blob: 82175b35077305879b10f149e00a721a86bf0f07 [file] [log] [blame]
/*******************************************************************************
* Trace Recorder Library for Tracealyzer v4.1.4
* Percepio AB, www.percepio.com
*
* trcSnapshotConfig.h
*
* Configuration parameters for trace recorder library in snapshot mode.
* Read more at http://percepio.com/2016/10/05/rtos-tracing/
*
* Terms of Use
* This file is part of the trace recorder library (RECORDER), which is the
* intellectual property of Percepio AB (PERCEPIO) and provided under a
* license as follows.
* The RECORDER may be used free of charge for the purpose of recording data
* intended for analysis in PERCEPIO products. It may not be used or modified
* for other purposes without explicit permission from PERCEPIO.
* You may distribute the RECORDER in its original source code form, assuming
* this text (terms of use, disclaimer, copyright notice) is unchanged. You are
* allowed to distribute the RECORDER with minor modifications intended for
* configuration or porting of the RECORDER, e.g., to allow using it on a
* specific processor, processor family or with a specific communication
* interface. Any such modifications should be documented directly below
* this comment block.
*
* Disclaimer
* The RECORDER is being delivered to you AS IS and PERCEPIO makes no warranty
* as to its use or performance. PERCEPIO does not and cannot warrant the
* performance or results you may obtain by using the RECORDER or documentation.
* PERCEPIO make no warranties, express or implied, as to noninfringement of
* third party rights, merchantability, or fitness for any particular purpose.
* In no event will PERCEPIO, its technology partners, or distributors be liable
* to you for any consequential, incidental or special damages, including any
* lost profits or lost savings, even if a representative of PERCEPIO has been
* advised of the possibility of such damages, or for any claim by any third
* party. Some jurisdictions do not allow the exclusion or limitation of
* incidental, consequential or special damages, or the exclusion of implied
* warranties or limitations on how long an implied warranty may last, so the
* above limitations may not apply to you.
*
* Tabs are used for indent in this file (1 tab = 4 spaces)
*
* Copyright Percepio AB, 2018.
* www.percepio.com
******************************************************************************/
#ifndef TRC_SNAPSHOT_CONFIG_H
#define TRC_SNAPSHOT_CONFIG_H
#define TRC_SNAPSHOT_MODE_RING_BUFFER (0x01)
#define TRC_SNAPSHOT_MODE_STOP_WHEN_FULL (0x02)
/******************************************************************************
* TRC_CFG_SNAPSHOT_MODE
*
* Macro which should be defined as one of:
* - TRC_SNAPSHOT_MODE_RING_BUFFER
* - TRC_SNAPSHOT_MODE_STOP_WHEN_FULL
* Default is TRC_SNAPSHOT_MODE_RING_BUFFER.
*
* With TRC_CFG_SNAPSHOT_MODE set to TRC_SNAPSHOT_MODE_RING_BUFFER, the
* events are stored in a ring buffer, i.e., where the oldest events are
* overwritten when the buffer becomes full. This allows you to get the last
* events leading up to an interesting state, e.g., an error, without having
* to store the whole run since startup.
*
* When TRC_CFG_SNAPSHOT_MODE is TRC_SNAPSHOT_MODE_STOP_WHEN_FULL, the
* recording is stopped when the buffer becomes full. This is useful for
* recording events following a specific state, e.g., the startup sequence.
*****************************************************************************/
#define TRC_CFG_SNAPSHOT_MODE TRC_SNAPSHOT_MODE_RING_BUFFER
/*******************************************************************************
* TRC_CFG_EVENT_BUFFER_SIZE
*
* Macro which should be defined as an integer value.
*
* This defines the capacity of the event buffer, i.e., the number of records
* it may store. Most events use one record (4 byte), although some events
* require multiple 4-byte records. You should adjust this to the amount of RAM
* available in the target system.
*
* Default value is 1000, which means that 4000 bytes is allocated for the
* event buffer.
******************************************************************************/
#define TRC_CFG_EVENT_BUFFER_SIZE 50000
/*******************************************************************************
* TRC_CFG_NTASK, TRC_CFG_NISR, TRC_CFG_NQUEUE, TRC_CFG_NSEMAPHORE...
