| /* |
| * FreeRTOS Kernel <DEVELOPMENT BRANCH> |
| * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| * |
| * SPDX-License-Identifier: MIT |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy of |
| * this software and associated documentation files (the "Software"), to deal in |
| * the Software without restriction, including without limitation the rights to |
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
| * the Software, and to permit persons to whom the Software is furnished to do so, |
| * subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in all |
| * copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
| * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
| * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
| * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * https://www.FreeRTOS.org |
| * https://github.com/FreeRTOS |
| * |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| |
| /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining |
| * all the API functions to use the MPU wrappers. That should only be done when |
| * task.h is included from an application file. */ |
| #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE |
| |
| #include "FreeRTOS.h" |
| #include "task.h" |
| #include "queue.h" |
| |
| #if ( configUSE_CO_ROUTINES == 1 ) |
| #include "croutine.h" |
| #endif |
| |
| /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined |
| * for the header files above, but not in this file, in order to generate the |
| * correct privileged Vs unprivileged linkage and placement. */ |
| #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE |
| |
| |
| /* Constants used with the cRxLock and cTxLock structure members. */ |
| #define queueUNLOCKED ( ( int8_t ) -1 ) |
| #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 ) |
| #define queueINT8_MAX ( ( int8_t ) 127 ) |
| |
| /* When the Queue_t structure is used to represent a base queue its pcHead and |
| * pcTail members are used as pointers into the queue storage area. When the |
| * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are |
| * not necessary, and the pcHead pointer is set to NULL to indicate that the |
| * structure instead holds a pointer to the mutex holder (if any). Map alternative |
| * names to the pcHead and structure member to ensure the readability of the code |
| * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form |
| * a union as their usage is mutually exclusive dependent on what the queue is |
| * being used for. */ |
| #define uxQueueType pcHead |
| #define queueQUEUE_IS_MUTEX NULL |
| |
| typedef struct QueuePointers |
| { |
| int8_t * pcTail; /**< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */ |
| int8_t * pcReadFrom; /**< Points to the last place that a queued item was read from when the structure is used as a queue. */ |
| } QueuePointers_t; |
| |
| typedef struct SemaphoreData |
| { |
| TaskHandle_t xMutexHolder; /**< The handle of the task that holds the mutex. */ |
| UBaseType_t uxRecursiveCallCount; /**< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */ |
| } SemaphoreData_t; |
| |
| /* Semaphores do not actually store or copy data, so have an item size of |
| * zero. */ |
| #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 ) |
| #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U ) |
| |
| #if ( configUSE_PREEMPTION == 0 ) |
| |
| /* If the cooperative scheduler is being used then a yield should not be |
| * performed just because a higher priority task has been woken. */ |
| #define queueYIELD_IF_USING_PREEMPTION() |
| #else |
| #if ( configNUMBER_OF_CORES == 1 ) |
| #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API() |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| #define queueYIELD_IF_USING_PREEMPTION() vTaskYieldWithinAPI() |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| #endif |
| |
| /* |
| * Definition of the queue used by the scheduler. |
| * Items are queued by copy, not reference. See the following link for the |
| * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html |
| */ |
| typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */ |
| { |
| int8_t * pcHead; /**< Points to the beginning of the queue storage area. */ |
| int8_t * pcWriteTo; /**< Points to the free next place in the storage area. */ |
| |
| union |
| { |
| QueuePointers_t xQueue; /**< Data required exclusively when this structure is used as a queue. */ |
| SemaphoreData_t xSemaphore; /**< Data required exclusively when this structure is used as a semaphore. */ |
| } u; |
| |
| List_t xTasksWaitingToSend; /**< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */ |
| List_t xTasksWaitingToReceive; /**< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */ |
| |
| volatile UBaseType_t uxMessagesWaiting; /**< The number of items currently in the queue. */ |
| UBaseType_t uxLength; /**< The length of the queue defined as the number of items it will hold, not the number of bytes. */ |
| UBaseType_t uxItemSize; /**< The size of each items that the queue will hold. */ |
| |
| volatile int8_t cRxLock; /**< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */ |
| volatile int8_t cTxLock; /**< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */ |
| |
| #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */ |
| #endif |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| struct QueueDefinition * pxQueueSetContainer; |
| #endif |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| UBaseType_t uxQueueNumber; |
| uint8_t ucQueueType; |
| #endif |
| } xQUEUE; |
| |
| /* The old xQUEUE name is maintained above then typedefed to the new Queue_t |
| * name below to enable the use of older kernel aware debuggers. */ |
| typedef xQUEUE Queue_t; |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * The queue registry is just a means for kernel aware debuggers to locate |
| * queue structures. It has no other purpose so is an optional component. |
| */ |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| |
| /* The type stored within the queue registry array. This allows a name |
| * to be assigned to each queue making kernel aware debugging a little |
| * more user friendly. */ |
| typedef struct QUEUE_REGISTRY_ITEM |
| { |
| const char * pcQueueName; |
| QueueHandle_t xHandle; |
| } xQueueRegistryItem; |
| |
| /* The old xQueueRegistryItem name is maintained above then typedefed to the |
| * new xQueueRegistryItem name below to enable the use of older kernel aware |
| * debuggers. */ |
| typedef xQueueRegistryItem QueueRegistryItem_t; |
| |
| /* The queue registry is simply an array of QueueRegistryItem_t structures. |
| * The pcQueueName member of a structure being NULL is indicative of the |
| * array position being vacant. */ |
| |
| /* MISRA Ref 8.4.2 [Declaration shall be visible] */ |
| /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */ |
| /* coverity[misra_c_2012_rule_8_4_violation] */ |
| PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ]; |
| |
| #endif /* configQUEUE_REGISTRY_SIZE */ |
| |
| /* |
| * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not |
| * prevent an ISR from adding or removing items to the queue, but does prevent |
| * an ISR from removing tasks from the queue event lists. If an ISR finds a |
| * queue is locked it will instead increment the appropriate queue lock count |
| * to indicate that a task may require unblocking. When the queue in unlocked |
| * these lock counts are inspected, and the appropriate action taken. |
| */ |
| static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Uses a critical section to determine if there is any data in a queue. |
| * |
| * @return pdTRUE if the queue contains no items, otherwise pdFALSE. |
| */ |
| static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Uses a critical section to determine if there is any space in a queue. |
| * |
| * @return pdTRUE if there is no space, otherwise pdFALSE; |
| */ |
| static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Copies an item into the queue, either at the front of the queue or the |
| * back of the queue. |
| */ |
| static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, |
| const void * pvItemToQueue, |
| const BaseType_t xPosition ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Copies an item out of a queue. |
| */ |
| static void prvCopyDataFromQueue( Queue_t * const pxQueue, |
| void * const pvBuffer ) PRIVILEGED_FUNCTION; |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| |
| /* |
| * Checks to see if a queue is a member of a queue set, and if so, notifies |
| * the queue set that the queue contains data. |
| */ |
| static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION; |
| #endif |
| |
| /* |
| * Called after a Queue_t structure has been allocated either statically or |
| * dynamically to fill in the structure's members. |
| */ |
| static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, |
| const UBaseType_t uxItemSize, |
| uint8_t * pucQueueStorage, |
| const uint8_t ucQueueType, |
| Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Mutexes are a special type of queue. When a mutex is created, first the |
| * queue is created, then prvInitialiseMutex() is called to configure the queue |
| * as a mutex. |
| */ |
| #if ( configUSE_MUTEXES == 1 ) |
| static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION; |
| #endif |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| |
| /* |
| * If a task waiting for a mutex causes the mutex holder to inherit a |
| * priority, but the waiting task times out, then the holder should |
| * disinherit the priority - but only down to the highest priority of any |
| * other tasks that are waiting for the same mutex. This function returns |
| * that priority. |
| */ |
| static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION; |
| #endif |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * Macro to mark a queue as locked. Locking a queue prevents an ISR from |
| * accessing the queue event lists. |
| */ |
| #define prvLockQueue( pxQueue ) \ |
| taskENTER_CRITICAL(); \ |
| { \ |
| if( ( pxQueue )->cRxLock == queueUNLOCKED ) \ |
| { \ |
| ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \ |
| } \ |
| if( ( pxQueue )->cTxLock == queueUNLOCKED ) \ |
| { \ |
| ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \ |
| } \ |
| } \ |
| taskEXIT_CRITICAL() |
| |
| /* |
| * Macro to increment cTxLock member of the queue data structure. It is |
| * capped at the number of tasks in the system as we cannot unblock more |
| * tasks than the number of tasks in the system. |
| */ |
| #define prvIncrementQueueTxLock( pxQueue, cTxLock ) \ |
| do { \ |
| const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \ |
| if( ( UBaseType_t ) ( cTxLock ) < uxNumberOfTasks ) \ |
| { \ |
| configASSERT( ( cTxLock ) != queueINT8_MAX ); \ |
| ( pxQueue )->cTxLock = ( int8_t ) ( ( cTxLock ) + ( int8_t ) 1 ); \ |
| } \ |
| } while( 0 ) |
