blob: bcd7c689b8b6a5606d0107ff8982504f7b8a2843 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2013 - 2016 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* XILINX BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xsdps_options.c
* @addtogroup sdps_v3_4
* @{
*
* Contains API's for changing the various options in host and card.
* See xsdps.h for a detailed description of the device and driver.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- --- -------- -----------------------------------------------
* 1.00a hk/sg 10/17/13 Initial release
* 2.1 hk 04/18/14 Increase sleep for eMMC switch command.
* Add sleep for microblaze designs. CR# 781117.
* 2.3 sk 09/23/14 Use XSdPs_Change_ClkFreq API whenever changing
* clock.CR# 816586.
* 2.5 sg 07/09/15 Added SD 3.0 features
* kvn 07/15/15 Modified the code according to MISRAC-2012.
* 2.7 sk 01/08/16 Added workaround for issue in auto tuning mode
* of SDR50, SDR104 and HS200.
* sk 02/16/16 Corrected the Tuning logic.
* sk 03/02/16 Configured the Tap Delay values for eMMC HS200 mode.
* 2.8 sk 04/20/16 Added new workaround for auto tuning.
* 3.0 sk 07/07/16 Used usleep API for both arm and microblaze.
* sk 07/16/16 Added support for UHS modes.
* sk 07/16/16 Added Tap delays accordingly to different SD/eMMC
* operating modes.
* 3.1 mi 09/07/16 Removed compilation warnings with extra compiler flags.
* sk 11/07/16 Enable Rst_n bit in ext_csd reg if not enabled.
* sk 11/16/16 Issue DLL reset at 31 iteration to load new zero value.
* 3.2 sk 02/01/17 Added HSD and DDR mode support for eMMC.
* sk 02/01/17 Consider bus width parameter from design for switching
* vns 02/09/17 Added ARMA53_32 support for ZynqMP CR#968397
* vns 03/13/17 Fixed MISRAC mandatory violation
* sk 03/20/17 Add support for EL1 non-secure mode.
* 3.3 mn 07/25/17 Removed SD0_OTAPDLYENA and SD1_OTAPDLYENA bits
* mn 08/07/17 Properly set OTAPDLY value by clearing previous bit
* settings
* mn 08/17/17 Added CCI support for A53 and disabled data cache
* operations when it is enabled.
* mn 08/22/17 Updated for Word Access System support
* 3.4 mn 01/22/18 Separated out SDR104 and HS200 clock defines
*
* </pre>
*
******************************************************************************/
/***************************** Include Files *********************************/
#include "xsdps.h"
#include "sleep.h"
#if defined (__aarch64__)
#include "xil_smc.h"
#endif
/************************** Constant Definitions *****************************/
#define UHS_SDR12_SUPPORT 0x1U
#define UHS_SDR25_SUPPORT 0x2U
#define UHS_SDR50_SUPPORT 0x4U
#define UHS_SDR104_SUPPORT 0x8U
#define UHS_DDR50_SUPPORT 0x10U
/**************************** Type Definitions *******************************/
/***************** Macros (Inline Functions) Definitions *********************/
/************************** Function Prototypes ******************************/
s32 XSdPs_CmdTransfer(XSdPs *InstancePtr, u32 Cmd, u32 Arg, u32 BlkCnt);
void XSdPs_SetupADMA2DescTbl(XSdPs *InstancePtr, u32 BlkCnt, const u8 *Buff);
static s32 XSdPs_Execute_Tuning(XSdPs *InstancePtr);
#if defined (ARMR5) || defined (__aarch64__) || defined (ARMA53_32)
s32 XSdPs_Uhs_ModeInit(XSdPs *InstancePtr, u8 Mode);
static void XSdPs_sdr50_tapdelay(u32 Bank, u32 DeviceId, u32 CardType);
void XSdPs_SetTapDelay(XSdPs *InstancePtr);
static void XSdPs_DllReset(XSdPs *InstancePtr);
#endif
extern u16 TransferMode;
/*****************************************************************************/
/**
* Update Block size for read/write operations.
*
* @param InstancePtr is a pointer to the instance to be worked on.
* @param BlkSize - Block size passed by the user.
*
* @return None
*
******************************************************************************/
s32 XSdPs_SetBlkSize(XSdPs *InstancePtr, u16 BlkSize)
{
s32 Status;
u32 PresentStateReg;
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
PresentStateReg = XSdPs_ReadReg(InstancePtr->Config.BaseAddress,
XSDPS_PRES_STATE_OFFSET);
if ((PresentStateReg & ((u32)XSDPS_PSR_INHIBIT_CMD_MASK |
(u32)XSDPS_PSR_INHIBIT_DAT_MASK |
(u32)XSDPS_PSR_WR_ACTIVE_MASK | (u32)XSDPS_PSR_RD_ACTIVE_MASK)) != 0U) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/* Send block write command */
Status = XSdPs_CmdTransfer(InstancePtr, CMD16, BlkSize, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
Status = (s32)XSdPs_ReadReg(InstancePtr->Config.BaseAddress,
XSDPS_RESP0_OFFSET);
/* Set block size to the value passed */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress, XSDPS_BLK_SIZE_OFFSET,
BlkSize & XSDPS_BLK_SIZE_MASK);
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
/*****************************************************************************/
/**
*
* API to get bus width support by card.
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
* @param SCR - buffer to store SCR register returned by card.
*
* @return
* - XST_SUCCESS if successful.
* - XST_FAILURE if fail.
*
* @note None.
