/* | |
* FreeRTOS Kernel <DEVELOPMENT BRANCH> | |
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
* | |
* SPDX-License-Identifier: MIT | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a copy of | |
* this software and associated documentation files (the "Software"), to deal in | |
* the Software without restriction, including without limitation the rights to | |
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
* the Software, and to permit persons to whom the Software is furnished to do so, | |
* subject to the following conditions: | |
* | |
* The above copyright notice and this permission notice shall be included in all | |
* copies or substantial portions of the Software. | |
* | |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
* | |
* https://www.FreeRTOS.org | |
* https://github.com/FreeRTOS | |
* | |
*/ | |
/*----------------------------------------------------------- | |
* Implementation of functions defined in portable.h for the Cygnal port. | |
*----------------------------------------------------------*/ | |
/* Standard includes. */ | |
#include <string.h> | |
/* Scheduler includes. */ | |
#include "FreeRTOS.h" | |
#include "task.h" | |
/* Constants required to setup timer 2 to produce the RTOS tick. */ | |
#define portCLOCK_DIVISOR ( ( uint32_t ) 12 ) | |
#define portMAX_TIMER_VALUE ( ( uint32_t ) 0xffff ) | |
#define portENABLE_TIMER ( ( uint8_t ) 0x04 ) | |
#define portTIMER_2_INTERRUPT_ENABLE ( ( uint8_t ) 0x20 ) | |
/* The value used in the IE register when a task first starts. */ | |
#define portGLOBAL_INTERRUPT_BIT ( ( StackType_t ) 0x80 ) | |
/* The value used in the PSW register when a task first starts. */ | |
#define portINITIAL_PSW ( ( StackType_t ) 0x00 ) | |
/* Macro to clear the timer 2 interrupt flag. */ | |
#define portCLEAR_INTERRUPT_FLAG() TMR2CN &= ~0x80; | |
/* Used during a context switch to store the size of the stack being copied | |
to or from XRAM. */ | |
data static uint8_t ucStackBytes; | |
/* Used during a context switch to point to the next byte in XRAM from/to which | |
a RAM byte is to be copied. */ | |
xdata static StackType_t * data pxXRAMStack; | |
/* Used during a context switch to point to the next byte in RAM from/to which | |
an XRAM byte is to be copied. */ | |
data static StackType_t * data pxRAMStack; | |
/* We require the address of the pxCurrentTCB variable, but don't want to know | |
any details of its type. */ | |
typedef void TCB_t; | |
extern volatile TCB_t * volatile pxCurrentTCB; | |
/* | |
* Setup the hardware to generate an interrupt off timer 2 at the required | |
* frequency. | |
*/ | |
static void prvSetupTimerInterrupt( void ); | |
/*-----------------------------------------------------------*/ | |
/* | |
* Macro that copies the current stack from internal RAM to XRAM. This is | |
* required as the 8051 only contains enough internal RAM for a single stack, | |
* but we have a stack for every task. | |
*/ | |
#define portCOPY_STACK_TO_XRAM() \ | |
{ \ | |
/* pxCurrentTCB points to a TCB which itself points to the location into \ | |
which the first stack byte should be copied. Set pxXRAMStack to point \ | |
to the location into which the first stack byte is to be copied. */ \ | |
pxXRAMStack = ( xdata StackType_t * ) *( ( xdata StackType_t ** ) pxCurrentTCB ); \ | |
\ | |
/* Set pxRAMStack to point to the first byte to be coped from the stack. */ \ | |
pxRAMStack = ( data StackType_t * data ) configSTACK_START; \ | |
\ | |
/* Calculate the size of the stack we are about to copy from the current \ | |
stack pointer value. */ \ | |
ucStackBytes = SP - ( configSTACK_START - 1 ); \ | |
\ | |
/* Before starting to copy the stack, store the calculated stack size so \ | |
the stack can be restored when the task is resumed. */ \ | |
*pxXRAMStack = ucStackBytes; \ | |
\ | |
/* Copy each stack byte in turn. pxXRAMStack is incremented first as we \ | |
have already stored the stack size into XRAM. */ \ | |
while( ucStackBytes ) \ | |
{ \ | |
pxXRAMStack++; \ | |
*pxXRAMStack = *pxRAMStack; \ | |
pxRAMStack++; \ | |
ucStackBytes--; \ | |
} \ | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* Macro that copies the stack of the task being resumed from XRAM into | |
* internal RAM. | |
*/ | |
#define portCOPY_XRAM_TO_STACK() \ | |
{ \ | |
/* Setup the pointers as per portCOPY_STACK_TO_XRAM(), but this time to \ | |
copy the data back out of XRAM and into the stack. */ \ | |