*
* A group of macros which should be defined as integer values, zero or larger.
*
* These define the capacity of the Object Property Table, i.e., the maximum
* number of objects active at any given point, within each object class (e.g.,
* task, queue, semaphore, ...).
*
* If tasks or other objects are deleted in your system, this
* setting does not limit the total amount of objects created, only the number
* of objects that have been successfully created but not yet deleted.
*
* Using too small values will cause vTraceError to be called, which stores an
* error message in the trace that is shown when opening the trace file. The
* error message can also be retrieved using xTraceGetLastError.
*
* It can be wise to start with large values for these constants,
* unless you are very confident on these numbers. Then do a recording and
* check the actual usage by selecting View menu -> Trace Details ->
* Resource Usage -> Object Table.
******************************************************************************/
#define TRC_CFG_NTASK 15
#define TRC_CFG_NISR 10
#define TRC_CFG_NQUEUE 10
#define TRC_CFG_NSEMAPHORE 20
#define TRC_CFG_NMUTEX 20
#define TRC_CFG_NTIMER 20
#define TRC_CFG_NEVENTGROUP 20
#define TRC_CFG_NSTREAMBUFFER 10
#define TRC_CFG_NMESSAGEBUFFER 10
/******************************************************************************
* TRC_CFG_INCLUDE_FLOAT_SUPPORT
*
* Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the support for logging floating point values in
* vTracePrintF is stripped out, in case floating point values are not used or
* supported by the platform used.
*
* Floating point values are only used in vTracePrintF and its subroutines, to
* allow for storing float (%f) or double (%lf) arguments.
*
* vTracePrintF can be used with integer and string arguments in either case.
*
* Default value is 0.
*****************************************************************************/
#define TRC_CFG_INCLUDE_FLOAT_SUPPORT 0
/*******************************************************************************
* TRC_CFG_SYMBOL_TABLE_SIZE
*
* Macro which should be defined as an integer value.
*
* This defines the capacity of the symbol table, in bytes. This symbol table
* stores User Events labels and names of deleted tasks, queues, or other kernel
* objects. If you don't use User Events or delete any kernel
* objects you set this to a very low value. The minimum recommended value is 4.
* A size of zero (0) is not allowed since a zero-sized array may result in a
* 32-bit pointer, i.e., using 4 bytes rather than 0.
*
* Default value is 800.
******************************************************************************/
#define TRC_CFG_SYMBOL_TABLE_SIZE 8000
#if (TRC_CFG_SYMBOL_TABLE_SIZE == 0)
#error "TRC_CFG_SYMBOL_TABLE_SIZE may not be zero!"
#endif
/******************************************************************************
* TRC_CFG_NAME_LEN_TASK, TRC_CFG_NAME_LEN_QUEUE, ...
*
* Macros that specify the maximum lengths (number of characters) for names of
* kernel objects, such as tasks and queues. If longer names are used, they will
* be truncated when stored in the recorder.
*****************************************************************************/
#define TRC_CFG_NAME_LEN_TASK 15
#define TRC_CFG_NAME_LEN_ISR 15
#define TRC_CFG_NAME_LEN_QUEUE 15
#define TRC_CFG_NAME_LEN_SEMAPHORE 15
#define TRC_CFG_NAME_LEN_MUTEX 15
#define TRC_CFG_NAME_LEN_TIMER 15
#define TRC_CFG_NAME_LEN_EVENTGROUP 15
#define TRC_CFG_NAME_LEN_STREAMBUFFER 15
#define TRC_CFG_NAME_LEN_MESSAGEBUFFER 15
/******************************************************************************
*** ADVANCED SETTINGS ********************************************************
******************************************************************************
* The remaining settings are not necessary to modify but allows for optimizing
* the recorder setup for your specific needs, e.g., to exclude events that you
* are not interested in, in order to get longer traces.
*****************************************************************************/
/******************************************************************************
* TRC_CFG_HEAP_SIZE_BELOW_16M
*
* An integer constant that can be used to reduce the buffer usage of memory
* allocation events (malloc/free). This value should be 1 if the heap size is
* below 16 MB (2^24 byte), and you can live with reported addresses showing the
* lower 24 bits only. If 0, you get the full 32-bit addresses.
*
* Default value is 0.
******************************************************************************/
#define TRC_CFG_HEAP_SIZE_BELOW_16M 0
/******************************************************************************
* TRC_CFG_USE_IMPLICIT_IFE_RULES
*
* Macro which should be defined as either zero (0) or one (1).
* Default is 1.
*
* Tracealyzer groups the events into "instances" based on Instance Finish
* Events (IFEs), produced either by default rules or calls to the recorder
* functions vTraceInstanceFinishedNow and vTraceInstanceFinishedNext.
*
* If TRC_CFG_USE_IMPLICIT_IFE_RULES is one (1), the default IFE rules is
* used, resulting in a "typical" grouping of events into instances.
* If these rules don't give appropriate instances in your case, you can
* override the default rules using vTraceInstanceFinishedNow/Next for one
* or several tasks. The default IFE rules are then disabled for those tasks.
*
* If TRC_CFG_USE_IMPLICIT_IFE_RULES is zero (0), the implicit IFE rules are
* disabled globally. You must then call vTraceInstanceFinishedNow or
* vTraceInstanceFinishedNext to manually group the events into instances,
* otherwise the tasks will appear a single long instance.
*
* The default IFE rules count the following events as "instance finished":
* - Task delay, delay until
* - Task suspend
* - Blocking on "input" operations, i.e., when the task is waiting for the
* next a message/signal/event. But only if this event is blocking.
*
* For details, see trcSnapshotKernelPort.h and look for references to the
* macro trcKERNEL_HOOKS_SET_TASK_INSTANCE_FINISHED.
*****************************************************************************/
#define TRC_CFG_USE_IMPLICIT_IFE_RULES 1
/******************************************************************************
* TRC_CFG_USE_16BIT_OBJECT_HANDLES
*
* Macro which should be defined as either zero (0) or one (1).
*
* If set to 0 (zero), the recorder uses 8-bit handles to identify kernel
* objects such as tasks and queues. This limits the supported number of
* concurrently active objects to 255 of each type (tasks, queues, mutexes,
* etc.) Note: 255, not 256, since handle 0 is reserved.
*
* If set to 1 (one), the recorder uses 16-bit handles to identify kernel
* objects such as tasks and queues. This limits the supported number of
* concurrent objects to 65535 of each type (object class). However, since the
* object property table is limited to 64 KB, the practical limit is about
* 3000 objects in total.
*
* Default is 0 (8-bit handles)
*
* NOTE: An object with handle above 255 will use an extra 4-byte record in
* the event buffer whenever the object is referenced. Moreover, some internal
* tables in the recorder gets slightly larger when using 16-bit handles.
*****************************************************************************/
#define TRC_CFG_USE_16BIT_OBJECT_HANDLES 0
/******************************************************************************
* TRC_CFG_USE_TRACE_ASSERT
*
* Macro which should be defined as either zero (0) or one (1).
* Default is 1.
*
* If this is one (1), the TRACE_ASSERT macro (used at various locations in the
* trace recorder) will verify that a relevant condition is true.
* If the condition is false, prvTraceError() will be called, which stops the
* recording and stores an error message that is displayed when opening the
* trace in Tracealyzer.
*
* This is used on several places in the recorder code for sanity checks on
* parameters. Can be switched off to reduce the footprint of the tracing, but
* we recommend to have it enabled initially.
*****************************************************************************/
#define TRC_CFG_USE_TRACE_ASSERT 1
/*******************************************************************************
* TRC_CFG_USE_SEPARATE_USER_EVENT_BUFFER
*
* Macro which should be defined as an integer value.
*
* Set TRC_CFG_USE_SEPARATE_USER_EVENT_BUFFER to 1 to enable the
* separate user event buffer (UB).
* In this mode, user events are stored separately from other events,
* e.g., RTOS events. Thereby you can get a much longer history of
* user events as they don't need to share the buffer space with more
* frequent events.
*
* The UB is typically used with the snapshot ring-buffer mode, so the
* recording can continue when the main buffer gets full. And since the
* main buffer then overwrites the earliest events, Tracealyzer displays
* "Unknown Actor" instead of task scheduling for periods with UB data only.
*
* In UB mode, user events are structured as UB channels, which contains
* a channel name and a default format string. Register a UB channel using
* xTraceRegisterUBChannel.
*
* Events and data arguments are written using vTraceUBEvent and
* vTraceUBData. They are designed to provide efficient logging of
* repeating events, using the same format string within each channel.
*
* Examples:
*
* traceString chn1 = xTraceRegisterString("Channel 1");
* traceString fmt1 = xTraceRegisterString("Event!");
* traceUBChannel UBCh1 = xTraceRegisterUBChannel(chn1, fmt1);
*
* traceString chn2 = xTraceRegisterString("Channel 2");
* traceString fmt2 = xTraceRegisterString("X: %d, Y: %d");
* traceUBChannel UBCh2 = xTraceRegisterUBChannel(chn2, fmt2);
*
* // Result in "[Channel 1] Event!"
* vTraceUBEvent(UBCh1);
*
* // Result in "[Channel 2] X: 23, Y: 19"
* vTraceUBData(UBCh2, 23, 19);
*
* You can also use the other user event functions, like vTracePrintF.
* as they are then rerouted to the UB instead of the main event buffer.
* vTracePrintF then looks up the correct UB channel based on the
* provided channel name and format string, or creates a new UB channel
* if no match is found. The format string should therefore not contain
* "random" messages but mainly format specifiers. Random strings should
* be stored using %s and with the string as an argument.
*
* // Creates a new UB channel ("Channel 2", "%Z: %d")
* vTracePrintF(chn2, "%Z: %d", value1);
*
* // Finds the existing UB channel
* vTracePrintF(chn2, "%Z: %d", value2);
******************************************************************************/
#define TRC_CFG_USE_SEPARATE_USER_EVENT_BUFFER 0
/*******************************************************************************
* TRC_CFG_SEPARATE_USER_EVENT_BUFFER_SIZE
*
* Macro which should be defined as an integer value.
*
* This defines the capacity of the user event buffer (UB), in number of slots.
* A single user event can use multiple slots, depending on the arguments.
*
* Only applicable if TRC_CFG_USE_SEPARATE_USER_EVENT_BUFFER is 1.
******************************************************************************/
#define TRC_CFG_SEPARATE_USER_EVENT_BUFFER_SIZE 200
/*******************************************************************************
* TRC_CFG_UB_CHANNELS
*
* Macro which should be defined as an integer value.
*
* This defines the number of User Event Buffer Channels (UB channels).
* These are used to structure the events when using the separate user
* event buffer, and contains both a User Event Channel (the name) and
* a default format string for the channel.
*
* Only applicable if TRC_CFG_USE_SEPARATE_USER_EVENT_BUFFER is 1.
******************************************************************************/
#define TRC_CFG_UB_CHANNELS 32
/*******************************************************************************
* TRC_CFG_ISR_TAILCHAINING_THRESHOLD
*
* Macro which should be defined as an integer value.
*
* If tracing multiple ISRs, this setting allows for accurate display of the
* context-switching also in cases when the ISRs execute in direct sequence.
*
* vTraceStoreISREnd normally assumes that the ISR returns to the previous
* context, i.e., a task or a preempted ISR. But if another traced ISR
* executes in direct sequence, Tracealyzer may incorrectly display a minimal
* fragment of the previous context in between the ISRs.
*
* By using TRC_CFG_ISR_TAILCHAINING_THRESHOLD you can avoid this. This is
* however a threshold value that must be measured for your specific setup.
* See http://percepio.com/2014/03/21/isr_tailchaining_threshold/
*
* The default setting is 0, meaning "disabled" and that you may get an
* extra fragments of the previous context in between tail-chained ISRs.
*
* Note: This setting has separate definitions in trcSnapshotConfig.h and
* trcStreamingConfig.h, since it is affected by the recorder mode.
******************************************************************************/
#define TRC_CFG_ISR_TAILCHAINING_THRESHOLD 0
#endif /*TRC_SNAPSHOT_CONFIG_H*/