*
******************************************************************************/
s32 XSdPs_Get_BusWidth(XSdPs *InstancePtr, u8 *SCR)
{
s32 Status;
u32 StatusReg;
u16 BlkCnt;
u16 BlkSize;
s32 LoopCnt;
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
for (LoopCnt = 0; LoopCnt < 8; LoopCnt++) {
SCR[LoopCnt] = 0U;
}
/* Send block write command */
Status = XSdPs_CmdTransfer(InstancePtr, CMD55,
InstancePtr->RelCardAddr, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
BlkCnt = XSDPS_SCR_BLKCNT;
BlkSize = XSDPS_SCR_BLKSIZE;
/* Set block size to the value passed */
BlkSize &= XSDPS_BLK_SIZE_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_BLK_SIZE_OFFSET, BlkSize);
XSdPs_SetupADMA2DescTbl(InstancePtr, BlkCnt, SCR);
TransferMode = XSDPS_TM_DAT_DIR_SEL_MASK | XSDPS_TM_DMA_EN_MASK;
if (InstancePtr->Config.IsCacheCoherent == 0) {
Xil_DCacheInvalidateRange((INTPTR)SCR, 8);
}
Status = XSdPs_CmdTransfer(InstancePtr, ACMD51, 0U, BlkCnt);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/*
* Check for transfer complete
* Polling for response for now
*/
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/* Write to clear error bits */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET,
XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while ((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/* Write to clear bit */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
Status = (s32)XSdPs_ReadReg(InstancePtr->Config.BaseAddress,
XSDPS_RESP0_OFFSET);
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
/*****************************************************************************/
/**
*
* API to set bus width to 4-bit in card and host
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return
* - XST_SUCCESS if successful.
* - XST_FAILURE if fail.
*
* @note None.
*
******************************************************************************/
s32 XSdPs_Change_BusWidth(XSdPs *InstancePtr)
{
s32 Status;
u32 StatusReg;
u32 Arg;
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
/*
* check for bus width for 3.0 controller and return if
* bus width is <4
*/
if ((InstancePtr->HC_Version == XSDPS_HC_SPEC_V3) &&
(InstancePtr->Config.BusWidth < XSDPS_WIDTH_4)) {
Status = XST_SUCCESS;
goto RETURN_PATH;
}
if (InstancePtr->CardType == XSDPS_CARD_SD) {
Status = XSdPs_CmdTransfer(InstancePtr, CMD55, InstancePtr->RelCardAddr,
0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
InstancePtr->BusWidth = XSDPS_4_BIT_WIDTH;
Arg = ((u32)InstancePtr->BusWidth);
Status = XSdPs_CmdTransfer(InstancePtr, ACMD6, Arg, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
} else {
if ((InstancePtr->HC_Version == XSDPS_HC_SPEC_V3)
&& (InstancePtr->CardType == XSDPS_CHIP_EMMC) &&
(InstancePtr->Config.BusWidth == XSDPS_WIDTH_8)) {
/* in case of eMMC data width 8-bit */
InstancePtr->BusWidth = XSDPS_8_BIT_WIDTH;
} else {
InstancePtr->BusWidth = XSDPS_4_BIT_WIDTH;
}
if (InstancePtr->BusWidth == XSDPS_8_BIT_WIDTH) {
if (InstancePtr->Mode == XSDPS_DDR52_MODE)
Arg = XSDPS_MMC_DDR_8_BIT_BUS_ARG;
else
Arg = XSDPS_MMC_8_BIT_BUS_ARG;
} else {
if (InstancePtr->Mode == XSDPS_DDR52_MODE)
Arg = XSDPS_MMC_DDR_4_BIT_BUS_ARG;
else
Arg = XSDPS_MMC_4_BIT_BUS_ARG;
}
Status = XSdPs_CmdTransfer(InstancePtr, CMD6, Arg, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/* Check for transfer complete */
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/* Write to clear error bits */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET,
XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/* Write to clear bit */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
}
usleep(XSDPS_MMC_DELAY_FOR_SWITCH);
StatusReg = XSdPs_ReadReg8(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL1_OFFSET);
/* Width setting in controller */
if (InstancePtr->BusWidth == XSDPS_8_BIT_WIDTH) {
StatusReg |= XSDPS_HC_EXT_BUS_WIDTH;
} else {
StatusReg |= XSDPS_HC_WIDTH_MASK;
}
XSdPs_WriteReg8(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL1_OFFSET,
(u8)StatusReg);
if (InstancePtr->Mode == XSDPS_DDR52_MODE) {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL2_OFFSET);
StatusReg &= (u16)(~XSDPS_HC2_UHS_MODE_MASK);
StatusReg |= InstancePtr->Mode;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL2_OFFSET, StatusReg);
}
Status = (s32)XSdPs_ReadReg(InstancePtr->Config.BaseAddress,
XSDPS_RESP0_OFFSET);
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
/*****************************************************************************/
/**
*
* API to get bus speed supported by card.
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
* @param ReadBuff - buffer to store function group support data
* returned by card.
*
* @return
* - XST_SUCCESS if successful.
* - XST_FAILURE if fail.
*
* @note None.
*
******************************************************************************/
s32 XSdPs_Get_BusSpeed(XSdPs *InstancePtr, u8 *ReadBuff)
{
s32 Status;
u32 StatusReg;
u32 Arg;
u16 BlkCnt;
u16 BlkSize;
s32 LoopCnt;
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
for (LoopCnt = 0; LoopCnt < 64; LoopCnt++) {
ReadBuff[LoopCnt] = 0U;
}
BlkCnt = XSDPS_SWITCH_CMD_BLKCNT;
BlkSize = XSDPS_SWITCH_CMD_BLKSIZE;
BlkSize &= XSDPS_BLK_SIZE_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_BLK_SIZE_OFFSET, BlkSize);
XSdPs_SetupADMA2DescTbl(InstancePtr, BlkCnt, ReadBuff);
TransferMode = XSDPS_TM_DAT_DIR_SEL_MASK | XSDPS_TM_DMA_EN_MASK;
Arg = XSDPS_SWITCH_CMD_HS_GET;
if (InstancePtr->Config.IsCacheCoherent == 0) {
Xil_DCacheInvalidateRange((INTPTR)ReadBuff, 64);
}
Status = XSdPs_CmdTransfer(InstancePtr, CMD6, Arg, 1U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/*
* Check for transfer complete
* Polling for response for now
*/
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/* Write to clear error bits */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET,
XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while ((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/* Write to clear bit */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
Status = (s32)XSdPs_ReadReg(InstancePtr->Config.BaseAddress,
XSDPS_RESP0_OFFSET);
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
/*****************************************************************************/
/**
*
* API to set high speed in card and host. Changes clock in host accordingly.
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return
* - XST_SUCCESS if successful.
* - XST_FAILURE if fail.