| |
| /* |
| * Macro to increment cRxLock member of the queue data structure. It is |
| * capped at the number of tasks in the system as we cannot unblock more |
| * tasks than the number of tasks in the system. |
| */ |
| #define prvIncrementQueueRxLock( pxQueue, cRxLock ) \ |
| do { \ |
| const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \ |
| if( ( UBaseType_t ) ( cRxLock ) < uxNumberOfTasks ) \ |
| { \ |
| configASSERT( ( cRxLock ) != queueINT8_MAX ); \ |
| ( pxQueue )->cRxLock = ( int8_t ) ( ( cRxLock ) + ( int8_t ) 1 ); \ |
| } \ |
| } while( 0 ) |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueGenericReset( QueueHandle_t xQueue, |
| BaseType_t xNewQueue ) |
| { |
| BaseType_t xReturn = pdPASS; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueGenericReset( xQueue, xNewQueue ); |
| |
| configASSERT( pxQueue ); |
| |
| if( ( pxQueue != NULL ) && |
| ( pxQueue->uxLength >= 1U ) && |
| /* Check for multiplication overflow. */ |
| ( ( SIZE_MAX / pxQueue->uxLength ) >= pxQueue->uxItemSize ) ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); |
| pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U; |
| pxQueue->pcWriteTo = pxQueue->pcHead; |
| pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); |
| pxQueue->cRxLock = queueUNLOCKED; |
| pxQueue->cTxLock = queueUNLOCKED; |
| |
| if( xNewQueue == pdFALSE ) |
| { |
| /* If there are tasks blocked waiting to read from the queue, then |
| * the tasks will remain blocked as after this function exits the queue |
| * will still be empty. If there are tasks blocked waiting to write to |
| * the queue, then one should be unblocked as after this function exits |
| * it will be possible to write to it. */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| { |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* Ensure the event queues start in the correct state. */ |
| vListInitialise( &( pxQueue->xTasksWaitingToSend ) ); |
| vListInitialise( &( pxQueue->xTasksWaitingToReceive ) ); |
| } |
| } |
| taskEXIT_CRITICAL(); |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| } |
| |
| configASSERT( xReturn != pdFAIL ); |
| |
| /* A value is returned for calling semantic consistency with previous |
| * versions. */ |
| traceRETURN_xQueueGenericReset( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| |
| QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, |
| const UBaseType_t uxItemSize, |
| uint8_t * pucQueueStorage, |
| StaticQueue_t * pxStaticQueue, |
| const uint8_t ucQueueType ) |
| { |
| Queue_t * pxNewQueue = NULL; |
| |
| traceENTER_xQueueGenericCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxStaticQueue, ucQueueType ); |
| |
| /* The StaticQueue_t structure and the queue storage area must be |
| * supplied. */ |
| configASSERT( pxStaticQueue ); |
| |
| if( ( uxQueueLength > ( UBaseType_t ) 0 ) && |
| ( pxStaticQueue != NULL ) && |
| |
| /* A queue storage area should be provided if the item size is not 0, and |
| * should not be provided if the item size is 0. */ |
| ( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0U ) ) ) && |
| ( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0U ) ) ) ) |
| { |
| #if ( configASSERT_DEFINED == 1 ) |
| { |
| /* Sanity check that the size of the structure used to declare a |
| * variable of type StaticQueue_t or StaticSemaphore_t equals the size of |
| * the real queue and semaphore structures. */ |
| volatile size_t xSize = sizeof( StaticQueue_t ); |
| |
| /* This assertion cannot be branch covered in unit tests */ |
| configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */ |
| ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not defined. */ |
| } |
| #endif /* configASSERT_DEFINED */ |
| |
| /* The address of a statically allocated queue was passed in, use it. |
| * The address of a statically allocated storage area was also passed in |
| * but is already set. */ |
| /* MISRA Ref 11.3.1 [Misaligned access] */ |
| /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */ |
| /* coverity[misra_c_2012_rule_11_3_violation] */ |
| pxNewQueue = ( Queue_t * ) pxStaticQueue; |
| |
| #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) |
| { |
| /* Queues can be allocated wither statically or dynamically, so |
| * note this queue was allocated statically in case the queue is |
| * later deleted. */ |
| pxNewQueue->ucStaticallyAllocated = pdTRUE; |
| } |
| #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
| |
| prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue ); |
| } |
| else |
| { |
| configASSERT( pxNewQueue ); |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xQueueGenericCreateStatic( pxNewQueue ); |
| |
| return pxNewQueue; |
| } |
| |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| |
| BaseType_t xQueueGenericGetStaticBuffers( QueueHandle_t xQueue, |
| uint8_t ** ppucQueueStorage, |
| StaticQueue_t ** ppxStaticQueue ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueGenericGetStaticBuffers( xQueue, ppucQueueStorage, ppxStaticQueue ); |
| |
| configASSERT( pxQueue ); |
| configASSERT( ppxStaticQueue ); |
| |
| #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) |
| { |
| /* Check if the queue was statically allocated. */ |
| if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdTRUE ) |
| { |
| if( ppucQueueStorage != NULL ) |
| { |
| *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead; |
| } |
| |
| /* MISRA Ref 11.3.1 [Misaligned access] */ |
| /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */ |
| /* coverity[misra_c_2012_rule_11_3_violation] */ |
| *ppxStaticQueue = ( StaticQueue_t * ) pxQueue; |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| xReturn = pdFALSE; |
| } |
| } |
| #else /* configSUPPORT_DYNAMIC_ALLOCATION */ |
| { |
| /* Queue must have been statically allocated. */ |
| if( ppucQueueStorage != NULL ) |
| { |
| *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead; |
| } |
| |
| *ppxStaticQueue = ( StaticQueue_t * ) pxQueue; |
| xReturn = pdTRUE; |
| } |
| #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
| |
| traceRETURN_xQueueGenericGetStaticBuffers( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) |
| |
| QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, |
| const UBaseType_t uxItemSize, |
| const uint8_t ucQueueType ) |
| { |
| Queue_t * pxNewQueue = NULL; |
| size_t xQueueSizeInBytes; |
| uint8_t * pucQueueStorage; |
| |
| traceENTER_xQueueGenericCreate( uxQueueLength, uxItemSize, ucQueueType ); |
| |
| if( ( uxQueueLength > ( UBaseType_t ) 0 ) && |
| /* Check for multiplication overflow. */ |
| ( ( SIZE_MAX / uxQueueLength ) >= uxItemSize ) && |
| /* Check for addition overflow. */ |
| ( ( UBaseType_t ) ( SIZE_MAX - sizeof( Queue_t ) ) >= ( uxQueueLength * uxItemSize ) ) ) |
| { |
| /* Allocate enough space to hold the maximum number of items that |
| * can be in the queue at any time. It is valid for uxItemSize to be |
| * zero in the case the queue is used as a semaphore. */ |
| xQueueSizeInBytes = ( size_t ) ( ( size_t ) uxQueueLength * ( size_t ) uxItemSize ); |
| |
| /* MISRA Ref 11.5.1 [Malloc memory assignment] */ |
| /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ |
| /* coverity[misra_c_2012_rule_11_5_violation] */ |
| pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); |
| |
| if( pxNewQueue != NULL ) |
| { |
| /* Jump past the queue structure to find the location of the queue |
| * storage area. */ |
| pucQueueStorage = ( uint8_t * ) pxNewQueue; |
| pucQueueStorage += sizeof( Queue_t ); |
| |
| #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| { |
| /* Queues can be created either statically or dynamically, so |
| * note this task was created dynamically in case it is later |
| * deleted. */ |
| pxNewQueue->ucStaticallyAllocated = pdFALSE; |
| } |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| |
| prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue ); |
| } |
| else |
| { |
| traceQUEUE_CREATE_FAILED( ucQueueType ); |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| configASSERT( pxNewQueue ); |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xQueueGenericCreate( pxNewQueue ); |
| |
| return pxNewQueue; |
| } |
| |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| /*-----------------------------------------------------------*/ |
| |
| static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, |
| const UBaseType_t uxItemSize, |
| uint8_t * pucQueueStorage, |
| const uint8_t ucQueueType, |
| Queue_t * pxNewQueue ) |
| { |
| /* Remove compiler warnings about unused parameters should |
| * configUSE_TRACE_FACILITY not be set to 1. */ |
| ( void ) ucQueueType; |
| |
| if( uxItemSize == ( UBaseType_t ) 0 ) |
| { |
| /* No RAM was allocated for the queue storage area, but PC head cannot |
| * be set to NULL because NULL is used as a key to say the queue is used as |
| * a mutex. Therefore just set pcHead to point to the queue as a benign |
| * value that is known to be within the memory map. */ |
| pxNewQueue->pcHead = ( int8_t * ) pxNewQueue; |
| } |
| else |
| { |
| /* Set the head to the start of the queue storage area. */ |
| pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage; |
| } |
| |
| /* Initialise the queue members as described where the queue type is |
| * defined. */ |
| pxNewQueue->uxLength = uxQueueLength; |
| pxNewQueue->uxItemSize = uxItemSize; |
| ( void ) xQueueGenericReset( pxNewQueue, pdTRUE ); |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| { |
| pxNewQueue->ucQueueType = ucQueueType; |
| } |
| #endif /* configUSE_TRACE_FACILITY */ |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| { |
| pxNewQueue->pxQueueSetContainer = NULL; |
| } |
| #endif /* configUSE_QUEUE_SETS */ |
| |
| traceQUEUE_CREATE( pxNewQueue ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| |
| static void prvInitialiseMutex( Queue_t * pxNewQueue ) |
| { |
| if( pxNewQueue != NULL ) |
| { |
| /* The queue create function will set all the queue structure members |
| * correctly for a generic queue, but this function is creating a |
| * mutex. Overwrite those members that need to be set differently - |
| * in particular the information required for priority inheritance. */ |
| pxNewQueue->u.xSemaphore.xMutexHolder = NULL; |
| pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX; |
| |
| /* In case this is a recursive mutex. */ |
| pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0; |
| |
| traceCREATE_MUTEX( pxNewQueue ); |
| |
| /* Start with the semaphore in the expected state. */ |
| ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK ); |
| } |
| else |
| { |
| traceCREATE_MUTEX_FAILED(); |
| } |
| } |
| |
| #endif /* configUSE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| |
| QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) |
| { |
| QueueHandle_t xNewQueue; |
| const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0; |
| |
| traceENTER_xQueueCreateMutex( ucQueueType ); |
