blob: 1abc241eae9ee6f4d2377e58f6933a2f11b4e136 [file] [log] [blame]
/*
* -------------------------------------------
* MSP432 DriverLib - v01_04_00_18
* -------------------------------------------
*
* --COPYRIGHT--,BSD,BSD
* Copyright (c) 2015, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* --/COPYRIGHT--*/
#include <aes256.h>
#include <interrupt.h>
#include <debug.h>
bool AES256_setCipherKey(uint32_t moduleInstance, const uint8_t * cipherKey,
uint_fast16_t keyLength)
{
uint8_t i;
uint16_t sCipherKey;
AES256_CMSIS(moduleInstance)->rCTL0.r |= 0;
switch (keyLength)
{
case AES256_KEYLENGTH_128BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__128BIT;
break;
case AES256_KEYLENGTH_192BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__192BIT;
break;
case AES256_KEYLENGTH_256BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__256BIT;
break;
default:
return false;
}
keyLength = keyLength / 8;
for (i = 0; i < keyLength; i = i + 2)
{
sCipherKey = (uint16_t) (cipherKey[i]);
sCipherKey = sCipherKey | ((uint16_t) (cipherKey[i + 1]) << 8);
AES256_CMSIS(moduleInstance)->rKEY.r = sCipherKey;
}
// Wait until key is written
while (!BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESKEYWR_OFS))
;
return true;
}
void AES256_encryptData(uint32_t moduleInstance, const uint8_t * data,
uint8_t * encryptedData)
{
uint8_t i;
uint16_t tempData = 0;
uint16_t tempVariable = 0;
// Set module to encrypt mode
AES256_CMSIS(moduleInstance)->rCTL0.r &= ~AESOP_M;
// Write data to encrypt to module
for (i = 0; i < 16; i = i + 2)
{
tempVariable = (uint16_t) (data[i]);
tempVariable = tempVariable | ((uint16_t) (data[i + 1]) << 8);
AES256_CMSIS(moduleInstance)->rDIN.r = tempVariable;
}
// Key that is already written shall be used
// Encryption is initialized by setting AESKEYWR to 1
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESKEYWR_OFS) = 1;
// Wait unit finished ~167 MCLK
while (BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESBUSY_OFS))
;
// Write encrypted data back to variable
for (i = 0; i < 16; i = i + 2)
{
tempData = AES256_CMSIS(moduleInstance)->rDOUT.r;
*(encryptedData + i) = (uint8_t) tempData;
*(encryptedData + i + 1) = (uint8_t) (tempData >> 8);
}
}
void AES256_decryptData(uint32_t moduleInstance, const uint8_t * data,
uint8_t * decryptedData)
{
uint8_t i;
uint16_t tempData = 0;
uint16_t tempVariable = 0;
// Set module to decrypt mode
AES256_CMSIS(moduleInstance)->rCTL0.r |= (AESOP_3);
// Write data to decrypt to module
for (i = 0; i < 16; i = i + 2)
{
tempVariable = (uint16_t) (data[i + 1] << 8);
tempVariable = tempVariable | ((uint16_t) (data[i]));
AES256_CMSIS(moduleInstance)->rDIN.r = tempVariable;
}
// Key that is already written shall be used
// Now decryption starts
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESKEYWR_OFS) = 1;
// Wait unit finished ~167 MCLK
while (BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESBUSY_OFS))
;
// Write encrypted data back to variable
for (i = 0; i < 16; i = i + 2)
{
tempData = AES256_CMSIS(moduleInstance)->rDOUT.r;
*(decryptedData + i) = (uint8_t) tempData;
*(decryptedData + i + 1) = (uint8_t) (tempData >> 8);
}
}
bool AES256_setDecipherKey(uint32_t moduleInstance, const uint8_t * cipherKey,
uint_fast16_t keyLength)
{
uint8_t i;
uint16_t tempVariable = 0;
// Set module to decrypt mode
AES256_CMSIS(moduleInstance)->rCTL0.r =
(AES256_CMSIS(moduleInstance)->rCTL0.r & ~AESOP_M) | AESOP1;
switch (keyLength)
{
case AES256_KEYLENGTH_128BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__128BIT;
break;
case AES256_KEYLENGTH_192BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__192BIT;
break;
case AES256_KEYLENGTH_256BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__256BIT;
break;
default:
return false;
}
keyLength = keyLength / 8;
// Write cipher key to key register
for (i = 0; i < keyLength; i = i + 2)
{
tempVariable = (uint16_t) (cipherKey[i]);
tempVariable = tempVariable | ((uint16_t) (cipherKey[i + 1]) << 8);
AES256_CMSIS(moduleInstance)->rKEY.r = tempVariable;
}
// Wait until key is processed ~52 MCLK