*
* @note None.
*
******************************************************************************/
s32 XSdPs_Change_BusSpeed(XSdPs *InstancePtr)
{
s32 Status;
u32 StatusReg;
u32 Arg;
u16 BlkCnt;
u16 BlkSize;
u8 ReadBuff[64] = {0U};
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
if (InstancePtr->CardType == XSDPS_CARD_SD) {
BlkCnt = XSDPS_SWITCH_CMD_BLKCNT;
BlkSize = XSDPS_SWITCH_CMD_BLKSIZE;
BlkSize &= XSDPS_BLK_SIZE_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_BLK_SIZE_OFFSET, BlkSize);
XSdPs_SetupADMA2DescTbl(InstancePtr, BlkCnt, ReadBuff);
if (InstancePtr->Config.IsCacheCoherent == 0) {
Xil_DCacheFlushRange((INTPTR)ReadBuff, 64);
}
TransferMode = XSDPS_TM_DAT_DIR_SEL_MASK | XSDPS_TM_DMA_EN_MASK;
Arg = XSDPS_SWITCH_CMD_HS_SET;
Status = XSdPs_CmdTransfer(InstancePtr, CMD6, Arg, 1U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/*
* Check for transfer complete
* Polling for response for now
*/
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/* Write to clear error bits */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET,
XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while ((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/* Write to clear bit */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
/* Change the clock frequency to 50 MHz */
InstancePtr->BusSpeed = XSDPS_CLK_50_MHZ;
Status = XSdPs_Change_ClkFreq(InstancePtr, InstancePtr->BusSpeed);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
} else if (InstancePtr->CardType == XSDPS_CARD_MMC) {
Arg = XSDPS_MMC_HIGH_SPEED_ARG;
Status = XSdPs_CmdTransfer(InstancePtr, CMD6, Arg, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/*
* Check for transfer complete
*/
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/*
* Write to clear error bits
*/
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET,
XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while ((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/*
* Write to clear bit
*/
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
/* Change the clock frequency to 52 MHz */
InstancePtr->BusSpeed = XSDPS_CLK_52_MHZ;
Status = XSdPs_Change_ClkFreq(InstancePtr, XSDPS_CLK_52_MHZ);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
} else {
if (InstancePtr->Mode == XSDPS_HS200_MODE) {
Arg = XSDPS_MMC_HS200_ARG;
InstancePtr->BusSpeed = XSDPS_MMC_HS200_MAX_CLK;
} else if (InstancePtr->Mode == XSDPS_DDR52_MODE) {
Arg = XSDPS_MMC_HIGH_SPEED_ARG;
InstancePtr->BusSpeed = XSDPS_MMC_DDR_MAX_CLK;
} else {
Arg = XSDPS_MMC_HIGH_SPEED_ARG;
InstancePtr->BusSpeed = XSDPS_MMC_HSD_MAX_CLK;
}
Status = XSdPs_CmdTransfer(InstancePtr, CMD6, Arg, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/*
* Check for transfer complete
*/
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/*
* Write to clear error bits
*/
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET,
XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while ((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/*
* Write to clear bit
*/
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
Status = XSdPs_Change_ClkFreq(InstancePtr, InstancePtr->BusSpeed);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
if (InstancePtr->Mode == XSDPS_HS200_MODE) {
Status = XSdPs_Execute_Tuning(InstancePtr);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
}
}
usleep(XSDPS_MMC_DELAY_FOR_SWITCH);
StatusReg = (s32)XSdPs_ReadReg8(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL1_OFFSET);
StatusReg |= XSDPS_HC_SPEED_MASK;
XSdPs_WriteReg8(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL1_OFFSET, (u8)StatusReg);
Status = (s32)XSdPs_ReadReg(InstancePtr->Config.BaseAddress,
XSDPS_RESP0_OFFSET);
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
/*****************************************************************************/
/**
*
* API to change clock freq to given value.
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
* @param SelFreq - Clock frequency in Hz.
*
* @return None
*
* @note This API will change clock frequency to the value less than
* or equal to the given value using the permissible dividors.
*
******************************************************************************/
s32 XSdPs_Change_ClkFreq(XSdPs *InstancePtr, u32 SelFreq)
{
u16 ClockReg;
u16 DivCnt;
u16 Divisor = 0U;
u16 ExtDivisor;
s32 Status;
u16 ReadReg;
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
/* Disable clock */
ClockReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
ClockReg &= ~(XSDPS_CC_SD_CLK_EN_MASK | XSDPS_CC_INT_CLK_EN_MASK);
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET, ClockReg);
if (InstancePtr->HC_Version == XSDPS_HC_SPEC_V3) {
#if defined (ARMR5) || defined (__aarch64__) || defined (ARMA53_32)
if ((InstancePtr->Mode != XSDPS_DEFAULT_SPEED_MODE) &&
(InstancePtr->Mode != XSDPS_UHS_SPEED_MODE_SDR12))
/* Program the Tap delays */
XSdPs_SetTapDelay(InstancePtr);
#endif
/* Calculate divisor */
for (DivCnt = 0x1U; DivCnt <= XSDPS_CC_EXT_MAX_DIV_CNT;DivCnt++) {
if (((InstancePtr->Config.InputClockHz) / DivCnt) <= SelFreq) {
Divisor = DivCnt >> 1;
break;
}
}
if (DivCnt > XSDPS_CC_EXT_MAX_DIV_CNT) {
/* No valid divisor found for given frequency */
Status = XST_FAILURE;
goto RETURN_PATH;
}
} else {
/* Calculate divisor */
DivCnt = 0x1U;
while (DivCnt <= XSDPS_CC_MAX_DIV_CNT) {
if (((InstancePtr->Config.InputClockHz) / DivCnt) <= SelFreq) {
Divisor = DivCnt / 2U;
break;
}
DivCnt = DivCnt << 1U;
}
if (DivCnt > XSDPS_CC_MAX_DIV_CNT) {
/* No valid divisor found for given frequency */
Status = XST_FAILURE;
goto RETURN_PATH;
}
}
/* Set clock divisor */
if (InstancePtr->HC_Version == XSDPS_HC_SPEC_V3) {
ClockReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
ClockReg &= ~(XSDPS_CC_SDCLK_FREQ_SEL_MASK |
XSDPS_CC_SDCLK_FREQ_SEL_EXT_MASK);
ExtDivisor = Divisor >> 8;
ExtDivisor <<= XSDPS_CC_EXT_DIV_SHIFT;
ExtDivisor &= XSDPS_CC_SDCLK_FREQ_SEL_EXT_MASK;
Divisor <<= XSDPS_CC_DIV_SHIFT;
Divisor &= XSDPS_CC_SDCLK_FREQ_SEL_MASK;
ClockReg |= Divisor | ExtDivisor | (u16)XSDPS_CC_INT_CLK_EN_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress, XSDPS_CLK_CTRL_OFFSET,
ClockReg);
} else {
ClockReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
ClockReg &= (~XSDPS_CC_SDCLK_FREQ_SEL_MASK);
Divisor <<= XSDPS_CC_DIV_SHIFT;
Divisor &= XSDPS_CC_SDCLK_FREQ_SEL_MASK;
ClockReg |= Divisor | (u16)XSDPS_CC_INT_CLK_EN_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress, XSDPS_CLK_CTRL_OFFSET,
ClockReg);
}
/* Wait for internal clock to stabilize */
ReadReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
while((ReadReg & XSDPS_CC_INT_CLK_STABLE_MASK) == 0U) {
ReadReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);;
}
/* Enable SD clock */
ClockReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET,
ClockReg | XSDPS_CC_SD_CLK_EN_MASK);
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
/*****************************************************************************/
/**
*
* API to send pullup command to card before using DAT line 3(using 4-bit bus)
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return
* - XST_SUCCESS if successful.
