blob: a90fb19b5258e7008e27f01b128adcd5ca033465 [file] [log] [blame]
/* sha256.c
*
* Copyright (C) 2006-2014 wolfSSL Inc.
*
* This file is part of CyaSSL.
*
* CyaSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* CyaSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/* code submitted by raphael.huck@efixo.com */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <cyassl/ctaocrypt/settings.h>
#if !defined(NO_SHA256)
#ifdef CYASSL_PIC32MZ_HASH
#define InitSha256 InitSha256_sw
#define Sha256Update Sha256Update_sw
#define Sha256Final Sha256Final_sw
#endif
#ifdef HAVE_FIPS
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#endif
#include <cyassl/ctaocrypt/sha256.h>
#include <cyassl/ctaocrypt/logging.h>
#include <cyassl/ctaocrypt/error-crypt.h>
#ifdef NO_INLINE
#include <cyassl/ctaocrypt/misc.h>
#else
#include <ctaocrypt/src/misc.c>
#endif
#ifdef FREESCALE_MMCAU
#include "cau_api.h"
#endif
#ifndef min
static INLINE word32 min(word32 a, word32 b)
{
return a > b ? b : a;
}
#endif /* min */
int InitSha256(Sha256* sha256)
{
#ifdef FREESCALE_MMCAU
cau_sha256_initialize_output(sha256->digest);
#else
sha256->digest[0] = 0x6A09E667L;
sha256->digest[1] = 0xBB67AE85L;
sha256->digest[2] = 0x3C6EF372L;
sha256->digest[3] = 0xA54FF53AL;
sha256->digest[4] = 0x510E527FL;
sha256->digest[5] = 0x9B05688CL;
sha256->digest[6] = 0x1F83D9ABL;
sha256->digest[7] = 0x5BE0CD19L;
#endif
sha256->buffLen = 0;
sha256->loLen = 0;
sha256->hiLen = 0;
return 0;
}
#ifdef FREESCALE_MMCAU
#define XTRANSFORM(S,B) Transform((S), (B))
static int Transform(Sha256* sha256, byte* buf)
{
cau_sha256_hash_n(buf, 1, sha256->digest);
return 0;
}
#else
#define XTRANSFORM(S,B) Transform((S))
static const word32 K[64] = {
0x428A2F98L, 0x71374491L, 0xB5C0FBCFL, 0xE9B5DBA5L, 0x3956C25BL,
0x59F111F1L, 0x923F82A4L, 0xAB1C5ED5L, 0xD807AA98L, 0x12835B01L,
0x243185BEL, 0x550C7DC3L, 0x72BE5D74L, 0x80DEB1FEL, 0x9BDC06A7L,
0xC19BF174L, 0xE49B69C1L, 0xEFBE4786L, 0x0FC19DC6L, 0x240CA1CCL,
0x2DE92C6FL, 0x4A7484AAL, 0x5CB0A9DCL, 0x76F988DAL, 0x983E5152L,
0xA831C66DL, 0xB00327C8L, 0xBF597FC7L, 0xC6E00BF3L, 0xD5A79147L,
0x06CA6351L, 0x14292967L, 0x27B70A85L, 0x2E1B2138L, 0x4D2C6DFCL,
0x53380D13L, 0x650A7354L, 0x766A0ABBL, 0x81C2C92EL, 0x92722C85L,
0xA2BFE8A1L, 0xA81A664BL, 0xC24B8B70L, 0xC76C51A3L, 0xD192E819L,
0xD6990624L, 0xF40E3585L, 0x106AA070L, 0x19A4C116L, 0x1E376C08L,
0x2748774CL, 0x34B0BCB5L, 0x391C0CB3L, 0x4ED8AA4AL, 0x5B9CCA4FL,
0x682E6FF3L, 0x748F82EEL, 0x78A5636FL, 0x84C87814L, 0x8CC70208L,
0x90BEFFFAL, 0xA4506CEBL, 0xBEF9A3F7L, 0xC67178F2L
};
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) rotrFixed(x, n)
#define R(x, n) (((x)&0xFFFFFFFFU)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#define RND(a,b,c,d,e,f,g,h,i) \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
static int Transform(Sha256* sha256)
{
word32 S[8], t0, t1;
int i;
#ifdef CYASSL_SMALL_STACK
word32* W;
W = (word32*) XMALLOC(sizeof(word32) * 64, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (W == NULL)
return MEMORY_E;
#else
word32 W[64];
#endif
/* Copy context->state[] to working vars */
for (i = 0; i < 8; i++)
S[i] = sha256->digest[i];
for (i = 0; i < 16; i++)
W[i] = sha256->buffer[i];
for (i = 16; i < 64; i++)
W[i] = Gamma1(W[i-2]) + W[i-7] + Gamma0(W[i-15]) + W[i-16];
for (i = 0; i < 64; i += 8) {
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7);
}
