
{
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
/* Check each character in the name looking for a match or
* mismatch. */
xBreakLoop = pdFALSE;
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
cNextChar = pxNextTCB->pcTaskName[ x ];
if( cNextChar != pcNameToQuery[ x ] )
{
/* Characters didn't match. */
xBreakLoop = pdTRUE;
}
else if( cNextChar == ( char ) 0x00 )
{
/* Both strings terminated, a match must have been
* found. */
pxReturn = pxNextTCB;
xBreakLoop = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( xBreakLoop != pdFALSE )
{
break;
}
}
if( pxReturn != NULL )
{
/* The handle has been found. */
break;
}
} while( pxNextTCB != pxFirstTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return pxReturn;
}
#endif /* INCLUDE_xTaskGetHandle */
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetHandle == 1 )
TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
UBaseType_t uxQueue = configMAX_PRIORITIES;
TCB_t * pxTCB;
/* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
vTaskSuspendAll();
{
/* Search the ready lists. */
do
{
uxQueue--;
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
if( pxTCB != NULL )
{
/* Found the handle. */
break;
}
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
/* Search the delayed lists. */
if( pxTCB == NULL )
{
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
}
if( pxTCB == NULL )
{
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
}
#if ( INCLUDE_vTaskSuspend == 1 )
{
if( pxTCB == NULL )
{
/* Search the suspended list. */
pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
}
}
#endif
#if ( INCLUDE_vTaskDelete == 1 )
{
if( pxTCB == NULL )
{
/* Search the deleted list. */
pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
}
}
#endif
}
( void ) xTaskResumeAll();
return pxTCB;
}
#endif /* INCLUDE_xTaskGetHandle */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
const UBaseType_t uxArraySize,
configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
{
UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
vTaskSuspendAll();
{
/* Is there a space in the array for each task in the system? */
if( uxArraySize >= uxCurrentNumberOfTasks )
{
/* Fill in an TaskStatus_t structure with information on each
* task in the Ready state. */
do
{
uxQueue--;
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
/* Fill in an TaskStatus_t structure with information on each
* task in the Blocked state. */
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
#if ( INCLUDE_vTaskDelete == 1 )
{
/* Fill in an TaskStatus_t structure with information on
* each task that has been deleted but not yet cleaned up. */
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
}
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
{
/* Fill in an TaskStatus_t structure with information on
* each task in the Suspended state. */
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
}
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
if( pulTotalRunTime != NULL )
{
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
#else
*pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
#endif
}
}
#else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
{
if( pulTotalRunTime != NULL )
{
*pulTotalRunTime = 0;
}
}
#endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
( void ) xTaskResumeAll();
return uxTask;
}
#endif /* configUSE_TRACE_FACILITY */
/*----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
TaskHandle_t xTaskGetIdleTaskHandle( void )
{
/* If xTaskGetIdleTaskHandle() is called before the scheduler has been
* started, then xIdleTaskHandle will be NULL. */
configASSERT( ( xIdleTaskHandle != NULL ) );
return xIdleTaskHandle;
}
#endif /* INCLUDE_xTaskGetIdleTaskHandle */
/*----------------------------------------------------------*/
/* This conditional compilation should use inequality to 0, not equality to 1.
* This is to ensure vTaskStepTick() is available when user defined low power mode
* implementations require configUSE_TICKLESS_IDLE to be set to a value other than
* 1. */
#if ( configUSE_TICKLESS_IDLE != 0 )
void vTaskStepTick( const TickType_t xTicksToJump )
{
/* Correct the tick count value after a period during which the tick
* was suppressed. Note this does *not* call the tick hook function for
* each stepped tick. */
configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
xTickCount += xTicksToJump;
traceINCREASE_TICK_COUNT( xTicksToJump );
}
#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/
BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
{
BaseType_t xYieldOccurred;
/* Must not be called with the scheduler suspended as the implementation
* relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
configASSERT( uxSchedulerSuspended == 0 );
/* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
* the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
vTaskSuspendAll();
xPendedTicks += xTicksToCatchUp;
xYieldOccurred = xTaskResumeAll();
return xYieldOccurred;
}
/*----------------------------------------------------------*/
#if ( INCLUDE_xTaskAbortDelay == 1 )
BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
{
TCB_t * pxTCB = xTask;
BaseType_t xReturn;
configASSERT( pxTCB );
vTaskSuspendAll();
{
/* A task can only be prematurely removed from the Blocked state if
* it is actually in the Blocked state. */
if( eTaskGetState( xTask ) == eBlocked )
{
xReturn = pdPASS;
/* Remove the reference to the task from the blocked list. An
* interrupt won't touch the xStateListItem because the
* scheduler is suspended. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
/* Is the task waiting on an event also? If so remove it from
* the event list too. Interrupts can touch the event list item,
* even though the scheduler is suspended, so a critical section
* is used. */
taskENTER_CRITICAL();
{
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
/* This lets the task know it was forcibly removed from the
* blocked state so it should not re-evaluate its block time and
* then block again. */
pxTCB->ucDelayAborted = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
/* Place the unblocked task into the appropriate ready list. */
prvAddTaskToReadyList( pxTCB );
/* A task being unblocked cannot cause an immediate context
* switch if preemption is turned off. */
#if ( configUSE_PREEMPTION == 1 )
{
/* Preemption is on, but a context switch should only be
* performed if the unblocked task has a priority that is
* higher than the currently executing task. */
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* Pend the yield to be performed when the scheduler
* is unsuspended. */
xYieldPending = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_PREEMPTION */
}
else
{
xReturn = pdFAIL;
}
}
( void ) xTaskResumeAll();
return xReturn;
}
#endif /* INCLUDE_xTaskAbortDelay */
/*----------------------------------------------------------*/
BaseType_t xTaskIncrementTick( void )
{
TCB_t * pxTCB;
TickType_t xItemValue;
BaseType_t xSwitchRequired = pdFALSE;
/* Called by the portable layer each time a tick interrupt occurs.