* - XST_FAILURE if fail.
*
* @note None.
*
******************************************************************************/
s32 XSdPs_Pullup(XSdPs *InstancePtr)
{
s32 Status;
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
Status = XSdPs_CmdTransfer(InstancePtr, CMD55,
InstancePtr->RelCardAddr, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
Status = XSdPs_CmdTransfer(InstancePtr, ACMD42, 0U, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
/*****************************************************************************/
/**
*
* API to get EXT_CSD register of eMMC.
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
* @param ReadBuff - buffer to store EXT_CSD
*
* @return
* - XST_SUCCESS if successful.
* - XST_FAILURE if fail.
*
* @note None.
*
******************************************************************************/
s32 XSdPs_Get_Mmc_ExtCsd(XSdPs *InstancePtr, u8 *ReadBuff)
{
s32 Status;
u32 StatusReg;
u32 Arg = 0U;
u16 BlkCnt;
u16 BlkSize;
s32 LoopCnt;
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
for (LoopCnt = 0; LoopCnt < 512; LoopCnt++) {
ReadBuff[LoopCnt] = 0U;
}
BlkCnt = XSDPS_EXT_CSD_CMD_BLKCNT;
BlkSize = XSDPS_EXT_CSD_CMD_BLKSIZE;
BlkSize &= XSDPS_BLK_SIZE_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_BLK_SIZE_OFFSET, BlkSize);
XSdPs_SetupADMA2DescTbl(InstancePtr, BlkCnt, ReadBuff);
if (InstancePtr->Config.IsCacheCoherent == 0) {
Xil_DCacheInvalidateRange((INTPTR)ReadBuff, 512U);
}
TransferMode = XSDPS_TM_DAT_DIR_SEL_MASK | XSDPS_TM_DMA_EN_MASK;
/* Send SEND_EXT_CSD command */
Status = XSdPs_CmdTransfer(InstancePtr, CMD8, Arg, 1U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/*
* Check for transfer complete
* Polling for response for now
*/
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/* Write to clear error bits */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET,
XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while ((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/* Write to clear bit */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
Status = (s32)XSdPs_ReadReg(InstancePtr->Config.BaseAddress,
XSDPS_RESP0_OFFSET);
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
/*****************************************************************************/
/**
*
* API to write EXT_CSD register of eMMC.
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
* @param Arg is the argument to be sent along with the command
*
* @return
* - XST_SUCCESS if successful.
* - XST_FAILURE if fail.
*
* @note None.
*
******************************************************************************/
s32 XSdPs_Set_Mmc_ExtCsd(XSdPs *InstancePtr, u32 Arg)
{
s32 Status;
u32 StatusReg;
Status = XSdPs_CmdTransfer(InstancePtr, CMD6, Arg, 0U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/*
* Check for transfer complete
*/
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/*
* Write to clear error bits
*/
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET,
XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while ((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/* Write to clear bit */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
Status = (s32)XSdPs_ReadReg(InstancePtr->Config.BaseAddress,
XSDPS_RESP0_OFFSET);
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
#if defined (ARMR5) || defined (__aarch64__) || defined (ARMA53_32)
/*****************************************************************************/
/**
*
* API to Identify the supported UHS mode. This API will assign the
* corresponding tap delay API to the Config_TapDelay pointer based on the
* supported bus speed.
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
* @param ReadBuff contains the response for CMD6
*
* @return None.
*
* @note None.
*
******************************************************************************/
void XSdPs_Identify_UhsMode(XSdPs *InstancePtr, u8 *ReadBuff)
{
Xil_AssertVoid(InstancePtr != NULL);
if (((ReadBuff[13] & UHS_SDR104_SUPPORT) != 0U) &&
(InstancePtr->Config.InputClockHz >= XSDPS_SD_INPUT_MAX_CLK)) {
InstancePtr->Mode = XSDPS_UHS_SPEED_MODE_SDR104;
InstancePtr->Config_TapDelay = XSdPs_sdr104_hs200_tapdelay;
}
else if (((ReadBuff[13] & UHS_SDR50_SUPPORT) != 0U) &&
(InstancePtr->Config.InputClockHz >= XSDPS_SD_SDR50_MAX_CLK)) {
InstancePtr->Mode = XSDPS_UHS_SPEED_MODE_SDR50;
InstancePtr->Config_TapDelay = XSdPs_sdr50_tapdelay;
}
else if (((ReadBuff[13] & UHS_DDR50_SUPPORT) != 0U) &&
(InstancePtr->Config.InputClockHz >= XSDPS_SD_DDR50_MAX_CLK)) {
InstancePtr->Mode = XSDPS_UHS_SPEED_MODE_DDR50;
InstancePtr->Config_TapDelay = XSdPs_ddr50_tapdelay;
}
else if (((ReadBuff[13] & UHS_SDR25_SUPPORT) != 0U) &&
(InstancePtr->Config.InputClockHz >= XSDPS_SD_SDR25_MAX_CLK)) {
InstancePtr->Mode = XSDPS_UHS_SPEED_MODE_SDR25;
InstancePtr->Config_TapDelay = XSdPs_hsd_sdr25_tapdelay;
}
else
InstancePtr->Mode = XSDPS_UHS_SPEED_MODE_SDR12;
}
/*****************************************************************************/
/**
*
* API to UHS-I mode initialization
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
* @param Mode UHS-I mode
*
* @return
* - XST_SUCCESS if successful.