| |
| xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType ); |
| prvInitialiseMutex( ( Queue_t * ) xNewQueue ); |
| |
| traceRETURN_xQueueCreateMutex( xNewQueue ); |
| |
| return xNewQueue; |
| } |
| |
| #endif /* configUSE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) |
| |
| QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, |
| StaticQueue_t * pxStaticQueue ) |
| { |
| QueueHandle_t xNewQueue; |
| const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0; |
| |
| traceENTER_xQueueCreateMutexStatic( ucQueueType, pxStaticQueue ); |
| |
| /* Prevent compiler warnings about unused parameters if |
| * configUSE_TRACE_FACILITY does not equal 1. */ |
| ( void ) ucQueueType; |
| |
| xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType ); |
| prvInitialiseMutex( ( Queue_t * ) xNewQueue ); |
| |
| traceRETURN_xQueueCreateMutexStatic( xNewQueue ); |
| |
| return xNewQueue; |
| } |
| |
| #endif /* configUSE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) |
| |
| TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore ) |
| { |
| TaskHandle_t pxReturn; |
| Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore; |
| |
| traceENTER_xQueueGetMutexHolder( xSemaphore ); |
| |
| configASSERT( xSemaphore ); |
| |
| /* This function is called by xSemaphoreGetMutexHolder(), and should not |
| * be called directly. Note: This is a good way of determining if the |
| * calling task is the mutex holder, but not a good way of determining the |
| * identity of the mutex holder, as the holder may change between the |
| * following critical section exiting and the function returning. */ |
| taskENTER_CRITICAL(); |
| { |
| if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX ) |
| { |
| pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder; |
| } |
| else |
| { |
| pxReturn = NULL; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xQueueGetMutexHolder( pxReturn ); |
| |
| return pxReturn; |
| } |
| |
| #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) |
| |
| TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore ) |
| { |
| TaskHandle_t pxReturn; |
| |
| traceENTER_xQueueGetMutexHolderFromISR( xSemaphore ); |
| |
| configASSERT( xSemaphore ); |
| |
| /* Mutexes cannot be used in interrupt service routines, so the mutex |
| * holder should not change in an ISR, and therefore a critical section is |
| * not required here. */ |
| if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX ) |
| { |
| pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder; |
| } |
| else |
| { |
| pxReturn = NULL; |
| } |
| |
| traceRETURN_xQueueGetMutexHolderFromISR( pxReturn ); |
| |
| return pxReturn; |
| } |
| |
| #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_RECURSIVE_MUTEXES == 1 ) |
| |
| BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxMutex = ( Queue_t * ) xMutex; |
| |
| traceENTER_xQueueGiveMutexRecursive( xMutex ); |
| |
| configASSERT( pxMutex ); |
| |
| /* If this is the task that holds the mutex then xMutexHolder will not |
| * change outside of this task. If this task does not hold the mutex then |
| * pxMutexHolder can never coincidentally equal the tasks handle, and as |
| * this is the only condition we are interested in it does not matter if |
| * pxMutexHolder is accessed simultaneously by another task. Therefore no |
| * mutual exclusion is required to test the pxMutexHolder variable. */ |
| if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() ) |
| { |
| traceGIVE_MUTEX_RECURSIVE( pxMutex ); |
| |
| /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to |
| * the task handle, therefore no underflow check is required. Also, |
| * uxRecursiveCallCount is only modified by the mutex holder, and as |
| * there can only be one, no mutual exclusion is required to modify the |
| * uxRecursiveCallCount member. */ |
| ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--; |
| |
| /* Has the recursive call count unwound to 0? */ |
| if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 ) |
| { |
| /* Return the mutex. This will automatically unblock any other |
| * task that might be waiting to access the mutex. */ |
| ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| xReturn = pdPASS; |
| } |
| else |
| { |
| /* The mutex cannot be given because the calling task is not the |
| * holder. */ |
| xReturn = pdFAIL; |
| |
| traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex ); |
| } |
| |
| traceRETURN_xQueueGiveMutexRecursive( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_RECURSIVE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_RECURSIVE_MUTEXES == 1 ) |
| |
| BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, |
| TickType_t xTicksToWait ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxMutex = ( Queue_t * ) xMutex; |
| |
| traceENTER_xQueueTakeMutexRecursive( xMutex, xTicksToWait ); |
| |
| configASSERT( pxMutex ); |
| |
| /* Comments regarding mutual exclusion as per those within |
| * xQueueGiveMutexRecursive(). */ |
| |
| traceTAKE_MUTEX_RECURSIVE( pxMutex ); |
| |
| if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() ) |
| { |
| ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++; |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait ); |
| |
| /* pdPASS will only be returned if the mutex was successfully |
| * obtained. The calling task may have entered the Blocked state |
| * before reaching here. */ |
| if( xReturn != pdFAIL ) |
| { |
| ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++; |
| } |
| else |
| { |
| traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex ); |
| } |
| } |
| |
| traceRETURN_xQueueTakeMutexRecursive( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_RECURSIVE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) |
| |
| QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, |
| const UBaseType_t uxInitialCount, |
| StaticQueue_t * pxStaticQueue ) |
| { |
| QueueHandle_t xHandle = NULL; |
| |
| traceENTER_xQueueCreateCountingSemaphoreStatic( uxMaxCount, uxInitialCount, pxStaticQueue ); |
| |
| if( ( uxMaxCount != 0U ) && |
| ( uxInitialCount <= uxMaxCount ) ) |
| { |
| xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE ); |
| |
| if( xHandle != NULL ) |
| { |
| ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount; |
| |
| traceCREATE_COUNTING_SEMAPHORE(); |
| } |
| else |
| { |
| traceCREATE_COUNTING_SEMAPHORE_FAILED(); |
| } |
| } |
| else |
| { |
| configASSERT( xHandle ); |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xQueueCreateCountingSemaphoreStatic( xHandle ); |
| |
| return xHandle; |
| } |
| |
| #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| |
| QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, |
| const UBaseType_t uxInitialCount ) |
| { |
| QueueHandle_t xHandle = NULL; |
| |
| traceENTER_xQueueCreateCountingSemaphore( uxMaxCount, uxInitialCount ); |
| |
| if( ( uxMaxCount != 0U ) && |
| ( uxInitialCount <= uxMaxCount ) ) |
| { |
| xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE ); |
| |
| if( xHandle != NULL ) |
| { |
| ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount; |
| |
| traceCREATE_COUNTING_SEMAPHORE(); |
| } |
| else |
| { |
| traceCREATE_COUNTING_SEMAPHORE_FAILED(); |
| } |
| } |
| else |
| { |
| configASSERT( xHandle ); |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xQueueCreateCountingSemaphore( xHandle ); |
| |
| return xHandle; |
| } |
| |
| #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueGenericSend( QueueHandle_t xQueue, |
| const void * const pvItemToQueue, |
| TickType_t xTicksToWait, |
| const BaseType_t xCopyPosition ) |
| { |
| BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired; |
| TimeOut_t xTimeOut; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueGenericSend( xQueue, pvItemToQueue, xTicksToWait, xCopyPosition ); |
| |
| configASSERT( pxQueue ); |
| configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) ); |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| { |
| configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); |
| } |
| #endif |
| |
| for( ; ; ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| /* Is there room on the queue now? The running task must be the |
| * highest priority task wanting to access the queue. If the head item |
| * in the queue is to be overwritten then it does not matter if the |
| * queue is full. */ |
| if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) ) |
| { |
| traceQUEUE_SEND( pxQueue ); |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| { |
| const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting; |
| |
| xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition ); |
| |
| if( pxQueue->pxQueueSetContainer != NULL ) |
| { |
| if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) ) |
| { |
| /* Do not notify the queue set as an existing item |
| * was overwritten in the queue so the number of items |
| * in the queue has not changed. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE ) |
| { |
| /* The queue is a member of a queue set, and posting |
| * to the queue set caused a higher priority task to |
| * unblock. A context switch is required. */ |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* If there was a task waiting for data to arrive on the |
| * queue then unblock it now. */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The unblocked task has a priority higher than |
| * our own so yield immediately. Yes it is ok to |
| * do this from within the critical section - the |
| * kernel takes care of that. */ |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else if( xYieldRequired != pdFALSE ) |
| { |
| /* This path is a special case that will only get |
| * executed if the task was holding multiple mutexes |
| * and the mutexes were given back in an order that is |
| * different to that in which they were taken. */ |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| #else /* configUSE_QUEUE_SETS */ |
| { |
| xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition ); |
| |
| /* If there was a task waiting for data to arrive on the |
| * queue then unblock it now. */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The unblocked task has a priority higher than |
| * our own so yield immediately. Yes it is ok to do |
| * this from within the critical section - the kernel |
| * takes care of that. */ |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else if( xYieldRequired != pdFALSE ) |
| { |
| /* This path is a special case that will only get |
| * executed if the task was holding multiple mutexes and |
| * the mutexes were given back in an order that is |
| * different to that in which they were taken. */ |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* configUSE_QUEUE_SETS */ |
| |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xQueueGenericSend( pdPASS ); |
| |
| return pdPASS; |
| } |
| else |
| { |
| if( xTicksToWait == ( TickType_t ) 0 ) |