* Increments the tick then checks to see if the new tick value will cause any
* tasks to be unblocked. */
traceTASK_INCREMENT_TICK( xTickCount );
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
{
/* Minor optimisation. The tick count cannot change in this
* block. */
const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
/* Increment the RTOS tick, switching the delayed and overflowed
* delayed lists if it wraps to 0. */
xTickCount = xConstTickCount;
if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
{
taskSWITCH_DELAYED_LISTS();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* See if this tick has made a timeout expire. Tasks are stored in
* the queue in the order of their wake time - meaning once one task
* has been found whose block time has not expired there is no need to
* look any further down the list. */
if( xConstTickCount >= xNextTaskUnblockTime )
{
for( ; ; )
{
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
{
/* The delayed list is empty. Set xNextTaskUnblockTime
* to the maximum possible value so it is extremely
* unlikely that the
* if( xTickCount >= xNextTaskUnblockTime ) test will pass
* next time through. */
xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
break;
}
else
{
/* The delayed list is not empty, get the value of the
* item at the head of the delayed list. This is the time
* at which the task at the head of the delayed list must
* be removed from the Blocked state. */
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
if( xConstTickCount < xItemValue )
{
/* It is not time to unblock this item yet, but the
* item value is the time at which the task at the head
* of the blocked list must be removed from the Blocked
* state - so record the item value in
* xNextTaskUnblockTime. */
xNextTaskUnblockTime = xItemValue;
break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* It is time to remove the item from the Blocked state. */
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
/* Is the task waiting on an event also? If so remove
* it from the event list. */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Place the unblocked task into the appropriate ready
* list. */
prvAddTaskToReadyList( pxTCB );
/* A task being unblocked cannot cause an immediate
* context switch if preemption is turned off. */
#if ( configUSE_PREEMPTION == 1 )
{
/* Preemption is on, but a context switch should
* only be performed if the unblocked task has a
* priority that is equal to or higher than the
* currently executing task. */
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_PREEMPTION */
}
}
}
/* Tasks of equal priority to the currently running task will share
* processing time (time slice) if preemption is on, and the application
* writer has not explicitly turned time slicing off. */
#if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
{
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
#if ( configUSE_TICK_HOOK == 1 )
{
/* Guard against the tick hook being called when the pended tick
* count is being unwound (when the scheduler is being unlocked). */
if( xPendedTicks == ( TickType_t ) 0 )
{
vApplicationTickHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TICK_HOOK */
#if ( configUSE_PREEMPTION == 1 )
{
if( xYieldPending != pdFALSE )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_PREEMPTION */
}
else
{
++xPendedTicks;
/* The tick hook gets called at regular intervals, even if the
* scheduler is locked. */
#if ( configUSE_TICK_HOOK == 1 )
{
vApplicationTickHook();
}
#endif
}
return xSwitchRequired;
}
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
TaskHookFunction_t pxHookFunction )
{
TCB_t * xTCB;
/* If xTask is NULL then it is the task hook of the calling task that is
* getting set. */
if( xTask == NULL )
{
xTCB = ( TCB_t * ) pxCurrentTCB;
}
else
{
xTCB = xTask;
}
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
taskENTER_CRITICAL();
{
xTCB->pxTaskTag = pxHookFunction;
}
taskEXIT_CRITICAL();
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
{
TCB_t * pxTCB;
TaskHookFunction_t xReturn;
/* If xTask is NULL then set the calling task's hook. */
pxTCB = prvGetTCBFromHandle( xTask );
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
taskENTER_CRITICAL();
{
xReturn = pxTCB->pxTaskTag;
}
taskEXIT_CRITICAL();
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
{
TCB_t * pxTCB;
TaskHookFunction_t xReturn;
UBaseType_t uxSavedInterruptStatus;
/* If xTask is NULL then set the calling task's hook. */
pxTCB = prvGetTCBFromHandle( xTask );
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
xReturn = pxTCB->pxTaskTag;
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
void * pvParameter )
{
TCB_t * xTCB;
BaseType_t xReturn;
/* If xTask is NULL then we are calling our own task hook. */
if( xTask == NULL )
{
xTCB = pxCurrentTCB;
}
else
{
xTCB = xTask;
}
if( xTCB->pxTaskTag != NULL )
{
xReturn = xTCB->pxTaskTag( pvParameter );
}
else
{
xReturn = pdFAIL;
}
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
void vTaskSwitchContext( void )
{
if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
{
/* The scheduler is currently suspended - do not allow a context
* switch. */
xYieldPending = pdTRUE;
}
else
{
xYieldPending = pdFALSE;
traceTASK_SWITCHED_OUT();
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
#else
ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
#endif
/* Add the amount of time the task has been running to the
* accumulated time so far. The time the task started running was
* stored in ulTaskSwitchedInTime. Note that there is no overflow
* protection here so count values are only valid until the timer
* overflows. The guard against negative values is to protect
* against suspect run time stat counter implementations - which
* are provided by the application, not the kernel. */
if( ulTotalRunTime > ulTaskSwitchedInTime )
{
pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
ulTaskSwitchedInTime = ulTotalRunTime;
}
#endif /* configGENERATE_RUN_TIME_STATS */
/* Check for stack overflow, if configured. */
taskCHECK_FOR_STACK_OVERFLOW();
/* Before the currently running task is switched out, save its errno. */
#if ( configUSE_POSIX_ERRNO == 1 )
{
pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
}
#endif
/* Select a new task to run using either the generic C or port
* optimised asm code. */
taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
traceTASK_SWITCHED_IN();
/* After the new task is switched in, update the global errno. */
#if ( configUSE_POSIX_ERRNO == 1 )
{
FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
}
#endif
#if ( configUSE_NEWLIB_REENTRANT == 1 )
{
/* Switch Newlib's _impure_ptr variable to point to the _reent
* structure specific to this task.
* See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
* for additional information. */
_impure_ptr = &( pxCurrentTCB->xNewLib_reent );
}
#endif /* configUSE_NEWLIB_REENTRANT */
}
}
/*-----------------------------------------------------------*/
void vTaskPlaceOnEventList( List_t * const pxEventList,
const TickType_t xTicksToWait )
{
configASSERT( pxEventList );
/* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
* SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
/* Place the event list item of the TCB in the appropriate event list.
* This is placed in the list in priority order so the highest priority task
* is the first to be woken by the event.
*
* Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
* Normally, the xItemValue of a TCB's ListItem_t members is:
* xItemValue = ( configMAX_PRIORITIES - uxPriority )
* Therefore, the event list is sorted in descending priority order.
*
* The queue that contains the event list is locked, preventing
* simultaneous access from interrupts. */
vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
}
/*-----------------------------------------------------------*/
void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
const TickType_t xItemValue,
const TickType_t xTicksToWait )
{
configASSERT( pxEventList );
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
* the event groups implementation. */
configASSERT( uxSchedulerSuspended != 0 );
/* Store the item value in the event list item. It is safe to access the
* event list item here as interrupts won't access the event list item of a
* task that is not in the Blocked state. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
/* Place the event list item of the TCB at the end of the appropriate event
* list. It is safe to access the event list here because it is part of an
* event group implementation - and interrupts don't access event groups
* directly (instead they access them indirectly by pending function calls to
* the task level). */
listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
}
/*-----------------------------------------------------------*/
#if ( configUSE_TIMERS == 1 )
void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
TickType_t xTicksToWait,
const BaseType_t xWaitIndefinitely )
{
configASSERT( pxEventList );
/* This function should not be called by application code hence the
* 'Restricted' in its name. It is not part of the public API. It is
* designed for use by kernel code, and has special calling requirements -
* it should be called with the scheduler suspended. */
/* Place the event list item of the TCB in the appropriate event list.