pxXRAMStack = ( xdata StackType_t * ) *( ( xdata StackType_t ** ) pxCurrentTCB ); \ | |
pxRAMStack = ( data StackType_t * data ) ( configSTACK_START - 1 ); \ | |
\ | |
/* The first value stored in XRAM was the size of the stack - i.e. the \ | |
number of bytes we need to copy back. */ \ | |
ucStackBytes = pxXRAMStack[ 0 ]; \ | |
\ | |
/* Copy the required number of bytes back into the stack. */ \ | |
do \ | |
{ \ | |
pxXRAMStack++; \ | |
pxRAMStack++; \ | |
*pxRAMStack = *pxXRAMStack; \ | |
ucStackBytes--; \ | |
} while( ucStackBytes ); \ | |
\ | |
/* Restore the stack pointer ready to use the restored stack. */ \ | |
SP = ( uint8_t ) pxRAMStack; \ | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* Macro to push the current execution context onto the stack, before the stack | |
* is moved to XRAM. | |
*/ | |
#define portSAVE_CONTEXT() \ | |
{ \ | |
_asm \ | |
/* Push ACC first, as when restoring the context it must be restored \ | |
last (it is used to set the IE register). */ \ | |
push ACC \ | |
/* Store the IE register then disable interrupts. */ \ | |
push IE \ | |
clr _EA \ | |
push DPL \ | |
push DPH \ | |
push b \ | |
push ar2 \ | |
push ar3 \ | |
push ar4 \ | |
push ar5 \ | |
push ar6 \ | |
push ar7 \ | |
push ar0 \ | |
push ar1 \ | |
push PSW \ | |
_endasm; \ | |
PSW = 0; \ | |
_asm \ | |
push _bp \ | |
_endasm; \ | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* Macro that restores the execution context from the stack. The execution | |
* context was saved into the stack before the stack was copied into XRAM. | |
*/ | |
#define portRESTORE_CONTEXT() \ | |
{ \ | |
_asm \ | |
pop _bp \ | |
pop PSW \ | |
pop ar1 \ | |
pop ar0 \ | |
pop ar7 \ | |
pop ar6 \ | |
pop ar5 \ | |
pop ar4 \ | |
pop ar3 \ | |
pop ar2 \ | |
pop b \ | |
pop DPH \ | |
pop DPL \ | |
/* The next byte of the stack is the IE register. Only the global \ | |
enable bit forms part of the task context. Pop off the IE then set \ | |
the global enable bit to match that of the stored IE register. */ \ | |
pop ACC \ | |
JB ACC.7,0098$ \ | |
CLR IE.7 \ | |
LJMP 0099$ \ | |
0098$: \ | |
SETB IE.7 \ | |
0099$: \ | |
/* Finally pop off the ACC, which was the first register saved. */ \ | |
pop ACC \ | |
reti \ | |
_endasm; \ | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* See header file for description. | |
*/ | |
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) | |
{ | |
uint32_t ulAddress; | |
StackType_t *pxStartOfStack; | |
/* Leave space to write the size of the stack as the first byte. */ | |
pxStartOfStack = pxTopOfStack; | |
pxTopOfStack++; | |
/* Place a few bytes of known values on the bottom of the stack. | |
This is just useful for debugging and can be uncommented if required. | |
*pxTopOfStack = 0x11; | |
pxTopOfStack++; | |
*pxTopOfStack = 0x22; | |
pxTopOfStack++; | |
*pxTopOfStack = 0x33; | |
pxTopOfStack++; | |
*/ | |
/* Simulate how the stack would look after a call to the scheduler tick | |
ISR. | |
The return address that would have been pushed by the MCU. */ | |
ulAddress = ( uint32_t ) pxCode; | |
*pxTopOfStack = ( StackType_t ) ulAddress; | |
ulAddress >>= 8; | |
pxTopOfStack++; | |
*pxTopOfStack = ( StackType_t ) ( ulAddress ); | |
pxTopOfStack++; | |
/* Next all the registers will have been pushed by portSAVE_CONTEXT(). */ | |
*pxTopOfStack = 0xaa; /* acc */ | |
pxTopOfStack++; | |
/* We want tasks to start with interrupts enabled. */ | |
*pxTopOfStack = portGLOBAL_INTERRUPT_BIT; | |
pxTopOfStack++; | |
/* The function parameters will be passed in the DPTR and B register as | |
a three byte generic pointer is used. */ | |
ulAddress = ( uint32_t ) pvParameters; | |
*pxTopOfStack = ( StackType_t ) ulAddress; /* DPL */ | |
ulAddress >>= 8; | |
*pxTopOfStack++; | |
*pxTopOfStack = ( StackType_t ) ulAddress; /* DPH */ | |
ulAddress >>= 8; | |
pxTopOfStack++; | |
*pxTopOfStack = ( StackType_t ) ulAddress; /* b */ | |
pxTopOfStack++; | |
/* The remaining registers are straight forward. */ | |
*pxTopOfStack = 0x02; /* R2 */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0x03; /* R3 */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0x04; /* R4 */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0x05; /* R5 */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0x06; /* R6 */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0x07; /* R7 */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0x00; /* R0 */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0x01; /* R1 */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0x00; /* PSW */ | |