/* Add the working vars back into digest state[] */
for (i = 0; i < 8; i++) {
sha256->digest[i] += S[i];
}
#ifdef CYASSL_SMALL_STACK
XFREE(W, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return 0;
}
#endif /* FREESCALE_MMCAU */
static INLINE void AddLength(Sha256* sha256, word32 len)
{
word32 tmp = sha256->loLen;
if ( (sha256->loLen += len) < tmp)
sha256->hiLen++; /* carry low to high */
}
int Sha256Update(Sha256* sha256, const byte* data, word32 len)
{
/* do block size increments */
byte* local = (byte*)sha256->buffer;
while (len) {
word32 add = min(len, SHA256_BLOCK_SIZE - sha256->buffLen);
XMEMCPY(&local[sha256->buffLen], data, add);
sha256->buffLen += add;
data += add;
len -= add;
if (sha256->buffLen == SHA256_BLOCK_SIZE) {
int ret;
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
ByteReverseWords(sha256->buffer, sha256->buffer,
SHA256_BLOCK_SIZE);
#endif
ret = XTRANSFORM(sha256, local);
if (ret != 0)
return ret;
AddLength(sha256, SHA256_BLOCK_SIZE);
sha256->buffLen = 0;
}
}
return 0;
}
int Sha256Final(Sha256* sha256, byte* hash)
{
byte* local = (byte*)sha256->buffer;
int ret;
AddLength(sha256, sha256->buffLen); /* before adding pads */
local[sha256->buffLen++] = 0x80; /* add 1 */
/* pad with zeros */
if (sha256->buffLen > SHA256_PAD_SIZE) {
XMEMSET(&local[sha256->buffLen], 0, SHA256_BLOCK_SIZE - sha256->buffLen);
sha256->buffLen += SHA256_BLOCK_SIZE - sha256->buffLen;
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
ByteReverseWords(sha256->buffer, sha256->buffer, SHA256_BLOCK_SIZE);
#endif
ret = XTRANSFORM(sha256, local);
if (ret != 0)
return ret;
sha256->buffLen = 0;
}
XMEMSET(&local[sha256->buffLen], 0, SHA256_PAD_SIZE - sha256->buffLen);
/* put lengths in bits */
sha256->hiLen = (sha256->loLen >> (8*sizeof(sha256->loLen) - 3)) +
(sha256->hiLen << 3);
sha256->loLen = sha256->loLen << 3;
/* store lengths */
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
ByteReverseWords(sha256->buffer, sha256->buffer, SHA256_BLOCK_SIZE);
#endif
/* ! length ordering dependent on digest endian type ! */
XMEMCPY(&local[SHA256_PAD_SIZE], &sha256->hiLen, sizeof(word32));
XMEMCPY(&local[SHA256_PAD_SIZE + sizeof(word32)], &sha256->loLen,
sizeof(word32));
#ifdef FREESCALE_MMCAU
/* Kinetis requires only these bytes reversed */
ByteReverseWords(&sha256->buffer[SHA256_PAD_SIZE/sizeof(word32)],
&sha256->buffer[SHA256_PAD_SIZE/sizeof(word32)],
2 * sizeof(word32));
#endif
ret = XTRANSFORM(sha256, local);
if (ret != 0)
return ret;
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(sha256->digest, sha256->digest, SHA256_DIGEST_SIZE);
#endif
XMEMCPY(hash, sha256->digest, SHA256_DIGEST_SIZE);
return InitSha256(sha256); /* reset state */
}
int Sha256Hash(const byte* data, word32 len, byte* hash)
{
int ret = 0;
#ifdef CYASSL_SMALL_STACK
Sha256* sha256;
#else
Sha256 sha256[1];
#endif
#ifdef CYASSL_SMALL_STACK
sha256 = (Sha256*)XMALLOC(sizeof(Sha256), NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (sha256 == NULL)
return MEMORY_E;
#endif
if ((ret = InitSha256(sha256)) != 0) {
CYASSL_MSG("InitSha256 failed");
}
else if ((ret = Sha256Update(sha256, data, len)) != 0) {
CYASSL_MSG("Sha256Update failed");
}
else if ((ret = Sha256Final(sha256, hash)) != 0) {
CYASSL_MSG("Sha256Final failed");
}
#ifdef CYASSL_SMALL_STACK
XFREE(sha256, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#endif /* NO_SHA256 */