* In this case it is assume that this is the only task that is going to
* be waiting on this event list, so the faster vListInsertEnd() function
* can be used in place of vListInsert. */
listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
/* If the task should block indefinitely then set the block time to a
* value that will be recognised as an indefinite delay inside the
* prvAddCurrentTaskToDelayedList() function. */
if( xWaitIndefinitely != pdFALSE )
{
xTicksToWait = portMAX_DELAY;
}
traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
}
#endif /* configUSE_TIMERS */
/*-----------------------------------------------------------*/
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
{
TCB_t * pxUnblockedTCB;
BaseType_t xReturn;
/* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
* called from a critical section within an ISR. */
/* The event list is sorted in priority order, so the first in the list can
* be removed as it is known to be the highest priority. Remove the TCB from
* the delayed list, and add it to the ready list.
*
* If an event is for a queue that is locked then this function will never
* get called - the lock count on the queue will get modified instead. This
* means exclusive access to the event list is guaranteed here.
*
* This function assumes that a check has already been made to ensure that
* pxEventList is not empty. */
pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
configASSERT( pxUnblockedTCB );
listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
{
listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
prvAddTaskToReadyList( pxUnblockedTCB );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked on a kernel object then xNextTaskUnblockTime
* might be set to the blocked task's time out time. If the task is
* unblocked for a reason other than a timeout xNextTaskUnblockTime is
* normally left unchanged, because it is automatically reset to a new
* value when the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter sleep mode
* at the earliest possible time - so reset xNextTaskUnblockTime here to
* ensure it is updated at the earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
}
else
{
/* The delayed and ready lists cannot be accessed, so hold this task
* pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
}
if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* Return true if the task removed from the event list has a higher
* priority than the calling task. This allows the calling task to know if
* it should force a context switch now. */
xReturn = pdTRUE;
/* Mark that a yield is pending in case the user is not using the
* "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
xYieldPending = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
return xReturn;
}
/*-----------------------------------------------------------*/
void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
const TickType_t xItemValue )
{
TCB_t * pxUnblockedTCB;
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
* the event flags implementation. */
configASSERT( uxSchedulerSuspended != pdFALSE );
/* Store the new item value in the event list. */
listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
/* Remove the event list form the event flag. Interrupts do not access
* event flags. */
pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
configASSERT( pxUnblockedTCB );
listREMOVE_ITEM( pxEventListItem );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked on a kernel object then xNextTaskUnblockTime
* might be set to the blocked task's time out time. If the task is
* unblocked for a reason other than a timeout xNextTaskUnblockTime is
* normally left unchanged, because it is automatically reset to a new
* value when the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter sleep mode
* at the earliest possible time - so reset xNextTaskUnblockTime here to
* ensure it is updated at the earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
/* Remove the task from the delayed list and add it to the ready list. The
* scheduler is suspended so interrupts will not be accessing the ready
* lists. */
listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
prvAddTaskToReadyList( pxUnblockedTCB );
if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* The unblocked task has a priority above that of the calling task, so
* a context switch is required. This function is called with the
* scheduler suspended so xYieldPending is set so the context switch
* occurs immediately that the scheduler is resumed (unsuspended). */
xYieldPending = pdTRUE;
}
}
/*-----------------------------------------------------------*/
void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
{
configASSERT( pxTimeOut );
taskENTER_CRITICAL();
{
pxTimeOut->xOverflowCount = xNumOfOverflows;
pxTimeOut->xTimeOnEntering = xTickCount;
}
taskEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/
void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
{
/* For internal use only as it does not use a critical section. */
pxTimeOut->xOverflowCount = xNumOfOverflows;
pxTimeOut->xTimeOnEntering = xTickCount;
}
/*-----------------------------------------------------------*/
BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
TickType_t * const pxTicksToWait )
{
BaseType_t xReturn;
configASSERT( pxTimeOut );
configASSERT( pxTicksToWait );
taskENTER_CRITICAL();
{
/* Minor optimisation. The tick count cannot change in this block. */
const TickType_t xConstTickCount = xTickCount;
const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
#if ( INCLUDE_xTaskAbortDelay == 1 )
if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
{
/* The delay was aborted, which is not the same as a time out,
* but has the same result. */
pxCurrentTCB->ucDelayAborted = pdFALSE;
xReturn = pdTRUE;
}
else
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
if( *pxTicksToWait == portMAX_DELAY )
{
/* If INCLUDE_vTaskSuspend is set to 1 and the block time
* specified is the maximum block time then the task should block
* indefinitely, and therefore never time out. */
xReturn = pdFALSE;
}
else
#endif
if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
{
/* The tick count is greater than the time at which
* vTaskSetTimeout() was called, but has also overflowed since
* vTaskSetTimeOut() was called. It must have wrapped all the way
* around and gone past again. This passed since vTaskSetTimeout()
* was called. */
xReturn = pdTRUE;
*pxTicksToWait = ( TickType_t ) 0;
}
else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
{
/* Not a genuine timeout. Adjust parameters for time remaining. */
*pxTicksToWait -= xElapsedTime;
vTaskInternalSetTimeOutState( pxTimeOut );
xReturn = pdFALSE;
}
else
{
*pxTicksToWait = ( TickType_t ) 0;
xReturn = pdTRUE;
}
}
taskEXIT_CRITICAL();
return xReturn;
}
/*-----------------------------------------------------------*/
void vTaskMissedYield( void )
{
xYieldPending = pdTRUE;
}
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
{
UBaseType_t uxReturn;
TCB_t const * pxTCB;
if( xTask != NULL )
{
pxTCB = xTask;
uxReturn = pxTCB->uxTaskNumber;
}
else
{
uxReturn = 0U;
}
return uxReturn;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
void vTaskSetTaskNumber( TaskHandle_t xTask,
const UBaseType_t uxHandle )
{
TCB_t * pxTCB;
if( xTask != NULL )
{
pxTCB = xTask;
pxTCB->uxTaskNumber = uxHandle;
}
}
#endif /* configUSE_TRACE_FACILITY */
/*
* -----------------------------------------------------------
* The Idle task.