while (BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESBUSY_OFS))
;
return true;
}
void AES256_clearInterruptFlag(uint32_t moduleInstance)
{
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rCTL0.r,AESRDYIFG_OFS) = 0;
}
uint32_t AES256_getInterruptFlagStatus(uint32_t moduleInstance)
{
return BITBAND_PERI(AES256_CMSIS(moduleInstance)->rCTL0.r, AESRDYIFG_OFS);
}
void AES256_enableInterrupt(uint32_t moduleInstance)
{
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rCTL0.r,AESRDYIE_OFS) = 1;
}
void AES256_disableInterrupt(uint32_t moduleInstance)
{
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rCTL0.r,AESRDYIE_OFS) = 0;
}
void AES256_reset(uint32_t moduleInstance)
{
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rCTL0.r,AESSWRST_OFS) = 1;
}
void AES256_startEncryptData(uint32_t moduleInstance, const uint8_t * data)
{
uint8_t i;
uint16_t tempVariable = 0;
// Set module to encrypt mode
AES256_CMSIS(moduleInstance)->rCTL0.r &= ~AESOP_M;
// Write data to encrypt to module
for (i = 0; i < 16; i = i + 2)
{
tempVariable = (uint16_t) (data[i]);
tempVariable = tempVariable | ((uint16_t) (data[i + 1]) << 8);
AES256_CMSIS(moduleInstance)->rDIN.r = tempVariable;
}
// Key that is already written shall be used
// Encryption is initialized by setting AESKEYWR to 1
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESKEYWR_OFS) = 1;
}
void AES256_startDecryptData(uint32_t moduleInstance, const uint8_t * data)
{
uint8_t i;
uint16_t tempVariable = 0;
// Set module to decrypt mode
AES256_CMSIS(moduleInstance)->rCTL0.r |= (AESOP_3);
// Write data to decrypt to module
for (i = 0; i < 16; i = i + 2)
{
tempVariable = (uint16_t) (data[i + 1] << 8);
tempVariable = tempVariable | ((uint16_t) (data[i]));
AES256_CMSIS(moduleInstance)->rDIN.r = tempVariable;
}
// Key that is already written shall be used
// Now decryption starts
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESKEYWR_OFS) = 1;
}
bool AES256_startSetDecipherKey(uint32_t moduleInstance,
const uint8_t * cipherKey, uint_fast16_t keyLength)
{
uint8_t i;
uint16_t tempVariable = 0;
AES256_CMSIS(moduleInstance)->rCTL0.r =
(AES256_CMSIS(moduleInstance)->rCTL0.r & ~AESOP_M) | AESOP1;
switch (keyLength)
{
case AES256_KEYLENGTH_128BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__128BIT;
break;
case AES256_KEYLENGTH_192BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__192BIT;
break;
case AES256_KEYLENGTH_256BIT:
AES256_CMSIS(moduleInstance)->rCTL0.r |= AESKL__256BIT;
break;
default:
return false;
}
keyLength = keyLength / 8;
// Write cipher key to key register
for (i = 0; i < keyLength; i = i + 2)
{
tempVariable = (uint16_t) (cipherKey[i]);
tempVariable = tempVariable | ((uint16_t) (cipherKey[i + 1]) << 8);
AES256_CMSIS(moduleInstance)->rKEY.r = tempVariable;
}
return true;
}
bool AES256_getDataOut(uint32_t moduleInstance, uint8_t *outputData)
{
uint8_t i;
uint16_t tempData = 0;
// If module is busy, exit and return failure
if (BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESBUSY_OFS))
return false;
// Write encrypted data back to variable
for (i = 0; i < 16; i = i + 2)
{
tempData = AES256_CMSIS(moduleInstance)->rDOUT.r;
*(outputData + i) = (uint8_t) tempData;
*(outputData + i + 1) = (uint8_t) (tempData >> 8);
}
return true;
}
bool AES256_isBusy(uint32_t moduleInstance)
{
return BITBAND_PERI(AES256_CMSIS(moduleInstance)->rSTAT.r, AESBUSY_OFS);
}
void AES256_clearErrorFlag(uint32_t moduleInstance)
{
BITBAND_PERI(AES256_CMSIS(moduleInstance)->rCTL0.r, AESERRFG_OFS) = 0;
}
uint32_t AES256_getErrorFlagStatus(uint32_t moduleInstance)
{
return BITBAND_PERI(AES256_CMSIS(moduleInstance)->rCTL0.r, AESERRFG_OFS);
}
void AES256_registerInterrupt(uint32_t moduleInstance, void (*intHandler)(void))
{
Interrupt_registerInterrupt(INT_AES256, intHandler);
Interrupt_enableInterrupt(INT_AES256);
}
void AES256_unregisterInterrupt(uint32_t moduleInstance)
{
Interrupt_disableInterrupt(INT_AES256);
Interrupt_unregisterInterrupt(INT_AES256);
}
uint32_t AES256_getInterruptStatus(uint32_t moduleInstance)
{
return AES256_getInterruptFlagStatus(moduleInstance);
}