| { |
| /* The queue was full and no block time is specified (or |
| * the block time has expired) so leave now. */ |
| taskEXIT_CRITICAL(); |
| |
| /* Return to the original privilege level before exiting |
| * the function. */ |
| traceQUEUE_SEND_FAILED( pxQueue ); |
| traceRETURN_xQueueGenericSend( errQUEUE_FULL ); |
| |
| return errQUEUE_FULL; |
| } |
| else if( xEntryTimeSet == pdFALSE ) |
| { |
| /* The queue was full and a block time was specified so |
| * configure the timeout structure. */ |
| vTaskInternalSetTimeOutState( &xTimeOut ); |
| xEntryTimeSet = pdTRUE; |
| } |
| else |
| { |
| /* Entry time was already set. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| /* Interrupts and other tasks can send to and receive from the queue |
| * now the critical section has been exited. */ |
| |
| vTaskSuspendAll(); |
| prvLockQueue( pxQueue ); |
| |
| /* Update the timeout state to see if it has expired yet. */ |
| if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) |
| { |
| if( prvIsQueueFull( pxQueue ) != pdFALSE ) |
| { |
| traceBLOCKING_ON_QUEUE_SEND( pxQueue ); |
| vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait ); |
| |
| /* Unlocking the queue means queue events can effect the |
| * event list. It is possible that interrupts occurring now |
| * remove this task from the event list again - but as the |
| * scheduler is suspended the task will go onto the pending |
| * ready list instead of the actual ready list. */ |
| prvUnlockQueue( pxQueue ); |
| |
| /* Resuming the scheduler will move tasks from the pending |
| * ready list into the ready list - so it is feasible that this |
| * task is already in the ready list before it yields - in which |
| * case the yield will not cause a context switch unless there |
| * is also a higher priority task in the pending ready list. */ |
| if( xTaskResumeAll() == pdFALSE ) |
| { |
| taskYIELD_WITHIN_API(); |
| } |
| } |
| else |
| { |
| /* Try again. */ |
| prvUnlockQueue( pxQueue ); |
| ( void ) xTaskResumeAll(); |
| } |
| } |
| else |
| { |
| /* The timeout has expired. */ |
| prvUnlockQueue( pxQueue ); |
| ( void ) xTaskResumeAll(); |
| |
| traceQUEUE_SEND_FAILED( pxQueue ); |
| traceRETURN_xQueueGenericSend( errQUEUE_FULL ); |
| |
| return errQUEUE_FULL; |
| } |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, |
| const void * const pvItemToQueue, |
| BaseType_t * const pxHigherPriorityTaskWoken, |
| const BaseType_t xCopyPosition ) |
| { |
| BaseType_t xReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueGenericSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken, xCopyPosition ); |
| |
| configASSERT( pxQueue ); |
| configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) ); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a maximum |
| * system call (or maximum API call) interrupt priority. Interrupts that are |
| * above the maximum system call priority are kept permanently enabled, even |
| * when the RTOS kernel is in a critical section, but cannot make any calls to |
| * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has been |
| * assigned a priority above the configured maximum system call priority. |
| * Only FreeRTOS functions that end in FromISR can be called from interrupts |
| * that have been assigned a priority at or (logically) below the maximum |
| * system call interrupt priority. FreeRTOS maintains a separate interrupt |
| * safe API to ensure interrupt entry is as fast and as simple as possible. |
| * More information (albeit Cortex-M specific) is provided on the following |
| * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| /* Similar to xQueueGenericSend, except without blocking if there is no room |
| * in the queue. Also don't directly wake a task that was blocked on a queue |
| * read, instead return a flag to say whether a context switch is required or |
| * not (i.e. has a task with a higher priority than us been woken by this |
| * post). */ |
| uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR(); |
| { |
| if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) ) |
| { |
| const int8_t cTxLock = pxQueue->cTxLock; |
| const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting; |
| |
| traceQUEUE_SEND_FROM_ISR( pxQueue ); |
| |
| /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a |
| * semaphore or mutex. That means prvCopyDataToQueue() cannot result |
| * in a task disinheriting a priority and prvCopyDataToQueue() can be |
| * called here even though the disinherit function does not check if |
| * the scheduler is suspended before accessing the ready lists. */ |
| ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition ); |
| |
| /* The event list is not altered if the queue is locked. This will |
| * be done when the queue is unlocked later. */ |
| if( cTxLock == queueUNLOCKED ) |
| { |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| { |
| if( pxQueue->pxQueueSetContainer != NULL ) |
| { |
| if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) ) |
| { |
| /* Do not notify the queue set as an existing item |
| * was overwritten in the queue so the number of items |
| * in the queue has not changed. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE ) |
| { |
| /* The queue is a member of a queue set, and posting |
| * to the queue set caused a higher priority task to |
| * unblock. A context switch is required. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority so |
| * record that a context switch is required. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| #else /* configUSE_QUEUE_SETS */ |
| { |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority so record that a |
| * context switch is required. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Not used in this path. */ |
| ( void ) uxPreviousMessagesWaiting; |
| } |
| #endif /* configUSE_QUEUE_SETS */ |
| } |
| else |
| { |
| /* Increment the lock count so the task that unlocks the queue |
| * knows that data was posted while it was locked. */ |
| prvIncrementQueueTxLock( pxQueue, cTxLock ); |
| } |
| |
| xReturn = pdPASS; |
| } |
| else |
| { |
| traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue ); |
| xReturn = errQUEUE_FULL; |
| } |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_xQueueGenericSendFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, |
| BaseType_t * const pxHigherPriorityTaskWoken ) |
| { |
| BaseType_t xReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueGiveFromISR( xQueue, pxHigherPriorityTaskWoken ); |
| |
| /* Similar to xQueueGenericSendFromISR() but used with semaphores where the |
| * item size is 0. Don't directly wake a task that was blocked on a queue |
| * read, instead return a flag to say whether a context switch is required or |
| * not (i.e. has a task with a higher priority than us been woken by this |
| * post). */ |
| |
| configASSERT( pxQueue ); |
| |
| /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR() |
| * if the item size is not 0. */ |
| configASSERT( pxQueue->uxItemSize == 0 ); |
| |
| /* Normally a mutex would not be given from an interrupt, especially if |
| * there is a mutex holder, as priority inheritance makes no sense for an |
| * interrupts, only tasks. */ |
| configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) ); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a maximum |
| * system call (or maximum API call) interrupt priority. Interrupts that are |
| * above the maximum system call priority are kept permanently enabled, even |
| * when the RTOS kernel is in a critical section, but cannot make any calls to |
| * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has been |
| * assigned a priority above the configured maximum system call priority. |
| * Only FreeRTOS functions that end in FromISR can be called from interrupts |
| * that have been assigned a priority at or (logically) below the maximum |
| * system call interrupt priority. FreeRTOS maintains a separate interrupt |
| * safe API to ensure interrupt entry is as fast and as simple as possible. |
| * More information (albeit Cortex-M specific) is provided on the following |
| * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR(); |
| { |
| const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| |
| /* When the queue is used to implement a semaphore no data is ever |
| * moved through the queue but it is still valid to see if the queue 'has |
| * space'. */ |
| if( uxMessagesWaiting < pxQueue->uxLength ) |
| { |
| const int8_t cTxLock = pxQueue->cTxLock; |
| |
| traceQUEUE_SEND_FROM_ISR( pxQueue ); |
| |
| /* A task can only have an inherited priority if it is a mutex |
| * holder - and if there is a mutex holder then the mutex cannot be |
| * given from an ISR. As this is the ISR version of the function it |
| * can be assumed there is no mutex holder and no need to determine if |
| * priority disinheritance is needed. Simply increase the count of |
| * messages (semaphores) available. */ |
| pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting + ( UBaseType_t ) 1 ); |
| |
| /* The event list is not altered if the queue is locked. This will |
| * be done when the queue is unlocked later. */ |
| if( cTxLock == queueUNLOCKED ) |
| { |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| { |
| if( pxQueue->pxQueueSetContainer != NULL ) |
| { |
| if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE ) |
| { |
| /* The semaphore is a member of a queue set, and |
| * posting to the queue set caused a higher priority |
| * task to unblock. A context switch is required. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority so |
| * record that a context switch is required. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| #else /* configUSE_QUEUE_SETS */ |
| { |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority so record that a |
| * context switch is required. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* configUSE_QUEUE_SETS */ |
| } |
| else |
| { |
| /* Increment the lock count so the task that unlocks the queue |
| * knows that data was posted while it was locked. */ |
| prvIncrementQueueTxLock( pxQueue, cTxLock ); |
| } |
| |
| xReturn = pdPASS; |
| } |
| else |
| { |
| traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue ); |
| xReturn = errQUEUE_FULL; |
| } |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_xQueueGiveFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueReceive( QueueHandle_t xQueue, |
| void * const pvBuffer, |
| TickType_t xTicksToWait ) |
| { |
| BaseType_t xEntryTimeSet = pdFALSE; |
| TimeOut_t xTimeOut; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueReceive( xQueue, pvBuffer, xTicksToWait ); |
| |
| /* Check the pointer is not NULL. */ |
| configASSERT( ( pxQueue ) ); |
| |
| /* The buffer into which data is received can only be NULL if the data size |
| * is zero (so no data is copied into the buffer). */ |
| configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| |
| /* Cannot block if the scheduler is suspended. */ |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| { |
| configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); |
| } |
| #endif |
| |
| for( ; ; ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| |
| /* Is there data in the queue now? To be running the calling task |
| * must be the highest priority task wanting to access the queue. */ |
| if( uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| { |
| /* Data available, remove one item. */ |
| prvCopyDataFromQueue( pxQueue, pvBuffer ); |
| traceQUEUE_RECEIVE( pxQueue ); |
| pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting - ( UBaseType_t ) 1 ); |
| |
| /* There is now space in the queue, were any tasks waiting to |
| * post to the queue? If so, unblock the highest priority waiting |
| * task. */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| { |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xQueueReceive( pdPASS ); |
| |
| return pdPASS; |
| } |
| else |
| { |
| if( xTicksToWait == ( TickType_t ) 0 ) |
| { |
| /* The queue was empty and no block time is specified (or |
| * the block time has expired) so leave now. */ |
| taskEXIT_CRITICAL(); |
| |
| traceQUEUE_RECEIVE_FAILED( pxQueue ); |
| traceRETURN_xQueueReceive( errQUEUE_EMPTY ); |
| |
| return errQUEUE_EMPTY; |
| } |
| else if( xEntryTimeSet == pdFALSE ) |
| { |
| /* The queue was empty and a block time was specified so |
| * configure the timeout structure. */ |
| vTaskInternalSetTimeOutState( &xTimeOut ); |
| xEntryTimeSet = pdTRUE; |
| } |
| else |
| { |
| /* Entry time was already set. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| /* Interrupts and other tasks can send to and receive from the queue |
| * now the critical section has been exited. */ |
| |
| vTaskSuspendAll(); |
| prvLockQueue( pxQueue ); |
| |
| /* Update the timeout state to see if it has expired yet. */ |
| if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) |
| { |
| /* The timeout has not expired. If the queue is still empty place |
| * the task on the list of tasks waiting to receive from the queue. */ |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| { |
| traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue ); |
| vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); |
| prvUnlockQueue( pxQueue ); |
| |
| if( xTaskResumeAll() == pdFALSE ) |
| { |
| taskYIELD_WITHIN_API(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* The queue contains data again. Loop back to try and read the |
| * data. */ |
| prvUnlockQueue( pxQueue ); |
| ( void ) xTaskResumeAll(); |
| } |
| } |
| else |
| { |
| /* Timed out. If there is no data in the queue exit, otherwise loop |
| * back and attempt to read the data. */ |
| prvUnlockQueue( pxQueue ); |
| ( void ) xTaskResumeAll(); |
| |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| { |
| traceQUEUE_RECEIVE_FAILED( pxQueue ); |
| traceRETURN_xQueueReceive( errQUEUE_EMPTY ); |
| |
| return errQUEUE_EMPTY; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue, |
| TickType_t xTicksToWait ) |
| { |
| BaseType_t xEntryTimeSet = pdFALSE; |
| TimeOut_t xTimeOut; |
| Queue_t * const pxQueue = xQueue; |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| BaseType_t xInheritanceOccurred = pdFALSE; |
| #endif |
| |
| traceENTER_xQueueSemaphoreTake( xQueue, xTicksToWait ); |
| |
| /* Check the queue pointer is not NULL. */ |
| configASSERT( ( pxQueue ) ); |
| |
| /* Check this really is a semaphore, in which case the item size will be |
| * 0. */ |
| configASSERT( pxQueue->uxItemSize == 0 ); |
| |
| /* Cannot block if the scheduler is suspended. */ |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| { |
| configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); |
| } |
| #endif |
| |
| for( ; ; ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| /* Semaphores are queues with an item size of 0, and where the |
| * number of messages in the queue is the semaphore's count value. */ |
| const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting; |
| |
| /* Is there data in the queue now? To be running the calling task |
| * must be the highest priority task wanting to access the queue. */ |
| if( uxSemaphoreCount > ( UBaseType_t ) 0 ) |
| { |
| traceQUEUE_RECEIVE( pxQueue ); |
| |
| /* Semaphores are queues with a data size of zero and where the |
| * messages waiting is the semaphore's count. Reduce the count. */ |
| pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxSemaphoreCount - ( UBaseType_t ) 1 ); |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| { |
| if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) |
| { |
| /* Record the information required to implement |
| * priority inheritance should it become necessary. */ |
| pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* configUSE_MUTEXES */ |
| |
| /* Check to see if other tasks are blocked waiting to give the |
| * semaphore, and if so, unblock the highest priority such task. */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| { |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xQueueSemaphoreTake( pdPASS ); |
| |
| return pdPASS; |
| } |
| else |
| { |
| if( xTicksToWait == ( TickType_t ) 0 ) |
| { |
| /* The semaphore count was 0 and no block time is specified |
| * (or the block time has expired) so exit now. */ |
| taskEXIT_CRITICAL(); |
| |
| traceQUEUE_RECEIVE_FAILED( pxQueue ); |
| traceRETURN_xQueueSemaphoreTake( errQUEUE_EMPTY ); |
| |
| return errQUEUE_EMPTY; |
| } |
| else if( xEntryTimeSet == pdFALSE ) |
| { |
| /* The semaphore count was 0 and a block time was specified |
| * so configure the timeout structure ready to block. */ |
| vTaskInternalSetTimeOutState( &xTimeOut ); |
| xEntryTimeSet = pdTRUE; |
| } |
| else |
| { |
| /* Entry time was already set. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| /* Interrupts and other tasks can give to and take from the semaphore |
| * now the critical section has been exited. */ |
| |
| vTaskSuspendAll(); |
| prvLockQueue( pxQueue ); |
| |
| /* Update the timeout state to see if it has expired yet. */ |
| if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) |
| { |
| /* A block time is specified and not expired. If the semaphore |
| * count is 0 then enter the Blocked state to wait for a semaphore to |
| * become available. As semaphores are implemented with queues the |
| * queue being empty is equivalent to the semaphore count being 0. */ |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| { |
| traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue ); |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| { |
| if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder ); |
| } |
| taskEXIT_CRITICAL(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* if ( configUSE_MUTEXES == 1 ) */ |
| |
| vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); |
| prvUnlockQueue( pxQueue ); |
| |
| if( xTaskResumeAll() == pdFALSE ) |
| { |
| taskYIELD_WITHIN_API(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* There was no timeout and the semaphore count was not 0, so |
| * attempt to take the semaphore again. */ |
| prvUnlockQueue( pxQueue ); |
| ( void ) xTaskResumeAll(); |
| } |
| } |
| else |
| { |
| /* Timed out. */ |
| prvUnlockQueue( pxQueue ); |
| ( void ) xTaskResumeAll(); |
| |
| /* If the semaphore count is 0 exit now as the timeout has |
| * expired. Otherwise return to attempt to take the semaphore that is |
| * known to be available. As semaphores are implemented by queues the |
| * queue being empty is equivalent to the semaphore count being 0. */ |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| { |
| #if ( configUSE_MUTEXES == 1 ) |
| { |
| /* xInheritanceOccurred could only have be set if |
| * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to |
| * test the mutex type again to check it is actually a mutex. */ |
| if( xInheritanceOccurred != pdFALSE ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| UBaseType_t uxHighestWaitingPriority; |
| |
| /* This task blocking on the mutex caused another |
| * task to inherit this task's priority. Now this task |
| * has timed out the priority should be disinherited |
| * again, but only as low as the next highest priority |
| * task that is waiting for the same mutex. */ |
| uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue ); |
| |
| /* vTaskPriorityDisinheritAfterTimeout uses the uxHighestWaitingPriority |
| * parameter to index pxReadyTasksLists when adding the task holding |
| * mutex to the ready list for its new priority. Coverity thinks that |
| * it can result in out-of-bounds access which is not true because |
| * uxHighestWaitingPriority, as returned by prvGetDisinheritPriorityAfterTimeout, |
| * is capped at ( configMAX_PRIORITIES - 1 ). */ |
| /* coverity[overrun] */ |
| vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority ); |
| } |
| taskEXIT_CRITICAL(); |
| } |
| } |
| #endif /* configUSE_MUTEXES */ |
| |
| traceQUEUE_RECEIVE_FAILED( pxQueue ); |
| traceRETURN_xQueueSemaphoreTake( errQUEUE_EMPTY ); |
| |
| return errQUEUE_EMPTY; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueuePeek( QueueHandle_t xQueue, |
| void * const pvBuffer, |
| TickType_t xTicksToWait ) |
| { |
| BaseType_t xEntryTimeSet = pdFALSE; |
| TimeOut_t xTimeOut; |
| int8_t * pcOriginalReadPosition; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueuePeek( xQueue, pvBuffer, xTicksToWait ); |
| |
| /* Check the pointer is not NULL. */ |
| configASSERT( ( pxQueue ) ); |
| |
| /* The buffer into which data is received can only be NULL if the data size |
| * is zero (so no data is copied into the buffer. */ |
| configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| |
| /* Cannot block if the scheduler is suspended. */ |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| { |
| configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); |
| } |
| #endif |
| |
| for( ; ; ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| |
| /* Is there data in the queue now? To be running the calling task |
| * must be the highest priority task wanting to access the queue. */ |
| if( uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| { |
| /* Remember the read position so it can be reset after the data |
| * is read from the queue as this function is only peeking the |
| * data, not removing it. */ |
| pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom; |
| |
| prvCopyDataFromQueue( pxQueue, pvBuffer ); |
| traceQUEUE_PEEK( pxQueue ); |
| |
| /* The data is not being removed, so reset the read pointer. */ |
| pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition; |
| |
| /* The data is being left in the queue, so see if there are |
| * any other tasks waiting for the data. */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority than this task. */ |