* ----------------------------------------------------------
*
* The portTASK_FUNCTION() macro is used to allow port/compiler specific
* language extensions. The equivalent prototype for this function is:
*
* void prvIdleTask( void *pvParameters );
*
*/
static portTASK_FUNCTION( prvIdleTask, pvParameters )
{
/* Stop warnings. */
( void ) pvParameters;
/** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
* SCHEDULER IS STARTED. **/
/* In case a task that has a secure context deletes itself, in which case
* the idle task is responsible for deleting the task's secure context, if
* any. */
portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
for( ; ; )
{
/* See if any tasks have deleted themselves - if so then the idle task
* is responsible for freeing the deleted task's TCB and stack. */
prvCheckTasksWaitingTermination();
#if ( configUSE_PREEMPTION == 0 )
{
/* If we are not using preemption we keep forcing a task switch to
* see if any other task has become available. If we are using
* preemption we don't need to do this as any task becoming available
* will automatically get the processor anyway. */
taskYIELD();
}
#endif /* configUSE_PREEMPTION */
#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
{
/* When using preemption tasks of equal priority will be
* timesliced. If a task that is sharing the idle priority is ready
* to run then the idle task should yield before the end of the
* timeslice.
*
* A critical region is not required here as we are just reading from
* the list, and an occasional incorrect value will not matter. If
* the ready list at the idle priority contains more than one task
* then a task other than the idle task is ready to execute. */
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
{
taskYIELD();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
#if ( configUSE_IDLE_HOOK == 1 )
{
extern void vApplicationIdleHook( void );
/* Call the user defined function from within the idle task. This
* allows the application designer to add background functionality
* without the overhead of a separate task.
* NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
* CALL A FUNCTION THAT MIGHT BLOCK. */
vApplicationIdleHook();
}
#endif /* configUSE_IDLE_HOOK */
/* This conditional compilation should use inequality to 0, not equality
* to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
* user defined low power mode implementations require
* configUSE_TICKLESS_IDLE to be set to a value other than 1. */
#if ( configUSE_TICKLESS_IDLE != 0 )
{
TickType_t xExpectedIdleTime;
/* It is not desirable to suspend then resume the scheduler on
* each iteration of the idle task. Therefore, a preliminary
* test of the expected idle time is performed without the
* scheduler suspended. The result here is not necessarily
* valid. */
xExpectedIdleTime = prvGetExpectedIdleTime();
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
{
vTaskSuspendAll();
{
/* Now the scheduler is suspended, the expected idle
* time can be sampled again, and this time its value can
* be used. */
configASSERT( xNextTaskUnblockTime >= xTickCount );
xExpectedIdleTime = prvGetExpectedIdleTime();
/* Define the following macro to set xExpectedIdleTime to 0
* if the application does not want
* portSUPPRESS_TICKS_AND_SLEEP() to be called. */
configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
{
traceLOW_POWER_IDLE_BEGIN();
portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
traceLOW_POWER_IDLE_END();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
( void ) xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TICKLESS_IDLE */
}
}
/*-----------------------------------------------------------*/
#if ( configUSE_TICKLESS_IDLE != 0 )
eSleepModeStatus eTaskConfirmSleepModeStatus( void )
{
/* The idle task exists in addition to the application tasks. */
const UBaseType_t uxNonApplicationTasks = 1;
eSleepModeStatus eReturn = eStandardSleep;
/* This function must be called from a critical section. */
if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
{
/* A task was made ready while the scheduler was suspended. */
eReturn = eAbortSleep;
}
else if( xYieldPending != pdFALSE )
{
/* A yield was pended while the scheduler was suspended. */
eReturn = eAbortSleep;
}
else if( xPendedTicks != 0 )
{
/* A tick interrupt has already occurred but was held pending
* because the scheduler is suspended. */
eReturn = eAbortSleep;
}
else
{
/* If all the tasks are in the suspended list (which might mean they
* have an infinite block time rather than actually being suspended)
* then it is safe to turn all clocks off and just wait for external
* interrupts. */
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
{
eReturn = eNoTasksWaitingTimeout;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
return eReturn;
}
#endif /* configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
BaseType_t xIndex,
void * pvValue )
{
TCB_t * pxTCB;
if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
{
pxTCB = prvGetTCBFromHandle( xTaskToSet );
configASSERT( pxTCB != NULL );
pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
}
}
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
BaseType_t xIndex )
{
void * pvReturn = NULL;
TCB_t * pxTCB;
if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
{
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
}
else
{
pvReturn = NULL;
}
return pvReturn;
}
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/
#if ( portUSING_MPU_WRAPPERS == 1 )
void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
const MemoryRegion_t * const xRegions )
{
TCB_t * pxTCB;
/* If null is passed in here then we are modifying the MPU settings of
* the calling task. */
pxTCB = prvGetTCBFromHandle( xTaskToModify );
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
}
#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/
static void prvInitialiseTaskLists( void )
{
UBaseType_t uxPriority;
for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
{
vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
}
vListInitialise( &xDelayedTaskList1 );
vListInitialise( &xDelayedTaskList2 );
vListInitialise( &xPendingReadyList );
#if ( INCLUDE_vTaskDelete == 1 )
{
vListInitialise( &xTasksWaitingTermination );
}
#endif /* INCLUDE_vTaskDelete */
#if ( INCLUDE_vTaskSuspend == 1 )
{
vListInitialise( &xSuspendedTaskList );
}
#endif /* INCLUDE_vTaskSuspend */
/* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
* using list2. */
pxDelayedTaskList = &xDelayedTaskList1;
pxOverflowDelayedTaskList = &xDelayedTaskList2;
}
/*-----------------------------------------------------------*/
static void prvCheckTasksWaitingTermination( void )
{
/** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
#if ( INCLUDE_vTaskDelete == 1 )
{
TCB_t * pxTCB;
/* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
* being called too often in the idle task. */
while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
{
taskENTER_CRITICAL();
{
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
--uxCurrentNumberOfTasks;
--uxDeletedTasksWaitingCleanUp;
}
taskEXIT_CRITICAL();
prvDeleteTCB( pxTCB );
}
}
#endif /* INCLUDE_vTaskDelete */
}
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
void vTaskGetInfo( TaskHandle_t xTask,
TaskStatus_t * pxTaskStatus,
BaseType_t xGetFreeStackSpace,
eTaskState eState )
{
TCB_t * pxTCB;
/* xTask is NULL then get the state of the calling task. */
pxTCB = prvGetTCBFromHandle( xTask );
pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
pxTaskStatus->pxStackBase = pxTCB->pxStack;
pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
#if ( configUSE_MUTEXES == 1 )
{
pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
}
#else
{
pxTaskStatus->uxBasePriority = 0;
}
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
}
#else
{
pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
}
#endif
/* Obtaining the task state is a little fiddly, so is only done if the
* value of eState passed into this function is eInvalid - otherwise the
* state is just set to whatever is passed in. */
if( eState != eInvalid )
{
if( pxTCB == pxCurrentTCB )
{
pxTaskStatus->eCurrentState = eRunning;
}
else
{
pxTaskStatus->eCurrentState = eState;
#if ( INCLUDE_vTaskSuspend == 1 )
{
/* If the task is in the suspended list then there is a
* chance it is actually just blocked indefinitely - so really