* - XST_FAILURE if fail.
*
* @note None.
*
******************************************************************************/
s32 XSdPs_Uhs_ModeInit(XSdPs *InstancePtr, u8 Mode)
{
s32 Status;
u16 StatusReg;
u16 CtrlReg;
u32 Arg;
u16 BlkCnt;
u16 BlkSize;
u8 ReadBuff[64] = {0U};
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
/* Drive strength */
/* Bus speed mode selection */
BlkCnt = XSDPS_SWITCH_CMD_BLKCNT;
BlkSize = XSDPS_SWITCH_CMD_BLKSIZE;
BlkSize &= XSDPS_BLK_SIZE_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress, XSDPS_BLK_SIZE_OFFSET,
BlkSize);
XSdPs_SetupADMA2DescTbl(InstancePtr, BlkCnt, ReadBuff);
if (InstancePtr->Config.IsCacheCoherent == 0) {
Xil_DCacheFlushRange((INTPTR)ReadBuff, 64);
}
TransferMode = XSDPS_TM_DAT_DIR_SEL_MASK | XSDPS_TM_DMA_EN_MASK;
switch (Mode) {
case 0U:
Arg = XSDPS_SWITCH_CMD_SDR12_SET;
InstancePtr->BusSpeed = XSDPS_SD_SDR12_MAX_CLK;
break;
case 1U:
Arg = XSDPS_SWITCH_CMD_SDR25_SET;
InstancePtr->BusSpeed = XSDPS_SD_SDR25_MAX_CLK;
break;
case 2U:
Arg = XSDPS_SWITCH_CMD_SDR50_SET;
InstancePtr->BusSpeed = XSDPS_SD_SDR50_MAX_CLK;
break;
case 3U:
Arg = XSDPS_SWITCH_CMD_SDR104_SET;
InstancePtr->BusSpeed = XSDPS_SD_SDR104_MAX_CLK;
break;
case 4U:
Arg = XSDPS_SWITCH_CMD_DDR50_SET;
InstancePtr->BusSpeed = XSDPS_SD_DDR50_MAX_CLK;
break;
default:
Status = XST_FAILURE;
goto RETURN_PATH;
break;
}
Status = XSdPs_CmdTransfer(InstancePtr, CMD6, Arg, 1U);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/*
* Check for transfer complete
* Polling for response for now
*/
do {
StatusReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET);
if ((StatusReg & XSDPS_INTR_ERR_MASK) != 0U) {
/* Write to clear error bits */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_ERR_INTR_STS_OFFSET, XSDPS_ERROR_INTR_ALL_MASK);
Status = XST_FAILURE;
goto RETURN_PATH;
}
} while ((StatusReg & XSDPS_INTR_TC_MASK) == 0U);
/* Write to clear bit */
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_NORM_INTR_STS_OFFSET, XSDPS_INTR_TC_MASK);
/* Current limit */
/* Set UHS mode in controller */
CtrlReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL2_OFFSET);
CtrlReg &= (u16)(~XSDPS_HC2_UHS_MODE_MASK);
CtrlReg |= Mode;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL2_OFFSET, CtrlReg);
/* Change the clock frequency */
Status = XSdPs_Change_ClkFreq(InstancePtr, InstancePtr->BusSpeed);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
if((Mode == XSDPS_UHS_SPEED_MODE_SDR104) ||
(Mode == XSDPS_UHS_SPEED_MODE_SDR50)) {
/* Send tuning pattern */
Status = XSdPs_Execute_Tuning(InstancePtr);
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
}
Status = XST_SUCCESS;
RETURN_PATH:
return Status;
}
#endif
static s32 XSdPs_Execute_Tuning(XSdPs *InstancePtr)
{
s32 Status;
u16 BlkSize;
u16 CtrlReg;
u8 TuningCount;
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
BlkSize = XSDPS_TUNING_CMD_BLKSIZE;
if(InstancePtr->BusWidth == XSDPS_8_BIT_WIDTH)
{
BlkSize = BlkSize*2U;
}
BlkSize &= XSDPS_BLK_SIZE_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress, XSDPS_BLK_SIZE_OFFSET,
BlkSize);
TransferMode = XSDPS_TM_DAT_DIR_SEL_MASK;
CtrlReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL2_OFFSET);
CtrlReg |= XSDPS_HC2_EXEC_TNG_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL2_OFFSET, CtrlReg);
/*
* workaround which can work for 1.0/2.0 silicon for auto tuning.
* This can be revisited for 3.0 silicon if necessary.