| queueYIELD_IF_USING_PREEMPTION(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xQueuePeek( pdPASS ); |
| |
| return pdPASS; |
| } |
| else |
| { |
| if( xTicksToWait == ( TickType_t ) 0 ) |
| { |
| /* The queue was empty and no block time is specified (or |
| * the block time has expired) so leave now. */ |
| taskEXIT_CRITICAL(); |
| |
| traceQUEUE_PEEK_FAILED( pxQueue ); |
| traceRETURN_xQueuePeek( errQUEUE_EMPTY ); |
| |
| return errQUEUE_EMPTY; |
| } |
| else if( xEntryTimeSet == pdFALSE ) |
| { |
| /* The queue was empty and a block time was specified so |
| * configure the timeout structure ready to enter the blocked |
| * state. */ |
| vTaskInternalSetTimeOutState( &xTimeOut ); |
| xEntryTimeSet = pdTRUE; |
| } |
| else |
| { |
| /* Entry time was already set. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| /* Interrupts and other tasks can send to and receive from the queue |
| * now that the critical section has been exited. */ |
| |
| vTaskSuspendAll(); |
| prvLockQueue( pxQueue ); |
| |
| /* Update the timeout state to see if it has expired yet. */ |
| if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) |
| { |
| /* Timeout has not expired yet, check to see if there is data in the |
| * queue now, and if not enter the Blocked state to wait for data. */ |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| { |
| traceBLOCKING_ON_QUEUE_PEEK( pxQueue ); |
| vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); |
| prvUnlockQueue( pxQueue ); |
| |
| if( xTaskResumeAll() == pdFALSE ) |
| { |
| taskYIELD_WITHIN_API(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* There is data in the queue now, so don't enter the blocked |
| * state, instead return to try and obtain the data. */ |
| prvUnlockQueue( pxQueue ); |
| ( void ) xTaskResumeAll(); |
| } |
| } |
| else |
| { |
| /* The timeout has expired. If there is still no data in the queue |
| * exit, otherwise go back and try to read the data again. */ |
| prvUnlockQueue( pxQueue ); |
| ( void ) xTaskResumeAll(); |
| |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| { |
| traceQUEUE_PEEK_FAILED( pxQueue ); |
| traceRETURN_xQueuePeek( errQUEUE_EMPTY ); |
| |
| return errQUEUE_EMPTY; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, |
| void * const pvBuffer, |
| BaseType_t * const pxHigherPriorityTaskWoken ) |
| { |
| BaseType_t xReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueReceiveFromISR( xQueue, pvBuffer, pxHigherPriorityTaskWoken ); |
| |
| configASSERT( pxQueue ); |
| configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a maximum |
| * system call (or maximum API call) interrupt priority. Interrupts that are |
| * above the maximum system call priority are kept permanently enabled, even |
| * when the RTOS kernel is in a critical section, but cannot make any calls to |
| * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has been |
| * assigned a priority above the configured maximum system call priority. |
| * Only FreeRTOS functions that end in FromISR can be called from interrupts |
| * that have been assigned a priority at or (logically) below the maximum |
| * system call interrupt priority. FreeRTOS maintains a separate interrupt |
| * safe API to ensure interrupt entry is as fast and as simple as possible. |
| * More information (albeit Cortex-M specific) is provided on the following |
| * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR(); |
| { |
| const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| |
| /* Cannot block in an ISR, so check there is data available. */ |
| if( uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| { |
| const int8_t cRxLock = pxQueue->cRxLock; |
| |
| traceQUEUE_RECEIVE_FROM_ISR( pxQueue ); |
| |
| prvCopyDataFromQueue( pxQueue, pvBuffer ); |
| pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting - ( UBaseType_t ) 1 ); |
| |
| /* If the queue is locked the event list will not be modified. |
| * Instead update the lock count so the task that unlocks the queue |
| * will know that an ISR has removed data while the queue was |
| * locked. */ |
| if( cRxLock == queueUNLOCKED ) |
| { |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority than us so |
| * force a context switch. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* Increment the lock count so the task that unlocks the queue |
| * knows that data was removed while it was locked. */ |
| prvIncrementQueueRxLock( pxQueue, cRxLock ); |
| } |
| |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue ); |
| } |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_xQueueReceiveFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, |
| void * const pvBuffer ) |
| { |
| BaseType_t xReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| int8_t * pcOriginalReadPosition; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueuePeekFromISR( xQueue, pvBuffer ); |
| |
| configASSERT( pxQueue ); |
| configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */ |
| |
| /* RTOS ports that support interrupt nesting have the concept of a maximum |
| * system call (or maximum API call) interrupt priority. Interrupts that are |
| * above the maximum system call priority are kept permanently enabled, even |
| * when the RTOS kernel is in a critical section, but cannot make any calls to |
| * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has been |
| * assigned a priority above the configured maximum system call priority. |
| * Only FreeRTOS functions that end in FromISR can be called from interrupts |
| * that have been assigned a priority at or (logically) below the maximum |
| * system call interrupt priority. FreeRTOS maintains a separate interrupt |
| * safe API to ensure interrupt entry is as fast and as simple as possible. |
| * More information (albeit Cortex-M specific) is provided on the following |
| * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR(); |
| { |
| /* Cannot block in an ISR, so check there is data available. */ |
| if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| { |
| traceQUEUE_PEEK_FROM_ISR( pxQueue ); |
| |
| /* Remember the read position so it can be reset as nothing is |
| * actually being removed from the queue. */ |
| pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom; |
| prvCopyDataFromQueue( pxQueue, pvBuffer ); |
| pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition; |
| |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue ); |
| } |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_xQueuePeekFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue ) |
| { |
| UBaseType_t uxReturn; |
| |
| traceENTER_uxQueueMessagesWaiting( xQueue ); |
| |
| configASSERT( xQueue ); |
| |
| taskENTER_CRITICAL(); |
| { |
| uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_uxQueueMessagesWaiting( uxReturn ); |
| |
| return uxReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue ) |
| { |
| UBaseType_t uxReturn; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_uxQueueSpacesAvailable( xQueue ); |
| |
| configASSERT( pxQueue ); |
| |
| taskENTER_CRITICAL(); |
| { |
| uxReturn = ( UBaseType_t ) ( pxQueue->uxLength - pxQueue->uxMessagesWaiting ); |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_uxQueueSpacesAvailable( uxReturn ); |
| |
| return uxReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) |
| { |
| UBaseType_t uxReturn; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_uxQueueMessagesWaitingFromISR( xQueue ); |
| |
| configASSERT( pxQueue ); |
| uxReturn = pxQueue->uxMessagesWaiting; |
| |
| traceRETURN_uxQueueMessagesWaitingFromISR( uxReturn ); |
| |
| return uxReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vQueueDelete( QueueHandle_t xQueue ) |
| { |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_vQueueDelete( xQueue ); |
| |
| configASSERT( pxQueue ); |
| traceQUEUE_DELETE( pxQueue ); |
| |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| { |
| vQueueUnregisterQueue( pxQueue ); |
| } |
| #endif |
| |
| #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) |
| { |
| /* The queue can only have been allocated dynamically - free it |
| * again. */ |
| vPortFree( pxQueue ); |
| } |
| #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) |
| { |
| /* The queue could have been allocated statically or dynamically, so |
| * check before attempting to free the memory. */ |
| if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE ) |
| { |
| vPortFree( pxQueue ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */ |
| { |
| /* The queue must have been statically allocated, so is not going to be |
| * deleted. Avoid compiler warnings about the unused parameter. */ |
| ( void ) pxQueue; |
| } |
| #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
| |
| traceRETURN_vQueueDelete(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue ) |
| { |
| traceENTER_uxQueueGetQueueNumber( xQueue ); |
| |
| traceRETURN_uxQueueGetQueueNumber( ( ( Queue_t * ) xQueue )->uxQueueNumber ); |
| |
| return ( ( Queue_t * ) xQueue )->uxQueueNumber; |
| } |
| |
| #endif /* configUSE_TRACE_FACILITY */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| void vQueueSetQueueNumber( QueueHandle_t xQueue, |
| UBaseType_t uxQueueNumber ) |
| { |
| traceENTER_vQueueSetQueueNumber( xQueue, uxQueueNumber ); |
| |
| ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber; |
| |
| traceRETURN_vQueueSetQueueNumber(); |
| } |
| |
| #endif /* configUSE_TRACE_FACILITY */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| uint8_t ucQueueGetQueueType( QueueHandle_t xQueue ) |
| { |
| traceENTER_ucQueueGetQueueType( xQueue ); |
| |
| traceRETURN_ucQueueGetQueueType( ( ( Queue_t * ) xQueue )->ucQueueType ); |
| |
| return ( ( Queue_t * ) xQueue )->ucQueueType; |
| } |
| |
| #endif /* configUSE_TRACE_FACILITY */ |
| /*-----------------------------------------------------------*/ |
| |
| UBaseType_t uxQueueGetQueueItemSize( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */ |
| { |
| traceENTER_uxQueueGetQueueItemSize( xQueue ); |
| |
| traceRETURN_uxQueueGetQueueItemSize( ( ( Queue_t * ) xQueue )->uxItemSize ); |
| |
| return ( ( Queue_t * ) xQueue )->uxItemSize; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| UBaseType_t uxQueueGetQueueLength( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */ |
| { |
| traceENTER_uxQueueGetQueueLength( xQueue ); |
| |
| traceRETURN_uxQueueGetQueueLength( ( ( Queue_t * ) xQueue )->uxLength ); |
| |
| return ( ( Queue_t * ) xQueue )->uxLength; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| |
| static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) |
| { |
| UBaseType_t uxHighestPriorityOfWaitingTasks; |
| |
| /* If a task waiting for a mutex causes the mutex holder to inherit a |
| * priority, but the waiting task times out, then the holder should |
| * disinherit the priority - but only down to the highest priority of any |
| * other tasks that are waiting for the same mutex. For this purpose, |