* it should be reported as being in the Blocked state. */
if( eState == eSuspended )
{
vTaskSuspendAll();
{
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
pxTaskStatus->eCurrentState = eBlocked;
}
}
( void ) xTaskResumeAll();
}
}
#endif /* INCLUDE_vTaskSuspend */
}
}
else
{
pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
}
/* Obtaining the stack space takes some time, so the xGetFreeStackSpace
* parameter is provided to allow it to be skipped. */
if( xGetFreeStackSpace != pdFALSE )
{
#if ( portSTACK_GROWTH > 0 )
{
pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
}
#else
{
pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
}
#endif
}
else
{
pxTaskStatus->usStackHighWaterMark = 0;
}
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
List_t * pxList,
eTaskState eState )
{
configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
UBaseType_t uxTask = 0;
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
{
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
/* Populate an TaskStatus_t structure within the
* pxTaskStatusArray array for each task that is referenced from
* pxList. See the definition of TaskStatus_t in task.h for the
* meaning of each TaskStatus_t structure member. */
do
{
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
uxTask++;
} while( pxNextTCB != pxFirstTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return uxTask;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
{
uint32_t ulCount = 0U;
while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
{
pucStackByte -= portSTACK_GROWTH;
ulCount++;
}
ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
return ( configSTACK_DEPTH_TYPE ) ulCount;
}
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
* same except for their return type. Using configSTACK_DEPTH_TYPE allows the
* user to determine the return type. It gets around the problem of the value
* overflowing on 8-bit types without breaking backward compatibility for
* applications that expect an 8-bit return type. */
configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
{
TCB_t * pxTCB;
uint8_t * pucEndOfStack;
configSTACK_DEPTH_TYPE uxReturn;
/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
* the same except for their return type. Using configSTACK_DEPTH_TYPE
* allows the user to determine the return type. It gets around the
* problem of the value overflowing on 8-bit types without breaking
* backward compatibility for applications that expect an 8-bit return
* type. */
pxTCB = prvGetTCBFromHandle( xTask );
#if portSTACK_GROWTH < 0
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
}
#else
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
}
#endif
uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
return uxReturn;
}
#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
{
TCB_t * pxTCB;
uint8_t * pucEndOfStack;
UBaseType_t uxReturn;
pxTCB = prvGetTCBFromHandle( xTask );
#if portSTACK_GROWTH < 0
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
}
#else
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
}
#endif
uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
return uxReturn;
}
#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelete == 1 )
static void prvDeleteTCB( TCB_t * pxTCB )
{
/* This call is required specifically for the TriCore port. It must be
* above the vPortFree() calls. The call is also used by ports/demos that
* want to allocate and clean RAM statically. */
portCLEAN_UP_TCB( pxTCB );
/* Free up the memory allocated by the scheduler for the task. It is up
* to the task to free any memory allocated at the application level.
* See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
* for additional information. */
#if ( configUSE_NEWLIB_REENTRANT == 1 )
{
_reclaim_reent( &( pxTCB->xNewLib_reent ) );
}
#endif /* configUSE_NEWLIB_REENTRANT */
#if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
{
/* The task can only have been allocated dynamically - free both
* the stack and TCB. */
vPortFreeStack( pxTCB->pxStack );
vPortFree( pxTCB );
}
#elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
{
/* The task could have been allocated statically or dynamically, so
* check what was statically allocated before trying to free the
* memory. */
if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
{
/* Both the stack and TCB were allocated dynamically, so both
* must be freed. */
vPortFreeStack( pxTCB->pxStack );
vPortFree( pxTCB );
}
else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
{
/* Only the stack was statically allocated, so the TCB is the
* only memory that must be freed. */
vPortFree( pxTCB );
}
else
{
/* Neither the stack nor the TCB were allocated dynamically, so
* nothing needs to be freed. */
configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
}
#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/
static void prvResetNextTaskUnblockTime( void )
{
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
{
/* The new current delayed list is empty. Set xNextTaskUnblockTime to
* the maximum possible value so it is extremely unlikely that the
* if( xTickCount >= xNextTaskUnblockTime ) test will pass until
* there is an item in the delayed list. */
xNextTaskUnblockTime = portMAX_DELAY;
}
else
{
/* The new current delayed list is not empty, get the value of
* the item at the head of the delayed list. This is the time at
* which the task at the head of the delayed list should be removed
* from the Blocked state. */
xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
}
}
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
TaskHandle_t xTaskGetCurrentTaskHandle( void )
{
TaskHandle_t xReturn;
/* A critical section is not required as this is not called from
* an interrupt and the current TCB will always be the same for any
* individual execution thread. */
xReturn = pxCurrentTCB;
return xReturn;
}
#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
BaseType_t xTaskGetSchedulerState( void )
{
BaseType_t xReturn;
if( xSchedulerRunning == pdFALSE )
{
xReturn = taskSCHEDULER_NOT_STARTED;
}
else
{
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
{
xReturn = taskSCHEDULER_RUNNING;
}
else
{
xReturn = taskSCHEDULER_SUSPENDED;
}
}
return xReturn;
}
#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
{
TCB_t * const pxMutexHolderTCB = pxMutexHolder;
BaseType_t xReturn = pdFALSE;
/* If the mutex was given back by an interrupt while the queue was
* locked then the mutex holder might now be NULL. _RB_ Is this still
* needed as interrupts can no longer use mutexes? */
if( pxMutexHolder != NULL )
{
/* If the holder of the mutex has a priority below the priority of
* the task attempting to obtain the mutex then it will temporarily
* inherit the priority of the task attempting to obtain the mutex. */
if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
{
/* Adjust the mutex holder state to account for its new
* priority. Only reset the event list item value if the value is
* not being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the task being modified is in the ready state it will need
* to be moved into a new list. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
{
if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Inherit the priority before being moved into the new list. */
pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
prvAddTaskToReadyList( pxMutexHolderTCB );
}
else
{
/* Just inherit the priority. */
pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
}
traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
/* Inheritance occurred. */
xReturn = pdTRUE;
}
else
{
if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
{
/* The base priority of the mutex holder is lower than the
* priority of the task attempting to take the mutex, but the
* current priority of the mutex holder is not lower than the
* priority of the task attempting to take the mutex.
* Therefore the mutex holder must have already inherited a
* priority, but inheritance would have occurred if that had
* not been the case. */
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xReturn;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
{
TCB_t * const pxTCB = pxMutexHolder;
BaseType_t xReturn = pdFALSE;
if( pxMutexHolder != NULL )
{
/* A task can only have an inherited priority if it holds the mutex.