*/
/* Wait for ~60 clock cycles to reset the tap values */
(void)usleep(1U);
#if defined (ARMR5) || defined (__aarch64__) || defined (ARMA53_32)
/* Issue DLL Reset to load new SDHC tuned tap values */
XSdPs_DllReset(InstancePtr);
#endif
for (TuningCount = 0U; TuningCount < MAX_TUNING_COUNT; TuningCount++) {
if (InstancePtr->CardType == XSDPS_CARD_SD) {
Status = XSdPs_CmdTransfer(InstancePtr, CMD19, 0U, 1U);
} else {
Status = XSdPs_CmdTransfer(InstancePtr, CMD21, 0U, 1U);
}
if (Status != XST_SUCCESS) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
if ((XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL2_OFFSET) & XSDPS_HC2_EXEC_TNG_MASK) == 0U) {
break;
}
if (TuningCount == 31) {
#if defined (ARMR5) || defined (__aarch64__) || defined (ARMA53_32)
/* Issue DLL Reset to load new SDHC tuned tap values */
XSdPs_DllReset(InstancePtr);
#endif
}
}
if ((XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_HOST_CTRL2_OFFSET) & XSDPS_HC2_SAMP_CLK_SEL_MASK) == 0U) {
Status = XST_FAILURE;
goto RETURN_PATH;
}
/* Wait for ~12 clock cycles to synchronize the new tap values */
(void)usleep(1U);
#if defined (ARMR5) || defined (__aarch64__) || defined (ARMA53_32)
/* Issue DLL Reset to load new SDHC tuned tap values */
XSdPs_DllReset(InstancePtr);
#endif
Status = XST_SUCCESS;
RETURN_PATH: return Status;
}
#if defined (ARMR5) || defined (__aarch64__) || defined (ARMA53_32)
/*****************************************************************************/
/**
*
* API to set Tap Delay for SDR104 and HS200 modes
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return None
*
* @note None.
*
******************************************************************************/
void XSdPs_sdr104_hs200_tapdelay(u32 Bank, u32 DeviceId, u32 CardType)
{
u32 TapDelay;
(void) CardType;
#ifdef XPAR_PSU_SD_0_DEVICE_ID
if (DeviceId == 0U) {
#if EL1_NONSECURE && defined (__aarch64__)
(void)TapDelay;
if (Bank == 2)
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD0_OTAPDLY_SEL_MASK << 32),
(u64)SD0_OTAPDLYSEL_HS200_B2, 0, 0, 0, 0, 0);
else
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD0_OTAPDLY_SEL_MASK << 32),
(u64)SD0_OTAPDLYSEL_HS200_B0, 0, 0, 0, 0, 0);
#else
/* Program the OTAPDLY */
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY);
TapDelay &= ~SD0_OTAPDLY_SEL_MASK;
if (Bank == 2)
TapDelay |= SD0_OTAPDLYSEL_HS200_B2;
else
TapDelay |= SD0_OTAPDLYSEL_HS200_B0;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY, TapDelay);
#endif
} else {
#endif
(void) DeviceId;
#if EL1_NONSECURE && defined (__aarch64__)
(void)TapDelay;
if (Bank == 2)
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD1_OTAPDLY_SEL_MASK << 32),
(u64)SD1_OTAPDLYSEL_HS200_B2, 0, 0, 0, 0, 0);
else
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD1_OTAPDLY_SEL_MASK << 32),
(u64)SD1_OTAPDLYSEL_HS200_B0, 0, 0, 0, 0, 0);
#else
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY);
TapDelay &= ~SD1_OTAPDLY_SEL_MASK;
if (Bank == 2)
TapDelay |= SD1_OTAPDLYSEL_HS200_B2;
else
TapDelay |= SD1_OTAPDLYSEL_HS200_B0;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY, TapDelay);
#endif
#ifdef XPAR_PSU_SD_0_DEVICE_ID
}
#endif
}
/*****************************************************************************/
/**
*
* API to set Tap Delay for SDR50 mode
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return None
*
* @note None.
*
******************************************************************************/
void XSdPs_sdr50_tapdelay(u32 Bank, u32 DeviceId, u32 CardType)
{
u32 TapDelay;
(void) Bank;
(void) CardType;
#ifdef XPAR_PSU_SD_0_DEVICE_ID
if (DeviceId == 0U) {
#if EL1_NONSECURE && defined (__aarch64__)
(void)TapDelay;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_OTAPDLY) |
((u64)SD0_OTAPDLY_SEL_MASK << 32), (u64)SD0_OTAPDLYSEL_SD50,
0, 0, 0, 0, 0);
#else
/* Program the OTAPDLY */
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY);
TapDelay &= ~SD0_OTAPDLY_SEL_MASK;
TapDelay |= SD0_OTAPDLYSEL_SD50;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY, TapDelay);
#endif
} else {
#endif
(void) DeviceId;
#if EL1_NONSECURE && defined (__aarch64__)
(void)TapDelay;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_OTAPDLY) |
((u64)SD1_OTAPDLY_SEL_MASK << 32), (u64)SD1_OTAPDLYSEL_SD50,
0, 0, 0, 0, 0);
#else
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY);
TapDelay &= ~SD1_OTAPDLY_SEL_MASK;
TapDelay |= SD1_OTAPDLYSEL_SD50;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY, TapDelay);
#endif
#ifdef XPAR_PSU_SD_0_DEVICE_ID
}
#endif
}
/*****************************************************************************/
/**
*
* API to set Tap Delay for DDR50 mode
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return None
*
* @note None.