| * return the priority of the highest priority task that is waiting for the |
| * mutex. */ |
| if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U ) |
| { |
| uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) ( ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) ) ); |
| } |
| else |
| { |
| uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY; |
| } |
| |
| return uxHighestPriorityOfWaitingTasks; |
| } |
| |
| #endif /* configUSE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, |
| const void * pvItemToQueue, |
| const BaseType_t xPosition ) |
| { |
| BaseType_t xReturn = pdFALSE; |
| UBaseType_t uxMessagesWaiting; |
| |
| /* This function is called from a critical section. */ |
| |
| uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| |
| if( pxQueue->uxItemSize == ( UBaseType_t ) 0 ) |
| { |
| #if ( configUSE_MUTEXES == 1 ) |
| { |
| if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) |
| { |
| /* The mutex is no longer being held. */ |
| xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder ); |
| pxQueue->u.xSemaphore.xMutexHolder = NULL; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* configUSE_MUTEXES */ |
| } |
| else if( xPosition == queueSEND_TO_BACK ) |
| { |
| ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); |
| pxQueue->pcWriteTo += pxQueue->uxItemSize; |
| |
| if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) |
| { |
| pxQueue->pcWriteTo = pxQueue->pcHead; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); |
| pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize; |
| |
| if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) |
| { |
| pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| if( xPosition == queueOVERWRITE ) |
| { |
| if( uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| { |
| /* An item is not being added but overwritten, so subtract |
| * one from the recorded number of items in the queue so when |
| * one is added again below the number of recorded items remains |
| * correct. */ |
| --uxMessagesWaiting; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting + ( UBaseType_t ) 1 ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static void prvCopyDataFromQueue( Queue_t * const pxQueue, |
| void * const pvBuffer ) |
| { |
| if( pxQueue->uxItemSize != ( UBaseType_t ) 0 ) |
| { |
| pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; |
| |
| if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) |
| { |
| pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static void prvUnlockQueue( Queue_t * const pxQueue ) |
| { |
| /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */ |
| |
| /* The lock counts contains the number of extra data items placed or |
| * removed from the queue while the queue was locked. When a queue is |
| * locked items can be added or removed, but the event lists cannot be |
| * updated. */ |
| taskENTER_CRITICAL(); |
| { |
| int8_t cTxLock = pxQueue->cTxLock; |
| |
| /* See if data was added to the queue while it was locked. */ |
| while( cTxLock > queueLOCKED_UNMODIFIED ) |
| { |
| /* Data was posted while the queue was locked. Are any tasks |
| * blocked waiting for data to become available? */ |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| { |
| if( pxQueue->pxQueueSetContainer != NULL ) |
| { |
| if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE ) |
| { |
| /* The queue is a member of a queue set, and posting to |
| * the queue set caused a higher priority task to unblock. |
| * A context switch is required. */ |
| vTaskMissedYield(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* Tasks that are removed from the event list will get |
| * added to the pending ready list as the scheduler is still |
| * suspended. */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority so record that a |
| * context switch is required. */ |
| vTaskMissedYield(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| break; |
| } |
| } |
| } |
| #else /* configUSE_QUEUE_SETS */ |
| { |
| /* Tasks that are removed from the event list will get added to |
| * the pending ready list as the scheduler is still suspended. */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority so record that |
| * a context switch is required. */ |
| vTaskMissedYield(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| break; |
| } |
| } |
| #endif /* configUSE_QUEUE_SETS */ |
| |
| --cTxLock; |
| } |
| |
| pxQueue->cTxLock = queueUNLOCKED; |
| } |
| taskEXIT_CRITICAL(); |
| |
| /* Do the same for the Rx lock. */ |
| taskENTER_CRITICAL(); |
| { |
| int8_t cRxLock = pxQueue->cRxLock; |
| |
| while( cRxLock > queueLOCKED_UNMODIFIED ) |
| { |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| { |
| vTaskMissedYield(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| --cRxLock; |
| } |
| else |
| { |
| break; |
| } |
| } |
| |
| pxQueue->cRxLock = queueUNLOCKED; |
| } |
| taskEXIT_CRITICAL(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) |
| { |
| BaseType_t xReturn; |
| |
| taskENTER_CRITICAL(); |
| { |
| if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ) |
| { |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| xReturn = pdFALSE; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueIsQueueEmptyFromISR( xQueue ); |
| |
| configASSERT( pxQueue ); |
| |
| if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ) |
| { |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| xReturn = pdFALSE; |
| } |
| |
| traceRETURN_xQueueIsQueueEmptyFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) |
| { |
| BaseType_t xReturn; |
| |
| taskENTER_CRITICAL(); |
| { |
| if( pxQueue->uxMessagesWaiting == pxQueue->uxLength ) |
| { |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| xReturn = pdFALSE; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueIsQueueFullFromISR( xQueue ); |
| |
| configASSERT( pxQueue ); |
| |
| if( pxQueue->uxMessagesWaiting == pxQueue->uxLength ) |
| { |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| xReturn = pdFALSE; |
| } |
| |
| traceRETURN_xQueueIsQueueFullFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_CO_ROUTINES == 1 ) |
| |
| BaseType_t xQueueCRSend( QueueHandle_t xQueue, |
| const void * pvItemToQueue, |
| TickType_t xTicksToWait ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueCRSend( xQueue, pvItemToQueue, xTicksToWait ); |
| |
| /* If the queue is already full we may have to block. A critical section |
| * is required to prevent an interrupt removing something from the queue |
| * between the check to see if the queue is full and blocking on the queue. */ |
| portDISABLE_INTERRUPTS(); |
| { |
| if( prvIsQueueFull( pxQueue ) != pdFALSE ) |
| { |
| /* The queue is full - do we want to block or just leave without |
| * posting? */ |
| if( xTicksToWait > ( TickType_t ) 0 ) |
| { |
| /* As this is called from a coroutine we cannot block directly, but |
| * return indicating that we need to block. */ |
| vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) ); |
| portENABLE_INTERRUPTS(); |
| return errQUEUE_BLOCKED; |
| } |
| else |
| { |
| portENABLE_INTERRUPTS(); |
| return errQUEUE_FULL; |
| } |
| } |
| } |
| portENABLE_INTERRUPTS(); |
| |
| portDISABLE_INTERRUPTS(); |
| { |
| if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) |
| { |
| /* There is room in the queue, copy the data into the queue. */ |
| prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK ); |
| xReturn = pdPASS; |
| |
| /* Were any co-routines waiting for data to become available? */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| /* In this instance the co-routine could be placed directly |
| * into the ready list as we are within a critical section. |
| * Instead the same pending ready list mechanism is used as if |
| * the event were caused from within an interrupt. */ |
| if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The co-routine waiting has a higher priority so record |
| * that a yield might be appropriate. */ |
| xReturn = errQUEUE_YIELD; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| xReturn = errQUEUE_FULL; |
| } |
| } |
| portENABLE_INTERRUPTS(); |
| |
| traceRETURN_xQueueCRSend( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_CO_ROUTINES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_CO_ROUTINES == 1 ) |
| |
| BaseType_t xQueueCRReceive( QueueHandle_t xQueue, |
| void * pvBuffer, |
| TickType_t xTicksToWait ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueCRReceive( xQueue, pvBuffer, xTicksToWait ); |
| |
| /* If the queue is already empty we may have to block. A critical section |
| * is required to prevent an interrupt adding something to the queue |
| * between the check to see if the queue is empty and blocking on the queue. */ |
| portDISABLE_INTERRUPTS(); |
| { |
| if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ) |
| { |
| /* There are no messages in the queue, do we want to block or just |
| * leave with nothing? */ |
| if( xTicksToWait > ( TickType_t ) 0 ) |
| { |
| /* As this is a co-routine we cannot block directly, but return |
| * indicating that we need to block. */ |
| vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) ); |
| portENABLE_INTERRUPTS(); |
| return errQUEUE_BLOCKED; |
| } |
| else |
| { |
| portENABLE_INTERRUPTS(); |
| return errQUEUE_FULL; |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| portENABLE_INTERRUPTS(); |
| |
| portDISABLE_INTERRUPTS(); |
| { |
| if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| { |
| /* Data is available from the queue. */ |
| pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; |
| |
| if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) |
| { |
| pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| --( pxQueue->uxMessagesWaiting ); |
| ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize ); |
| |
| xReturn = pdPASS; |
| |
| /* Were any co-routines waiting for space to become available? */ |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| { |
| /* In this instance the co-routine could be placed directly |
| * into the ready list as we are within a critical section. |
| * Instead the same pending ready list mechanism is used as if |
| * the event were caused from within an interrupt. */ |
| if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| { |
| xReturn = errQUEUE_YIELD; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| } |
| } |
| portENABLE_INTERRUPTS(); |
| |
| traceRETURN_xQueueCRReceive( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_CO_ROUTINES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_CO_ROUTINES == 1 ) |
| |
| BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, |
| const void * pvItemToQueue, |
| BaseType_t xCoRoutinePreviouslyWoken ) |
| { |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueCRSendFromISR( xQueue, pvItemToQueue, xCoRoutinePreviouslyWoken ); |
| |
| /* Cannot block within an ISR so if there is no space on the queue then |
| * exit without doing anything. */ |
| if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) |
| { |
| prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK ); |
| |
| /* We only want to wake one co-routine per ISR, so check that a |
| * co-routine has not already been woken. */ |
| if( xCoRoutinePreviouslyWoken == pdFALSE ) |
| { |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| return pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xQueueCRSendFromISR( xCoRoutinePreviouslyWoken ); |
| |
| return xCoRoutinePreviouslyWoken; |
| } |
| |
| #endif /* configUSE_CO_ROUTINES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_CO_ROUTINES == 1 ) |
| |
| BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, |
| void * pvBuffer, |
| BaseType_t * pxCoRoutineWoken ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_xQueueCRReceiveFromISR( xQueue, pvBuffer, pxCoRoutineWoken ); |
| |
| /* We cannot block from an ISR, so check there is data available. If |
| * not then just leave without doing anything. */ |
| if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| { |
| /* Copy the data from the queue. */ |
| pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; |
| |
| if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) |
| { |
| pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| --( pxQueue->uxMessagesWaiting ); |
| ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize ); |
| |
| if( ( *pxCoRoutineWoken ) == pdFALSE ) |
| { |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| { |
| if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| { |
| *pxCoRoutineWoken = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| } |
| |
| traceRETURN_xQueueCRReceiveFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_CO_ROUTINES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| |
| void vQueueAddToRegistry( QueueHandle_t xQueue, |
| const char * pcQueueName ) |
| { |
| UBaseType_t ux; |
| QueueRegistryItem_t * pxEntryToWrite = NULL; |
| |
| traceENTER_vQueueAddToRegistry( xQueue, pcQueueName ); |
| |
| configASSERT( xQueue ); |
| |
| if( pcQueueName != NULL ) |
| { |
| /* See if there is an empty space in the registry. A NULL name denotes |
| * a free slot. */ |
| for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) |
| { |
| /* Replace an existing entry if the queue is already in the registry. */ |
| if( xQueue == xQueueRegistry[ ux ].xHandle ) |
| { |
| pxEntryToWrite = &( xQueueRegistry[ ux ] ); |
| break; |
| } |
| /* Otherwise, store in the next empty location */ |
| else if( ( pxEntryToWrite == NULL ) && ( xQueueRegistry[ ux ].pcQueueName == NULL ) ) |
| { |
| pxEntryToWrite = &( xQueueRegistry[ ux ] ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| |
| if( pxEntryToWrite != NULL ) |
| { |
| /* Store the information on this queue. */ |
| pxEntryToWrite->pcQueueName = pcQueueName; |
| pxEntryToWrite->xHandle = xQueue; |
| |
| traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName ); |
| } |
| |
| traceRETURN_vQueueAddToRegistry(); |
| } |
| |
| #endif /* configQUEUE_REGISTRY_SIZE */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| |
| const char * pcQueueGetName( QueueHandle_t xQueue ) |
| { |
| UBaseType_t ux; |
| const char * pcReturn = NULL; |
| |
| traceENTER_pcQueueGetName( xQueue ); |
| |
| configASSERT( xQueue ); |
| |
| /* Note there is nothing here to protect against another task adding or |
| * removing entries from the registry while it is being searched. */ |
| |
| for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) |
| { |
| if( xQueueRegistry[ ux ].xHandle == xQueue ) |
| { |
| pcReturn = xQueueRegistry[ ux ].pcQueueName; |
| break; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| traceRETURN_pcQueueGetName( pcReturn ); |
| |
| return pcReturn; |
| } |
| |
| #endif /* configQUEUE_REGISTRY_SIZE */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| |
| void vQueueUnregisterQueue( QueueHandle_t xQueue ) |
| { |
| UBaseType_t ux; |
| |
| traceENTER_vQueueUnregisterQueue( xQueue ); |
| |
| configASSERT( xQueue ); |
| |
| /* See if the handle of the queue being unregistered in actually in the |
| * registry. */ |
| for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) |
| { |
| if( xQueueRegistry[ ux ].xHandle == xQueue ) |
| { |
| /* Set the name to NULL to show that this slot if free again. */ |
| xQueueRegistry[ ux ].pcQueueName = NULL; |
| |
| /* Set the handle to NULL to ensure the same queue handle cannot |
| * appear in the registry twice if it is added, removed, then |
| * added again. */ |
| xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0; |
| break; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| traceRETURN_vQueueUnregisterQueue(); |
| } |
| |
| #endif /* configQUEUE_REGISTRY_SIZE */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TIMERS == 1 ) |
| |
| void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, |
| TickType_t xTicksToWait, |
| const BaseType_t xWaitIndefinitely ) |
| { |
| Queue_t * const pxQueue = xQueue; |
| |
| traceENTER_vQueueWaitForMessageRestricted( xQueue, xTicksToWait, xWaitIndefinitely ); |
| |
| /* This function should not be called by application code hence the |
| * 'Restricted' in its name. It is not part of the public API. It is |
| * designed for use by kernel code, and has special calling requirements. |
| * It can result in vListInsert() being called on a list that can only |
| * possibly ever have one item in it, so the list will be fast, but even |
| * so it should be called with the scheduler locked and not from a critical |
| * section. */ |
| |
| /* Only do anything if there are no messages in the queue. This function |
| * will not actually cause the task to block, just place it on a blocked |
| * list. It will not block until the scheduler is unlocked - at which |
| * time a yield will be performed. If an item is added to the queue while |
| * the queue is locked, and the calling task blocks on the queue, then the |
| * calling task will be immediately unblocked when the queue is unlocked. */ |
| prvLockQueue( pxQueue ); |
| |
| if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U ) |
| { |
| /* There is nothing in the queue, block for the specified period. */ |
| vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| prvUnlockQueue( pxQueue ); |
| |
| traceRETURN_vQueueWaitForMessageRestricted(); |
| } |
| |
| #endif /* configUSE_TIMERS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| |
| QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength ) |
| { |
| QueueSetHandle_t pxQueue; |
| |
| traceENTER_xQueueCreateSet( uxEventQueueLength ); |
| |
| pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET ); |
| |
| traceRETURN_xQueueCreateSet( pxQueue ); |
| |
| return pxQueue; |
| } |
| |
| #endif /* configUSE_QUEUE_SETS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| |
| BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, |
| QueueSetHandle_t xQueueSet ) |
| { |
| BaseType_t xReturn; |
| |
| traceENTER_xQueueAddToSet( xQueueOrSemaphore, xQueueSet ); |
| |
| taskENTER_CRITICAL(); |
| { |
| if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL ) |
| { |
| /* Cannot add a queue/semaphore to more than one queue set. */ |
| xReturn = pdFAIL; |
| } |
| else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 ) |
| { |
| /* Cannot add a queue/semaphore to a queue set if there are already |
| * items in the queue/semaphore. */ |
| xReturn = pdFAIL; |
| } |
| else |
| { |
| ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet; |
| xReturn = pdPASS; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xQueueAddToSet( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_QUEUE_SETS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| |
| BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, |
| QueueSetHandle_t xQueueSet ) |
| { |
| BaseType_t xReturn; |
| Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore; |
| |
| traceENTER_xQueueRemoveFromSet( xQueueOrSemaphore, xQueueSet ); |
| |
| if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet ) |
| { |
| /* The queue was not a member of the set. */ |
| xReturn = pdFAIL; |
| } |
| else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 ) |
| { |
| /* It is dangerous to remove a queue from a set when the queue is |
| * not empty because the queue set will still hold pending events for |
| * the queue. */ |
| xReturn = pdFAIL; |
| } |
| else |
| { |
| taskENTER_CRITICAL(); |
| { |
| /* The queue is no longer contained in the set. */ |
| pxQueueOrSemaphore->pxQueueSetContainer = NULL; |
| } |
| taskEXIT_CRITICAL(); |
| xReturn = pdPASS; |
| } |
| |
| traceRETURN_xQueueRemoveFromSet( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_QUEUE_SETS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| |
| QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, |
| TickType_t const xTicksToWait ) |
| { |
| QueueSetMemberHandle_t xReturn = NULL; |
| |
| traceENTER_xQueueSelectFromSet( xQueueSet, xTicksToWait ); |
| |
| ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); |
| |
| traceRETURN_xQueueSelectFromSet( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_QUEUE_SETS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| |
| QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet ) |
| { |
| QueueSetMemberHandle_t xReturn = NULL; |
| |
| traceENTER_xQueueSelectFromSetFromISR( xQueueSet ); |
| |
| ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); |
| |
| traceRETURN_xQueueSelectFromSetFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_QUEUE_SETS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_QUEUE_SETS == 1 ) |
| |
| static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) |
| { |
| Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer; |
| BaseType_t xReturn = pdFALSE; |
| |
| /* This function must be called form a critical section. */ |
| |
| /* The following line is not reachable in unit tests because every call |
| * to prvNotifyQueueSetContainer is preceded by a check that |
| * pxQueueSetContainer != NULL */ |
| configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */ |
| configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength ); |
| |
| if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength ) |
| { |
| const int8_t cTxLock = pxQueueSetContainer->cTxLock; |
| |
| traceQUEUE_SET_SEND( pxQueueSetContainer ); |
| |
| /* The data copied is the handle of the queue that contains data. */ |
| xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK ); |
| |
| if( cTxLock == queueUNLOCKED ) |
| { |
| if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE ) |
| { |
| if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE ) |
| { |
| /* The task waiting has a higher priority. */ |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| prvIncrementQueueTxLock( pxQueueSetContainer, cTxLock ); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_QUEUE_SETS */ |