* If the mutex is held by a task then it cannot be given from an
* interrupt, and if a mutex is given by the holding task then it must
* be the running state task. */
configASSERT( pxTCB == pxCurrentTCB );
configASSERT( pxTCB->uxMutexesHeld );
( pxTCB->uxMutexesHeld )--;
/* Has the holder of the mutex inherited the priority of another
* task? */
if( pxTCB->uxPriority != pxTCB->uxBasePriority )
{
/* Only disinherit if no other mutexes are held. */
if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
{
/* A task can only have an inherited priority if it holds
* the mutex. If the mutex is held by a task then it cannot be
* given from an interrupt, and if a mutex is given by the
* holding task then it must be the running state task. Remove
* the holding task from the ready list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Disinherit the priority before adding the task into the
* new ready list. */
traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
pxTCB->uxPriority = pxTCB->uxBasePriority;
/* Reset the event list item value. It cannot be in use for
* any other purpose if this task is running, and it must be
* running to give back the mutex. */
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
prvAddTaskToReadyList( pxTCB );
/* Return true to indicate that a context switch is required.
* This is only actually required in the corner case whereby
* multiple mutexes were held and the mutexes were given back
* in an order different to that in which they were taken.
* If a context switch did not occur when the first mutex was
* returned, even if a task was waiting on it, then a context
* switch should occur when the last mutex is returned whether
* a task is waiting on it or not. */
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xReturn;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
UBaseType_t uxHighestPriorityWaitingTask )
{
TCB_t * const pxTCB = pxMutexHolder;
UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
if( pxMutexHolder != NULL )
{
/* If pxMutexHolder is not NULL then the holder must hold at least
* one mutex. */
configASSERT( pxTCB->uxMutexesHeld );
/* Determine the priority to which the priority of the task that
* holds the mutex should be set. This will be the greater of the
* holding task's base priority and the priority of the highest
* priority task that is waiting to obtain the mutex. */
if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
{
uxPriorityToUse = uxHighestPriorityWaitingTask;
}
else
{
uxPriorityToUse = pxTCB->uxBasePriority;
}
/* Does the priority need to change? */
if( pxTCB->uxPriority != uxPriorityToUse )
{
/* Only disinherit if no other mutexes are held. This is a
* simplification in the priority inheritance implementation. If
* the task that holds the mutex is also holding other mutexes then
* the other mutexes may have caused the priority inheritance. */
if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
{
/* If a task has timed out because it already holds the
* mutex it was trying to obtain then it cannot of inherited
* its own priority. */
configASSERT( pxTCB != pxCurrentTCB );
/* Disinherit the priority, remembering the previous
* priority to facilitate determining the subject task's
* state. */
traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
uxPriorityUsedOnEntry = pxTCB->uxPriority;
pxTCB->uxPriority = uxPriorityToUse;
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the running task is not the task that holds the mutex
* then the task that holds the mutex could be in either the
* Ready, Blocked or Suspended states. Only remove the task
* from its current state list if it is in the Ready state as
* the task's priority is going to change and there is one
* Ready list per priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
prvAddTaskToReadyList( pxTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
void vTaskEnterCritical( void )
{
portDISABLE_INTERRUPTS();
if( xSchedulerRunning != pdFALSE )
{
( pxCurrentTCB->uxCriticalNesting )++;
/* This is not the interrupt safe version of the enter critical
* function so assert() if it is being called from an interrupt
* context. Only API functions that end in "FromISR" can be used in an
* interrupt. Only assert if the critical nesting count is 1 to
* protect against recursive calls if the assert function also uses a
* critical section. */
if( pxCurrentTCB->uxCriticalNesting == 1 )
{
portASSERT_IF_IN_ISR();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* portCRITICAL_NESTING_IN_TCB */
/*-----------------------------------------------------------*/
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
void vTaskExitCritical( void )
{
if( xSchedulerRunning != pdFALSE )
{
if( pxCurrentTCB->uxCriticalNesting > 0U )
{
( pxCurrentTCB->uxCriticalNesting )--;
if( pxCurrentTCB->uxCriticalNesting == 0U )
{
portENABLE_INTERRUPTS();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* portCRITICAL_NESTING_IN_TCB */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
static char * prvWriteNameToBuffer( char * pcBuffer,
const char * pcTaskName )
{
size_t x;
/* Start by copying the entire string. */
strcpy( pcBuffer, pcTaskName );
/* Pad the end of the string with spaces to ensure columns line up when
* printed out. */
for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
{
pcBuffer[ x ] = ' ';
}
/* Terminate. */
pcBuffer[ x ] = ( char ) 0x00;
/* Return the new end of string. */
return &( pcBuffer[ x ] );
}
#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
void vTaskList( char * pcWriteBuffer )
{
TaskStatus_t * pxTaskStatusArray;
UBaseType_t uxArraySize, x;
char cStatus;
/*
* PLEASE NOTE:
*
* This function is provided for convenience only, and is used by many
* of the demo applications. Do not consider it to be part of the
* scheduler.
*
* vTaskList() calls uxTaskGetSystemState(), then formats part of the
* uxTaskGetSystemState() output into a human readable table that
* displays task: names, states, priority, stack usage and task number.
* Stack usage specified as the number of unused StackType_t words stack can hold
* on top of stack - not the number of bytes.
*
* vTaskList() has a dependency on the sprintf() C library function that
* might bloat the code size, use a lot of stack, and provide different
* results on different platforms. An alternative, tiny, third party,
* and limited functionality implementation of sprintf() is provided in
* many of the FreeRTOS/Demo sub-directories in a file called
* printf-stdarg.c (note printf-stdarg.c does not provide a full
* snprintf() implementation!).
*
* It is recommended that production systems call uxTaskGetSystemState()
* directly to get access to raw stats data, rather than indirectly
* through a call to vTaskList().
*/
/* Make sure the write buffer does not contain a string. */
*pcWriteBuffer = ( char ) 0x00;
/* Take a snapshot of the number of tasks in case it changes while this
* function is executing. */
uxArraySize = uxCurrentNumberOfTasks;
/* Allocate an array index for each task. NOTE! if
* configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
* equate to NULL. */
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
if( pxTaskStatusArray != NULL )
{
/* Generate the (binary) data. */
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
/* Create a human readable table from the binary data. */
for( x = 0; x < uxArraySize; x++ )
{
switch( pxTaskStatusArray[ x ].eCurrentState )
{
case eRunning:
cStatus = tskRUNNING_CHAR;
break;
case eReady:
cStatus = tskREADY_CHAR;
break;
case eBlocked:
cStatus = tskBLOCKED_CHAR;
break;
case eSuspended:
cStatus = tskSUSPENDED_CHAR;
break;
case eDeleted:
cStatus = tskDELETED_CHAR;
break;
case eInvalid: /* Fall through. */
default: /* Should not get here, but it is included
* to prevent static checking errors. */
cStatus = ( char ) 0x00;
break;
}
/* Write the task name to the string, padding with spaces so it
* can be printed in tabular form more easily. */
pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
/* Write the rest of the string. */
sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
}
/* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
* is 0 then vPortFree() will be #defined to nothing. */
vPortFree( pxTaskStatusArray );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
/*----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
void vTaskGetRunTimeStats( char * pcWriteBuffer )
{
TaskStatus_t * pxTaskStatusArray;
UBaseType_t uxArraySize, x;
configRUN_TIME_COUNTER_TYPE ulTotalTime, ulStatsAsPercentage;
#if ( configUSE_TRACE_FACILITY != 1 )
{
#error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
}
#endif
/*
* PLEASE NOTE:
*
* This function is provided for convenience only, and is used by many
* of the demo applications. Do not consider it to be part of the
* scheduler.