*
******************************************************************************/
void XSdPs_ddr50_tapdelay(u32 Bank, u32 DeviceId, u32 CardType)
{
u32 TapDelay;
(void) Bank;
#ifdef XPAR_PSU_SD_0_DEVICE_ID
if (DeviceId == 0U) {
#if EL1_NONSECURE && defined (__aarch64__)
(void)TapDelay;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD0_ITAPCHGWIN << 32), (u64)SD0_ITAPCHGWIN,
0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD0_ITAPDLYENA << 32), (u64)SD0_ITAPDLYENA,
0, 0, 0, 0, 0);
if (CardType== XSDPS_CARD_SD)
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_ITAPDLY) | ((u64)SD0_ITAPDLY_SEL_MASK << 32),
(u64)SD0_ITAPDLYSEL_SD_DDR50, 0, 0, 0, 0, 0);
else
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_ITAPDLY) | ((u64)SD0_ITAPDLY_SEL_MASK << 32),
(u64)SD0_ITAPDLYSEL_EMMC_DDR50, 0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD0_ITAPCHGWIN << 32), (u64)0x0, 0, 0, 0, 0, 0);
if (CardType == XSDPS_CARD_SD)
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD0_OTAPDLY_SEL_MASK << 32),
(u64)SD0_OTAPDLYSEL_SD_DDR50, 0, 0, 0, 0, 0);
else
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD0_OTAPDLY_SEL_MASK << 32),
(u64)SD0_OTAPDLYSEL_EMMC_DDR50, 0, 0, 0, 0, 0);
#else
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY);
TapDelay |= SD0_ITAPCHGWIN;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
/* Program the ITAPDLY */
TapDelay |= SD0_ITAPDLYENA;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
if (CardType== XSDPS_CARD_SD)
TapDelay |= SD0_ITAPDLYSEL_SD_DDR50;
else
TapDelay |= SD0_ITAPDLYSEL_EMMC_DDR50;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
TapDelay &= ~SD0_ITAPCHGWIN;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
/* Program the OTAPDLY */
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY);
TapDelay &= ~SD0_OTAPDLY_SEL_MASK;
if (CardType == XSDPS_CARD_SD)
TapDelay |= SD0_OTAPDLYSEL_SD_DDR50;
else
TapDelay |= SD0_OTAPDLYSEL_EMMC_DDR50;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY, TapDelay);
#endif
} else {
#endif
(void) DeviceId;
#if EL1_NONSECURE && defined (__aarch64__)
(void)TapDelay;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD1_ITAPCHGWIN << 32), (u64)SD1_ITAPCHGWIN,
0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD1_ITAPDLYENA << 32), (u64)SD1_ITAPDLYENA,
0, 0, 0, 0, 0);
if (CardType== XSDPS_CARD_SD)
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_ITAPDLY) | ((u64)SD1_ITAPDLY_SEL_MASK << 32),
(u64)SD1_ITAPDLYSEL_SD_DDR50, 0, 0, 0, 0, 0);
else
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_ITAPDLY) | ((u64)SD1_ITAPDLY_SEL_MASK << 32),
(u64)SD1_ITAPDLYSEL_EMMC_DDR50, 0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_ITAPDLY) | ((u64)SD1_ITAPCHGWIN << 32),
(u64)0x0, 0, 0, 0, 0, 0);
if (CardType == XSDPS_CARD_SD)
Xil_Smc(MMIO_WRITE_SMC_FID,(u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD1_OTAPDLY_SEL_MASK << 32),
(u64)SD1_OTAPDLYSEL_SD_DDR50, 0, 0, 0, 0, 0);
else
Xil_Smc(MMIO_WRITE_SMC_FID,(u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD1_OTAPDLY_SEL_MASK << 32),
(u64)SD1_OTAPDLYSEL_EMMC_DDR50, 0, 0, 0, 0, 0);
#else
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY);
TapDelay |= SD1_ITAPCHGWIN;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
/* Program the ITAPDLY */
TapDelay |= SD1_ITAPDLYENA;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
if (CardType == XSDPS_CARD_SD)
TapDelay |= SD1_ITAPDLYSEL_SD_DDR50;
else
TapDelay |= SD1_ITAPDLYSEL_EMMC_DDR50;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
TapDelay &= ~SD1_ITAPCHGWIN;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
/* Program the OTAPDLY */
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY);
TapDelay &= ~SD1_OTAPDLY_SEL_MASK;
if (CardType == XSDPS_CARD_SD)
TapDelay |= SD1_OTAPDLYSEL_SD_DDR50;
else
TapDelay |= SD1_OTAPDLYSEL_EMMC_DDR50;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY, TapDelay);
#endif
#ifdef XPAR_PSU_SD_0_DEVICE_ID
}
#endif
}
/*****************************************************************************/
/**
*
* API to set Tap Delay for HSD and SDR25 mode
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return None
*
* @note None.
*
******************************************************************************/
void XSdPs_hsd_sdr25_tapdelay(u32 Bank, u32 DeviceId, u32 CardType)
{
u32 TapDelay;
(void) Bank;
#ifdef XPAR_PSU_SD_0_DEVICE_ID
if (DeviceId == 0U) {
#if EL1_NONSECURE && defined (__aarch64__)
(void)TapDelay;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD0_ITAPCHGWIN << 32), (u64)SD0_ITAPCHGWIN,
0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD0_ITAPDLYENA << 32), (u64)SD0_ITAPDLYENA,
0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD0_ITAPDLY_SEL_MASK << 32), (u64)SD0_ITAPDLYSEL_HSD,
0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD0_ITAPCHGWIN << 32), (u64)0x0, 0, 0, 0, 0, 0);
if (CardType == XSDPS_CARD_SD)
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD0_OTAPDLY_SEL_MASK << 32),
(u64)SD0_OTAPDLYSEL_SD_HSD, 0, 0, 0, 0, 0);
else
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD0_OTAPDLY_SEL_MASK << 32),
(u64)SD0_OTAPDLYSEL_EMMC_HSD, 0, 0, 0, 0, 0);
#else
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY);
TapDelay |= SD0_ITAPCHGWIN;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
/* Program the ITAPDLY */
TapDelay |= SD0_ITAPDLYENA;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
TapDelay |= SD0_ITAPDLYSEL_HSD;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
TapDelay &= ~SD0_ITAPCHGWIN;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
/* Program the OTAPDLY */
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY);
TapDelay &= ~SD0_OTAPDLY_SEL_MASK;
if (CardType == XSDPS_CARD_SD)
TapDelay |= SD0_OTAPDLYSEL_SD_HSD;
else
TapDelay |= SD0_OTAPDLYSEL_EMMC_HSD;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY, TapDelay);
#endif
} else {
#endif
(void) DeviceId;
#if EL1_NONSECURE && defined (__aarch64__)
(void)TapDelay;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD1_ITAPCHGWIN << 32), (u64)SD1_ITAPCHGWIN,
0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD1_ITAPDLYENA << 32), (u64)SD1_ITAPDLYENA,
0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD1_ITAPDLY_SEL_MASK << 32), (u64)SD1_ITAPDLYSEL_HSD,
0, 0, 0, 0, 0);
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR + SD_ITAPDLY) |
((u64)SD1_ITAPCHGWIN << 32), (u64)0x0, 0, 0, 0, 0, 0);
if (CardType == XSDPS_CARD_SD)
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD1_OTAPDLY_SEL_MASK << 32),
(u64)SD1_OTAPDLYSEL_SD_HSD, 0, 0, 0, 0, 0);
else
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_OTAPDLY) | ((u64)SD1_OTAPDLY_SEL_MASK << 32),
(u64)SD1_OTAPDLYSEL_EMMC_HSD, 0, 0, 0, 0, 0);
#else
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY);
TapDelay |= SD1_ITAPCHGWIN;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
/* Program the ITAPDLY */
TapDelay |= SD1_ITAPDLYENA;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
TapDelay |= SD1_ITAPDLYSEL_HSD;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
TapDelay &= ~SD1_ITAPCHGWIN;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_ITAPDLY, TapDelay);
/* Program the OTAPDLY */
TapDelay = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY);
TapDelay &= ~SD1_OTAPDLY_SEL_MASK;
if (CardType == XSDPS_CARD_SD)
TapDelay |= SD1_OTAPDLYSEL_SD_HSD;
else
TapDelay |= SD1_OTAPDLYSEL_EMMC_HSD;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_OTAPDLY, TapDelay);
#endif
#ifdef XPAR_PSU_SD_0_DEVICE_ID
}
#endif
}
/*****************************************************************************/
/**
*
* API to set Tap Delay w.r.t speed modes
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return None
*
* @note None.
*
******************************************************************************/
void XSdPs_SetTapDelay(XSdPs *InstancePtr)
{
u32 DllCtrl, BankNum, DeviceId, CardType;
BankNum = InstancePtr->Config.BankNumber;
DeviceId = InstancePtr->Config.DeviceId ;
CardType = InstancePtr->CardType ;
#ifdef XPAR_PSU_SD_0_DEVICE_ID
if (DeviceId == 0U) {
#if EL1_NONSECURE && defined (__aarch64__)
(void)DllCtrl;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_DLL_CTRL) | ((u64)SD0_DLL_RST << 32),
(u64)SD0_DLL_RST, 0, 0, 0, 0, 0);
#else
DllCtrl = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL);
DllCtrl |= SD0_DLL_RST;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL, DllCtrl);
#endif
InstancePtr->Config_TapDelay(BankNum, DeviceId, CardType);
#if EL1_NONSECURE && defined (__aarch64__)
(void)DllCtrl;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_DLL_CTRL) | ((u64)SD0_DLL_RST << 32),
(u64)0x0, 0, 0, 0, 0, 0);
#else
DllCtrl &= ~SD0_DLL_RST;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL, DllCtrl);
#endif
} else {
#endif
#if EL1_NONSECURE && defined (__aarch64__)
(void)DllCtrl;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_DLL_CTRL) | ((u64)SD1_DLL_RST << 32),
(u64)SD1_DLL_RST, 0, 0, 0, 0, 0);
#else
DllCtrl = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL);
DllCtrl |= SD1_DLL_RST;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL, DllCtrl);
#endif
InstancePtr->Config_TapDelay(BankNum, DeviceId, CardType);
#if EL1_NONSECURE && defined (__aarch64__)
(void)DllCtrl;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_DLL_CTRL) | ((u64)SD1_DLL_RST << 32),
(u64)0x0, 0, 0, 0, 0, 0);
#else
DllCtrl &= ~SD1_DLL_RST;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL, DllCtrl);
#endif
#ifdef XPAR_PSU_SD_0_DEVICE_ID
}
#endif
}
/*****************************************************************************/
/**
*
* API to reset the DLL
*
*
* @param InstancePtr is a pointer to the XSdPs instance.
*
* @return None
*
* @note None.
*
******************************************************************************/
static void XSdPs_DllReset(XSdPs *InstancePtr)
{
u32 ClockReg, DllCtrl;
/* Disable clock */
ClockReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
ClockReg &= ~XSDPS_CC_SD_CLK_EN_MASK;
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET, ClockReg);
/* Issue DLL Reset to load zero tap values */
DllCtrl = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL);
if (InstancePtr->Config.DeviceId == 0U) {
#if EL1_NONSECURE && defined (__aarch64__)
(void)DllCtrl;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_DLL_CTRL) | ((u64)SD0_DLL_RST << 32),
(u64)SD0_DLL_RST, 0, 0, 0, 0, 0);
#else
DllCtrl |= SD0_DLL_RST;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL, DllCtrl);
#endif
} else {
#if EL1_NONSECURE && defined (__aarch64__)
(void)DllCtrl;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_DLL_CTRL) | ((u64)SD1_DLL_RST << 32),
(u64)SD1_DLL_RST, 0, 0, 0, 0, 0);
#else
DllCtrl |= SD1_DLL_RST;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL, DllCtrl);
#endif
}
/* Wait for 2 micro seconds */
(void)usleep(2U);
/* Release the DLL out of reset */
DllCtrl = XSdPs_ReadReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL);
if (InstancePtr->Config.DeviceId == 0U) {
#if EL1_NONSECURE && defined (__aarch64__)
(void)DllCtrl;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_DLL_CTRL) | ((u64)SD0_DLL_RST << 32),
(u64)0x0, 0, 0, 0, 0, 0);
#else
DllCtrl &= ~SD0_DLL_RST;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL, DllCtrl);
#endif
} else {
#if EL1_NONSECURE && defined (__aarch64__)
(void)DllCtrl;
Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(XPS_SYS_CTRL_BASEADDR +
SD_DLL_CTRL) | ((u64)SD1_DLL_RST << 32),
(u64)0x0, 0, 0, 0, 0, 0);
#else
DllCtrl &= ~SD1_DLL_RST;
XSdPs_WriteReg(XPS_SYS_CTRL_BASEADDR, SD_DLL_CTRL, DllCtrl);
#endif
}
/* Wait for internal clock to stabilize */
ClockReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
while((ClockReg & XSDPS_CC_INT_CLK_STABLE_MASK) == 0U) {
ClockReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
}
/* Enable SD clock */
ClockReg = XSdPs_ReadReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET);
XSdPs_WriteReg16(InstancePtr->Config.BaseAddress,
XSDPS_CLK_CTRL_OFFSET,
ClockReg | XSDPS_CC_SD_CLK_EN_MASK);
}
#endif
/** @} */