pxTopOfStack++; | |
*pxTopOfStack = 0xbb; /* BP */ | |
/* Dont increment the stack size here as we don't want to include | |
the stack size byte as part of the stack size count. | |
Finally we place the stack size at the beginning. */ | |
*pxStartOfStack = ( StackType_t ) ( pxTopOfStack - pxStartOfStack ); | |
/* Unlike most ports, we return the start of the stack as this is where the | |
size of the stack is stored. */ | |
return pxStartOfStack; | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* See header file for description. | |
*/ | |
BaseType_t xPortStartScheduler( void ) | |
{ | |
/* Setup timer 2 to generate the RTOS tick. */ | |
prvSetupTimerInterrupt(); | |
/* Make sure we start with the expected SFR page. This line should not | |
really be required. */ | |
SFRPAGE = 0; | |
/* Copy the stack for the first task to execute from XRAM into the stack, | |
restore the task context from the new stack, then start running the task. */ | |
portCOPY_XRAM_TO_STACK(); | |
portRESTORE_CONTEXT(); | |
/* Should never get here! */ | |
return pdTRUE; | |
} | |
/*-----------------------------------------------------------*/ | |
void vPortEndScheduler( void ) | |
{ | |
/* Not implemented for this port. */ | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* Manual context switch. The first thing we do is save the registers so we | |
* can use a naked attribute. | |
*/ | |
void vPortYield( void ) _naked | |
{ | |
/* Save the execution context onto the stack, then copy the entire stack | |
to XRAM. This is necessary as the internal RAM is only large enough to | |
hold one stack, and we want one per task. | |
PERFORMANCE COULD BE IMPROVED BY ONLY COPYING TO XRAM IF A TASK SWITCH | |
IS REQUIRED. */ | |
portSAVE_CONTEXT(); | |
portCOPY_STACK_TO_XRAM(); | |
/* Call the standard scheduler context switch function. */ | |
vTaskSwitchContext(); | |
/* Copy the stack of the task about to execute from XRAM into RAM and | |
restore it's context ready to run on exiting. */ | |
portCOPY_XRAM_TO_STACK(); | |
portRESTORE_CONTEXT(); | |
} | |
/*-----------------------------------------------------------*/ | |
#if configUSE_PREEMPTION == 1 | |
void vTimer2ISR( void ) interrupt 5 _naked | |
{ | |
/* Preemptive context switch function triggered by the timer 2 ISR. | |
This does the same as vPortYield() (see above) with the addition | |
of incrementing the RTOS tick count. */ | |
portSAVE_CONTEXT(); | |
portCOPY_STACK_TO_XRAM(); | |
if( xTaskIncrementTick() != pdFALSE ) | |
{ | |
vTaskSwitchContext(); | |
} | |
portCLEAR_INTERRUPT_FLAG(); | |
portCOPY_XRAM_TO_STACK(); | |
portRESTORE_CONTEXT(); | |
} | |
#else | |
void vTimer2ISR( void ) interrupt 5 | |
{ | |
/* When using the cooperative scheduler the timer 2 ISR is only | |
required to increment the RTOS tick count. */ | |
xTaskIncrementTick(); | |
portCLEAR_INTERRUPT_FLAG(); | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
static void prvSetupTimerInterrupt( void ) | |
{ | |
uint8_t ucOriginalSFRPage; | |
/* Constants calculated to give the required timer capture values. */ | |
const uint32_t ulTicksPerSecond = configCPU_CLOCK_HZ / portCLOCK_DIVISOR; | |
const uint32_t ulCaptureTime = ulTicksPerSecond / configTICK_RATE_HZ; | |
const uint32_t ulCaptureValue = portMAX_TIMER_VALUE - ulCaptureTime; | |
const uint8_t ucLowCaptureByte = ( uint8_t ) ( ulCaptureValue & ( uint32_t ) 0xff ); | |
const uint8_t ucHighCaptureByte = ( uint8_t ) ( ulCaptureValue >> ( uint32_t ) 8 ); | |
/* NOTE: This uses a timer only present on 8052 architecture. */ | |
/* Remember the current SFR page so we can restore it at the end of the | |
function. */ | |
ucOriginalSFRPage = SFRPAGE; | |
SFRPAGE = 0; | |
/* TMR2CF can be left in its default state. */ | |
TMR2CF = ( uint8_t ) 0; | |
/* Setup the overflow reload value. */ | |
RCAP2L = ucLowCaptureByte; | |
RCAP2H = ucHighCaptureByte; | |
/* The initial load is performed manually. */ | |
TMR2L = ucLowCaptureByte; | |
TMR2H = ucHighCaptureByte; | |
/* Enable the timer 2 interrupts. */ | |
IE |= portTIMER_2_INTERRUPT_ENABLE; | |
/* Interrupts are disabled when this is called so the timer can be started | |
here. */ | |
TMR2CN = portENABLE_TIMER; | |
/* Restore the original SFR page. */ | |
SFRPAGE = ucOriginalSFRPage; | |
} | |