*
* vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
* of the uxTaskGetSystemState() output into a human readable table that
* displays the amount of time each task has spent in the Running state
* in both absolute and percentage terms.
*
* vTaskGetRunTimeStats() has a dependency on the sprintf() C library
* function that might bloat the code size, use a lot of stack, and
* provide different results on different platforms. An alternative,
* tiny, third party, and limited functionality implementation of
* sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
* a file called printf-stdarg.c (note printf-stdarg.c does not provide
* a full snprintf() implementation!).
*
* It is recommended that production systems call uxTaskGetSystemState()
* directly to get access to raw stats data, rather than indirectly
* through a call to vTaskGetRunTimeStats().
*/
/* Make sure the write buffer does not contain a string. */
*pcWriteBuffer = ( char ) 0x00;
/* Take a snapshot of the number of tasks in case it changes while this
* function is executing. */
uxArraySize = uxCurrentNumberOfTasks;
/* Allocate an array index for each task. NOTE! If
* configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
* equate to NULL. */
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
if( pxTaskStatusArray != NULL )
{
/* Generate the (binary) data. */
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
/* For percentage calculations. */
ulTotalTime /= 100UL;
/* Avoid divide by zero errors. */
if( ulTotalTime > 0UL )
{
/* Create a human readable table from the binary data. */
for( x = 0; x < uxArraySize; x++ )
{
/* What percentage of the total run time has the task used?
* This will always be rounded down to the nearest integer.
* ulTotalRunTime has already been divided by 100. */
ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
/* Write the task name to the string, padding with
* spaces so it can be printed in tabular form more
* easily. */
pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
if( ulStatsAsPercentage > 0UL )
{
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
{
sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
}
#else
{
/* sizeof( int ) == sizeof( long ) so a smaller
* printf() library can be used. */
sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
}
#endif
}
else
{
/* If the percentage is zero here then the task has
* consumed less than 1% of the total run time. */
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
{
sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
}
#else
{
/* sizeof( int ) == sizeof( long ) so a smaller
* printf() library can be used. */
sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
}
#endif
}
pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
* is 0 then vPortFree() will be #defined to nothing. */
vPortFree( pxTaskStatusArray );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
/*-----------------------------------------------------------*/
TickType_t uxTaskResetEventItemValue( void )
{
TickType_t uxReturn;
uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
/* Reset the event list item to its normal value - so it can be used with
* queues and semaphores. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
return uxReturn;
}
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
TaskHandle_t pvTaskIncrementMutexHeldCount( void )
{
/* If xSemaphoreCreateMutex() is called before any tasks have been created
* then pxCurrentTCB will be NULL. */
if( pxCurrentTCB != NULL )
{
( pxCurrentTCB->uxMutexesHeld )++;
}
return pxCurrentTCB;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
BaseType_t xClearCountOnExit,
TickType_t xTicksToWait )
{
uint32_t ulReturn;
configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
taskENTER_CRITICAL();
{
/* Only block if the notification count is not already non-zero. */
if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
{
/* Mark this task as waiting for a notification. */
pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
if( xTicksToWait > ( TickType_t ) 0 )
{
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
/* All ports are written to allow a yield in a critical
* section (some will yield immediately, others wait until the
* critical section exits) - but it is not something that
* application code should ever do. */
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
taskENTER_CRITICAL();
{
traceTASK_NOTIFY_TAKE( uxIndexToWait );
ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
if( ulReturn != 0UL )
{
if( xClearCountOnExit != pdFALSE )
{
pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
}
else
{
pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
}
taskEXIT_CRITICAL();
return ulReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
uint32_t ulBitsToClearOnEntry,
uint32_t ulBitsToClearOnExit,
uint32_t * pulNotificationValue,
TickType_t xTicksToWait )
{
BaseType_t xReturn;
configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
taskENTER_CRITICAL();
{
/* Only block if a notification is not already pending. */
if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
{
/* Clear bits in the task's notification value as bits may get
* set by the notifying task or interrupt. This can be used to
* clear the value to zero. */
pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
/* Mark this task as waiting for a notification. */
pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
if( xTicksToWait > ( TickType_t ) 0 )
{
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
/* All ports are written to allow a yield in a critical
* section (some will yield immediately, others wait until the
* critical section exits) - but it is not something that
* application code should ever do. */
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
taskENTER_CRITICAL();
{
traceTASK_NOTIFY_WAIT( uxIndexToWait );
if( pulNotificationValue != NULL )
{
/* Output the current notification value, which may or may not
* have changed. */
*pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
}
/* If ucNotifyValue is set then either the task never entered the
* blocked state (because a notification was already pending) or the
* task unblocked because of a notification. Otherwise the task
* unblocked because of a timeout. */
if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
{
/* A notification was not received. */
xReturn = pdFALSE;
}
else
{
/* A notification was already pending or a notification was
* received while the task was waiting. */
pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
xReturn = pdTRUE;
}
pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
}
taskEXIT_CRITICAL();
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
uint32_t ulValue,
eNotifyAction eAction,
uint32_t * pulPreviousNotificationValue )
{
TCB_t * pxTCB;
BaseType_t xReturn = pdPASS;
uint8_t ucOriginalNotifyState;
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
configASSERT( xTaskToNotify );
pxTCB = xTaskToNotify;
taskENTER_CRITICAL();
{
if( pulPreviousNotificationValue != NULL )
{
*pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
}
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
switch( eAction )
{
case eSetBits:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
break;
case eIncrement:
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
break;
case eSetValueWithOverwrite:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
break;
case eSetValueWithoutOverwrite:
if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
{
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
}
else
{
/* The value could not be written to the task. */
xReturn = pdFAIL;
}
break;
case eNoAction:
/* The task is being notified without its notify value being
* updated. */
break;
default:
/* Should not get here if all enums are handled.
* Artificially force an assert by testing a value the
* compiler can't assume is const. */
configASSERT( xTickCount == ( TickType_t ) 0 );
break;
}
traceTASK_NOTIFY( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked waiting for a notification then
* xNextTaskUnblockTime might be set to the blocked task's time
* out time. If the task is unblocked for a reason other than
* a timeout xNextTaskUnblockTime is normally left unchanged,
* because it will automatically get reset to a new value when
* the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter
* sleep mode at the earliest possible time - so reset
* xNextTaskUnblockTime here to ensure it is updated at the
* earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* The notified task has a priority above the currently
* executing task so a yield is required. */
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
uint32_t ulValue,
eNotifyAction eAction,
uint32_t * pulPreviousNotificationValue,
BaseType_t * pxHigherPriorityTaskWoken )
{
TCB_t * pxTCB;
uint8_t ucOriginalNotifyState;
BaseType_t xReturn = pdPASS;
UBaseType_t uxSavedInterruptStatus;
configASSERT( xTaskToNotify );
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
pxTCB = xTaskToNotify;
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
if( pulPreviousNotificationValue != NULL )
{
*pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
}
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
switch( eAction )
{
case eSetBits:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
break;
case eIncrement:
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
break;
case eSetValueWithOverwrite:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
break;
case eSetValueWithoutOverwrite:
if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
{
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
}
else
{
/* The value could not be written to the task. */
xReturn = pdFAIL;
}
break;
case eNoAction:
/* The task is being notified without its notify value being
* updated. */
break;
default:
/* Should not get here if all enums are handled.
* Artificially force an assert by testing a value the
* compiler can't assume is const. */
configASSERT( xTickCount == ( TickType_t ) 0 );
break;
}
traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed and ready lists cannot be accessed, so hold
* this task pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
}
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* The notified task has a priority above the currently
* executing task so a yield is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
/* Mark that a yield is pending in case the user is not
* using the "xHigherPriorityTaskWoken" parameter to an ISR
* safe FreeRTOS function. */
xYieldPending = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
BaseType_t * pxHigherPriorityTaskWoken )
{
TCB_t * pxTCB;
uint8_t ucOriginalNotifyState;
UBaseType_t uxSavedInterruptStatus;
configASSERT( xTaskToNotify );
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
pxTCB = xTaskToNotify;
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
/* 'Giving' is equivalent to incrementing a count in a counting
* semaphore. */
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed and ready lists cannot be accessed, so hold
* this task pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
}
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* The notified task has a priority above the currently
* executing task so a yield is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
/* Mark that a yield is pending in case the user is not
* using the "xHigherPriorityTaskWoken" parameter in an ISR
* safe FreeRTOS function. */
xYieldPending = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
UBaseType_t uxIndexToClear )
{
TCB_t * pxTCB;
BaseType_t xReturn;
configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* If null is passed in here then it is the calling task that is having
* its notification state cleared. */
pxTCB = prvGetTCBFromHandle( xTask );
taskENTER_CRITICAL();
{
if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
{
pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
}
}
taskEXIT_CRITICAL();
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
UBaseType_t uxIndexToClear,
uint32_t ulBitsToClear )
{
TCB_t * pxTCB;
uint32_t ulReturn;
/* If null is passed in here then it is the calling task that is having
* its notification state cleared. */
pxTCB = prvGetTCBFromHandle( xTask );
taskENTER_CRITICAL();
{
/* Return the notification as it was before the bits were cleared,
* then clear the bit mask. */
ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
}
taskEXIT_CRITICAL();
return ulReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
{
return xIdleTaskHandle->ulRunTimeCounter;
}
#endif
/*-----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
{
configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE();
/* For percentage calculations. */
ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
/* Avoid divide by zero errors. */
if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
{
ulReturn = xIdleTaskHandle->ulRunTimeCounter / ulTotalTime;
}
else
{
ulReturn = 0;
}
return ulReturn;
}
#endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
/*-----------------------------------------------------------*/
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
const BaseType_t xCanBlockIndefinitely )
{
TickType_t xTimeToWake;
const TickType_t xConstTickCount = xTickCount;
#if ( INCLUDE_xTaskAbortDelay == 1 )
{
/* About to enter a delayed list, so ensure the ucDelayAborted flag is
* reset to pdFALSE so it can be detected as having been set to pdTRUE
* when the task leaves the Blocked state. */
pxCurrentTCB->ucDelayAborted = pdFALSE;
}
#endif
/* Remove the task from the ready list before adding it to the blocked list
* as the same list item is used for both lists. */
if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* The current task must be in a ready list, so there is no need to
* check, and the port reset macro can be called directly. */
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
#if ( INCLUDE_vTaskSuspend == 1 )
{
if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
{
/* Add the task to the suspended task list instead of a delayed task
* list to ensure it is not woken by a timing event. It will block
* indefinitely. */
listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
}
else
{
/* Calculate the time at which the task should be woken if the event
* does not occur. This may overflow but this doesn't matter, the
* kernel will manage it correctly. */
xTimeToWake = xConstTickCount + xTicksToWait;
/* The list item will be inserted in wake time order. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
if( xTimeToWake < xConstTickCount )
{
/* Wake time has overflowed. Place this item in the overflow
* list. */
vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
}
else
{
/* The wake time has not overflowed, so the current block list
* is used. */
vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
/* If the task entering the blocked state was placed at the
* head of the list of blocked tasks then xNextTaskUnblockTime
* needs to be updated too. */
if( xTimeToWake < xNextTaskUnblockTime )
{
xNextTaskUnblockTime = xTimeToWake;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
}
#else /* INCLUDE_vTaskSuspend */
{
/* Calculate the time at which the task should be woken if the event
* does not occur. This may overflow but this doesn't matter, the kernel
* will manage it correctly. */
xTimeToWake = xConstTickCount + xTicksToWait;
/* The list item will be inserted in wake time order. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
if( xTimeToWake < xConstTickCount )
{
/* Wake time has overflowed. Place this item in the overflow list. */
vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
}
else
{
/* The wake time has not overflowed, so the current block list is used. */
vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
/* If the task entering the blocked state was placed at the head of the
* list of blocked tasks then xNextTaskUnblockTime needs to be updated
* too. */
if( xTimeToWake < xNextTaskUnblockTime )
{
xNextTaskUnblockTime = xTimeToWake;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
( void ) xCanBlockIndefinitely;
}
#endif /* INCLUDE_vTaskSuspend */
}
/* Code below here allows additional code to be inserted into this source file,
* especially where access to file scope functions and data is needed (for example
* when performing module tests). */
#ifdef FREERTOS_MODULE_TEST
#include "tasks_test_access_functions.h"
#endif
#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
#include "freertos_tasks_c_additions.h"
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
static void freertos_tasks_c_additions_init( void )
{
FREERTOS_TASKS_C_ADDITIONS_INIT();
}
#endif
#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */