| /* |
| * FreeRTOS Kernel <DEVELOPMENT BRANCH> |
| * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| * |
| * SPDX-License-Identifier: MIT |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy of |
| * this software and associated documentation files (the "Software"), to deal in |
| * the Software without restriction, including without limitation the rights to |
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
| * the Software, and to permit persons to whom the Software is furnished to do so, |
| * subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in all |
| * copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
| * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
| * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
| * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * https://www.FreeRTOS.org |
| * https://github.com/FreeRTOS |
| * |
| */ |
| |
| /* Standard includes. */ |
| #include <stdlib.h> |
| #include <string.h> |
| |
| /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining |
| * all the API functions to use the MPU wrappers. That should only be done when |
| * task.h is included from an application file. */ |
| #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE |
| |
| /* FreeRTOS includes. */ |
| #include "FreeRTOS.h" |
| #include "task.h" |
| #include "timers.h" |
| #include "stack_macros.h" |
| |
| /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified |
| * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined |
| * for the header files above, but not in this file, in order to generate the |
| * correct privileged Vs unprivileged linkage and placement. */ |
| #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */ |
| |
| /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting |
| * functions but without including stdio.h here. */ |
| #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) |
| |
| /* At the bottom of this file are two optional functions that can be used |
| * to generate human readable text from the raw data generated by the |
| * uxTaskGetSystemState() function. Note the formatting functions are provided |
| * for convenience only, and are NOT considered part of the kernel. */ |
| #include <stdio.h> |
| #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */ |
| |
| #if ( configUSE_PREEMPTION == 0 ) |
| |
| /* If the cooperative scheduler is being used then a yield should not be |
| * performed just because a higher priority task has been woken. */ |
| #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) |
| #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) |
| #else |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| |
| /* This macro requests the running task pxTCB to yield. In single core |
| * scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API() |
| * can be used to request the task running on core 0 to yield. Therefore, pxTCB |
| * is not used in this macro. */ |
| #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \ |
| do { \ |
| ( void ) ( pxTCB ); \ |
| portYIELD_WITHIN_API(); \ |
| } while( 0 ) |
| |
| #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \ |
| do { \ |
| if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority ) \ |
| { \ |
| portYIELD_WITHIN_API(); \ |
| } \ |
| else \ |
| { \ |
| mtCOVERAGE_TEST_MARKER(); \ |
| } \ |
| } while( 0 ) |
| |
| #else /* if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| /* Yield the core on which this task is running. */ |
| #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldCore( ( pxTCB )->xTaskRunState ) |
| |
| /* Yield for the task if a running task has priority lower than this task. */ |
| #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldForTask( pxTCB ) |
| |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| #endif /* if ( configUSE_PREEMPTION == 0 ) */ |
| |
| /* Values that can be assigned to the ucNotifyState member of the TCB. */ |
| #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */ |
| #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 ) |
| #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 ) |
| |
| /* |
| * The value used to fill the stack of a task when the task is created. This |
| * is used purely for checking the high water mark for tasks. |
| */ |
| #define tskSTACK_FILL_BYTE ( 0xa5U ) |
| |
| /* Bits used to record how a task's stack and TCB were allocated. */ |
| #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 ) |
| #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 ) |
| #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 ) |
| |
| /* If any of the following are set then task stacks are filled with a known |
| * value so the high water mark can be determined. If none of the following are |
| * set then don't fill the stack so there is no unnecessary dependency on memset. */ |
| #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) |
| #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1 |
| #else |
| #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0 |
| #endif |
| |
| /* |
| * Macros used by vListTask to indicate which state a task is in. |
| */ |
| #define tskRUNNING_CHAR ( 'X' ) |
| #define tskBLOCKED_CHAR ( 'B' ) |
| #define tskREADY_CHAR ( 'R' ) |
| #define tskDELETED_CHAR ( 'D' ) |
| #define tskSUSPENDED_CHAR ( 'S' ) |
| |
| /* |
| * Some kernel aware debuggers require the data the debugger needs access to to |
| * be global, rather than file scope. |
| */ |
| #ifdef portREMOVE_STATIC_QUALIFIER |
| #define static |
| #endif |
| |
| /* The name allocated to the Idle task. This can be overridden by defining |
| * configIDLE_TASK_NAME in FreeRTOSConfig.h. */ |
| #ifndef configIDLE_TASK_NAME |
| #define configIDLE_TASK_NAME "IDLE" |
| #endif |
| |
| #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) |
| |
| /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is |
| * performed in a generic way that is not optimised to any particular |
| * microcontroller architecture. */ |
| |
| /* uxTopReadyPriority holds the priority of the highest priority ready |
| * state task. */ |
| #define taskRECORD_READY_PRIORITY( uxPriority ) \ |
| do { \ |
| if( ( uxPriority ) > uxTopReadyPriority ) \ |
| { \ |
| uxTopReadyPriority = ( uxPriority ); \ |
| } \ |
| } while( 0 ) /* taskRECORD_READY_PRIORITY */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| #define taskSELECT_HIGHEST_PRIORITY_TASK() \ |
| do { \ |
| UBaseType_t uxTopPriority = uxTopReadyPriority; \ |
| \ |
| /* Find the highest priority queue that contains ready tasks. */ \ |
| while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \ |
| { \ |
| configASSERT( uxTopPriority ); \ |
| --uxTopPriority; \ |
| } \ |
| \ |
| /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \ |
| * the same priority get an equal share of the processor time. */ \ |
| listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \ |
| uxTopReadyPriority = uxTopPriority; \ |
| } while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */ |
| #else /* if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| #define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ) prvSelectHighestPriorityTask( xCoreID ) |
| |
| #endif /* if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as |
| * they are only required when a port optimised method of task selection is |
| * being used. */ |
| #define taskRESET_READY_PRIORITY( uxPriority ) |
| #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority ) |
| |
| #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ |
| |
| /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is |
| * performed in a way that is tailored to the particular microcontroller |
| * architecture being used. */ |
| |
| /* A port optimised version is provided. Call the port defined macros. */ |
| #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority ) |
| |
| /*-----------------------------------------------------------*/ |
| |
| #define taskSELECT_HIGHEST_PRIORITY_TASK() \ |
| do { \ |
| UBaseType_t uxTopPriority; \ |
| \ |
| /* Find the highest priority list that contains ready tasks. */ \ |
| portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \ |
| configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \ |
| listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \ |
| } while( 0 ) |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* A port optimised version is provided, call it only if the TCB being reset |
| * is being referenced from a ready list. If it is referenced from a delayed |
| * or suspended list then it won't be in a ready list. */ |
| #define taskRESET_READY_PRIORITY( uxPriority ) \ |
| do { \ |
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \ |
| { \ |
| portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \ |
| } \ |
| } while( 0 ) |
| |
| #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick |
| * count overflows. */ |
| #define taskSWITCH_DELAYED_LISTS() \ |
| do { \ |
| List_t * pxTemp; \ |
| \ |
| /* The delayed tasks list should be empty when the lists are switched. */ \ |
| configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \ |
| \ |
| pxTemp = pxDelayedTaskList; \ |
| pxDelayedTaskList = pxOverflowDelayedTaskList; \ |
| pxOverflowDelayedTaskList = pxTemp; \ |
| xNumOfOverflows++; \ |
| prvResetNextTaskUnblockTime(); \ |
| } while( 0 ) |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * Place the task represented by pxTCB into the appropriate ready list for |
| * the task. It is inserted at the end of the list. |
| */ |
| #define prvAddTaskToReadyList( pxTCB ) \ |
| do { \ |
| traceMOVED_TASK_TO_READY_STATE( pxTCB ); \ |
| taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \ |
| listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \ |
| tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ); \ |
| } while( 0 ) |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * Several functions take a TaskHandle_t parameter that can optionally be NULL, |
| * where NULL is used to indicate that the handle of the currently executing |
| * task should be used in place of the parameter. This macro simply checks to |
| * see if the parameter is NULL and returns a pointer to the appropriate TCB. |
| */ |
| #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) ) |
| |
| /* The item value of the event list item is normally used to hold the priority |
| * of the task to which it belongs (coded to allow it to be held in reverse |
| * priority order). However, it is occasionally borrowed for other purposes. It |
| * is important its value is not updated due to a task priority change while it is |
| * being used for another purpose. The following bit definition is used to inform |
| * the scheduler that the value should not be changed - in which case it is the |
| * responsibility of whichever module is using the value to ensure it gets set back |
| * to its original value when it is released. */ |
| #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS ) |
| #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U |
| #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS ) |
| #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL |
| #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS ) |
| #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000000000000000ULL |
| #endif |
| |
| /* Indicates that the task is not actively running on any core. */ |
| #define taskTASK_NOT_RUNNING ( ( BaseType_t ) ( -1 ) ) |
| |
| /* Indicates that the task is actively running but scheduled to yield. */ |
| #define taskTASK_SCHEDULED_TO_YIELD ( ( BaseType_t ) ( -2 ) ) |
| |
| /* Returns pdTRUE if the task is actively running and not scheduled to yield. */ |
| #if ( configNUMBER_OF_CORES == 1 ) |
| #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) ) |
| #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) ) |
| #else |
| #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) ) |
| #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) ) |
| #endif |
| |
| /* Indicates that the task is an Idle task. */ |
| #define taskATTRIBUTE_IS_IDLE ( UBaseType_t ) ( 1UL << 0UL ) |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) |
| #define portGET_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting ) |
| #define portSET_CRITICAL_NESTING_COUNT( x ) ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) ) |
| #define portINCREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ ) |
| #define portDECREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- ) |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */ |
| |
| #define taskBITS_PER_BYTE ( ( size_t ) 8 ) |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| /* Yields the given core. This must be called from a critical section and xCoreID |
| * must be valid. This macro is not required in single core since there is only |
| * one core to yield. */ |
| #define prvYieldCore( xCoreID ) \ |
| do { \ |
| if( xCoreID == ( BaseType_t ) portGET_CORE_ID() ) \ |
| { \ |
| /* Pending a yield for this core since it is in the critical section. */ \ |
| xYieldPendings[ xCoreID ] = pdTRUE; \ |
| } \ |
| else \ |
| { \ |
| /* Request other core to yield if it is not requested before. */ \ |
| if( pxCurrentTCBs[ xCoreID ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \ |
| { \ |
| portYIELD_CORE( xCoreID ); \ |
| pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD; \ |
| } \ |
| } \ |
| } while( 0 ) |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * Task control block. A task control block (TCB) is allocated for each task, |
| * and stores task state information, including a pointer to the task's context |
| * (the task's run time environment, including register values) |
| */ |
| typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */ |
| { |
| volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */ |
| |
| #if ( portUSING_MPU_WRAPPERS == 1 ) |
| xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */ |
| #endif |
| |
| #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) |
| UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores. UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */ |
| #endif |
| |
| ListItem_t xStateListItem; /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */ |
| ListItem_t xEventListItem; /**< Used to reference a task from an event list. */ |
| UBaseType_t uxPriority; /**< The priority of the task. 0 is the lowest priority. */ |
| StackType_t * pxStack; /**< Points to the start of the stack. */ |
| #if ( configNUMBER_OF_CORES > 1 ) |
| volatile BaseType_t xTaskRunState; /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */ |
| UBaseType_t uxTaskAttributes; /**< Task's attributes - currently used to identify the idle tasks. */ |
| #endif |
| char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| |
| #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) |
| BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */ |
| #endif |
| |
| #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) ) |
| StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */ |
| #endif |
| |
| #if ( portCRITICAL_NESTING_IN_TCB == 1 ) |
| UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */ |
| #endif |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| UBaseType_t uxTCBNumber; /**< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */ |
| UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */ |
| #endif |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */ |
| UBaseType_t uxMutexesHeld; |
| #endif |
| |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
| TaskHookFunction_t pxTaskTag; |
| #endif |
| |
| #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) |
| void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ]; |
| #endif |
| |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
| configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */ |
| #endif |
| |
| #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) |
| configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */ |
| #endif |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ]; |
| volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ]; |
| #endif |
| |
| /* See the comments in FreeRTOS.h with the definition of |
| * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */ |
| #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */ |
| uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */ |
| #endif |
| |
| #if ( INCLUDE_xTaskAbortDelay == 1 ) |
| uint8_t ucDelayAborted; |
| #endif |
| |
| #if ( configUSE_POSIX_ERRNO == 1 ) |
| int iTaskErrno; |
| #endif |
| } tskTCB; |
| |
| /* The old tskTCB name is maintained above then typedefed to the new TCB_t name |
| * below to enable the use of older kernel aware debuggers. */ |
| typedef tskTCB TCB_t; |
| |
| /*lint -save -e956 A manual analysis and inspection has been used to determine |
| * which static variables must be declared volatile. */ |
| #if ( configNUMBER_OF_CORES == 1 ) |
| portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL; |
| #else |
| /* MISRA Ref 8.4.1 [Declaration shall be visible] */ |
| /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */ |
| /* coverity[misra_c_2012_rule_8_4_violation] */ |
| portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ]; |
| #define pxCurrentTCB xTaskGetCurrentTaskHandle() |
| #endif |
| |
| /* Lists for ready and blocked tasks. -------------------- |
| * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but |
| * doing so breaks some kernel aware debuggers and debuggers that rely on removing |
| * the static qualifier. */ |
| PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */ |
| PRIVILEGED_DATA static List_t xDelayedTaskList1; /**< Delayed tasks. */ |
| PRIVILEGED_DATA static List_t xDelayedTaskList2; /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */ |
| PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /**< Points to the delayed task list currently being used. */ |
| PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */ |
| PRIVILEGED_DATA static List_t xPendingReadyList; /**< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */ |
| |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| |
| PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */ |
| PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U; |
| |
| #endif |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| |
| PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */ |
| |
| #endif |
| |
| /* Global POSIX errno. Its value is changed upon context switching to match |
| * the errno of the currently running task. */ |
| #if ( configUSE_POSIX_ERRNO == 1 ) |
| int FreeRTOS_errno = 0; |
| #endif |
| |
| /* Other file private variables. --------------------------------*/ |
| PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U; |
| PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT; |
| PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY; |
| PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE; |
| PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U; |
| PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE }; |
| PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0; |
| PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U; |
| PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */ |
| PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ]; /**< Holds the handles of the idle tasks. The idle tasks are created automatically when the scheduler is started. */ |
| |
| /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists. |
| * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority |
| * to determine the number of priority lists to read back from the remote target. */ |
| const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U; |
| |
| /* Context switches are held pending while the scheduler is suspended. Also, |
| * interrupts must not manipulate the xStateListItem of a TCB, or any of the |
| * lists the xStateListItem can be referenced from, if the scheduler is suspended. |
| * If an interrupt needs to unblock a task while the scheduler is suspended then it |
| * moves the task's event list item into the xPendingReadyList, ready for the |
| * kernel to move the task from the pending ready list into the real ready list |
| * when the scheduler is unsuspended. The pending ready list itself can only be |
| * accessed from a critical section. |
| * |
| * Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock |
| * and must not be done from an ISR. Reads must be protected by either lock and may be done |
| * from either an ISR or a task. */ |
| PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U; |
| |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
| |
| /* Do not move these variables to function scope as doing so prevents the |
| * code working with debuggers that need to remove the static qualifier. */ |
| PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the value of a timer/counter the last time a task was switched in. */ |
| PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */ |
| |
| #endif |
| |
| /*lint -restore */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* File private functions. --------------------------------*/ |
| |
| /* |
| * Creates the idle tasks during scheduler start. |
| */ |
| static BaseType_t prvCreateIdleTasks( void ); |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| /* |
| * Checks to see if another task moved the current task out of the ready |
| * list while it was waiting to enter a critical section and yields, if so. |
| */ |
| static void prvCheckForRunStateChange( void ); |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| /* |
| * Yields a core, or cores if multiple priorities are not allowed to run |
| * simultaneously, to allow the task pxTCB to run. |
| */ |
| static void prvYieldForTask( const TCB_t * pxTCB ); |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| /* |
| * Selects the highest priority available task for the given core. |
| */ |
| static void prvSelectHighestPriorityTask( BaseType_t xCoreID ); |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| /** |
| * Utility task that simply returns pdTRUE if the task referenced by xTask is |
| * currently in the Suspended state, or pdFALSE if the task referenced by xTask |
| * is in any other state. |
| */ |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| |
| static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; |
| |
| #endif /* INCLUDE_vTaskSuspend */ |
| |
| /* |
| * Utility to ready all the lists used by the scheduler. This is called |
| * automatically upon the creation of the first task. |
| */ |
| static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * The idle task, which as all tasks is implemented as a never ending loop. |
| * The idle task is automatically created and added to the ready lists upon |
| * creation of the first user task. |
| * |
| * In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also |
| * created to ensure that each core has an idle task to run when no other |
| * task is available to run. |
| * |
| * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific |
| * language extensions. The equivalent prototype for these functions are: |
| * |
| * void prvIdleTask( void *pvParameters ); |
| * void prvPassiveIdleTask( void *pvParameters ); |
| * |
| */ |
| static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION; |
| #if ( configNUMBER_OF_CORES > 1 ) |
| static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION; |
| #endif |
| |
| /* |
| * Utility to free all memory allocated by the scheduler to hold a TCB, |
| * including the stack pointed to by the TCB. |
| * |
| * This does not free memory allocated by the task itself (i.e. memory |
| * allocated by calls to pvPortMalloc from within the tasks application code). |
| */ |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| |
| static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION; |
| |
| #endif |
| |
| /* |
| * Used only by the idle task. This checks to see if anything has been placed |
| * in the list of tasks waiting to be deleted. If so the task is cleaned up |
| * and its TCB deleted. |
| */ |
| static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * The currently executing task is entering the Blocked state. Add the task to |
| * either the current or the overflow delayed task list. |
| */ |
| static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, |
| const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Fills an TaskStatus_t structure with information on each task that is |
| * referenced from the pxList list (which may be a ready list, a delayed list, |
| * a suspended list, etc.). |
| * |
| * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM |
| * NORMAL APPLICATION CODE. |
| */ |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray, |
| List_t * pxList, |
| eTaskState eState ) PRIVILEGED_FUNCTION; |
| |
| #endif |
| |
| /* |
| * Searches pxList for a task with name pcNameToQuery - returning a handle to |
| * the task if it is found, or NULL if the task is not found. |
| */ |
| #if ( INCLUDE_xTaskGetHandle == 1 ) |
| |
| static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, |
| const char pcNameToQuery[] ) PRIVILEGED_FUNCTION; |
| |
| #endif |
| |
| /* |
| * When a task is created, the stack of the task is filled with a known value. |
| * This function determines the 'high water mark' of the task stack by |
| * determining how much of the stack remains at the original preset value. |
| */ |
| #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) |
| |
| static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION; |
| |
| #endif |
| |
| /* |
| * Return the amount of time, in ticks, that will pass before the kernel will |
| * next move a task from the Blocked state to the Running state. |
| * |
| * This conditional compilation should use inequality to 0, not equality to 1. |
| * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user |
| * defined low power mode implementations require configUSE_TICKLESS_IDLE to be |
| * set to a value other than 1. |
| */ |
| #if ( configUSE_TICKLESS_IDLE != 0 ) |
| |
| static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION; |
| |
| #endif |
| |
| /* |
| * Set xNextTaskUnblockTime to the time at which the next Blocked state task |
| * will exit the Blocked state. |
| */ |
| static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION; |
| |
| #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) |
| |
| /* |
| * Helper function used to pad task names with spaces when printing out |
| * human readable tables of task information. |
| */ |
| static char * prvWriteNameToBuffer( char * pcBuffer, |
| const char * pcTaskName ) PRIVILEGED_FUNCTION; |
| |
| #endif |
| |
| /* |
| * Called after a Task_t structure has been allocated either statically or |
| * dynamically to fill in the structure's members. |
| */ |
| static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const uint32_t ulStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| TaskHandle_t * const pxCreatedTask, |
| TCB_t * pxNewTCB, |
| const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Called after a new task has been created and initialised to place the task |
| * under the control of the scheduler. |
| */ |
| static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Create a task with static buffer for both TCB and stack. Returns a handle to |
| * the task if it is created successfully. Otherwise, returns NULL. |
| */ |
| #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const uint32_t ulStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| StackType_t * const puxStackBuffer, |
| StaticTask_t * const pxTaskBuffer, |
| TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; |
| #endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ |
| |
| /* |
| * Create a restricted task with static buffer for both TCB and stack. Returns |
| * a handle to the task if it is created successfully. Otherwise, returns NULL. |
| */ |
| #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) |
| static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition, |
| TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; |
| #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */ |
| |
| /* |
| * Create a restricted task with static buffer for task stack and allocated buffer |
| * for TCB. Returns a handle to the task if it is created successfully. Otherwise, |
| * returns NULL. |
| */ |
| #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition, |
| TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; |
| #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ |
| |
| /* |
| * Create a task with allocated buffer for both TCB and stack. Returns a handle to |
| * the task if it is created successfully. Otherwise, returns NULL. |
| */ |
| #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) |
| static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const configSTACK_DEPTH_TYPE usStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; |
| #endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */ |
| |
| /* |
| * freertos_tasks_c_additions_init() should only be called if the user definable |
| * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro |
| * called by the function. |
| */ |
| #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT |
| |
| static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION; |
| |
| #endif |
| |
| #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) |
| extern void vApplicationPassiveIdleHook( void ); |
| #endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */ |
| |
| #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) |
| |
| /* |
| * Convert the snprintf return value to the number of characters |
| * written. The following are the possible cases: |
| * |
| * 1. The buffer supplied to snprintf is large enough to hold the |
| * generated string. The return value in this case is the number |
| * of characters actually written, not counting the terminating |
| * null character. |
| * 2. The buffer supplied to snprintf is NOT large enough to hold |
| * the generated string. The return value in this case is the |
| * number of characters that would have been written if the |
| * buffer had been sufficiently large, not counting the |
| * terminating null character. |
| * 3. Encoding error. The return value in this case is a negative |
| * number. |
| * |
| * From 1 and 2 above ==> Only when the return value is non-negative |
| * and less than the supplied buffer length, the string has been |
| * completely written. |
| */ |
| static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue, |
| size_t n ); |
| |
| #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| static void prvCheckForRunStateChange( void ) |
| { |
| UBaseType_t uxPrevCriticalNesting; |
| const TCB_t * pxThisTCB; |
| |
| /* This must only be called from within a task. */ |
| portASSERT_IF_IN_ISR(); |
| |
| /* This function is always called with interrupts disabled |
| * so this is safe. */ |
| pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ]; |
| |
| while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) |
| { |
| /* We are only here if we just entered a critical section |
| * or if we just suspended the scheduler, and another task |
| * has requested that we yield. |
| * |
| * This is slightly complicated since we need to save and restore |
| * the suspension and critical nesting counts, as well as release |
| * and reacquire the correct locks. And then, do it all over again |
| * if our state changed again during the reacquisition. */ |
| uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT(); |
| |
| if( uxPrevCriticalNesting > 0U ) |
| { |
| portSET_CRITICAL_NESTING_COUNT( 0U ); |
| portRELEASE_ISR_LOCK(); |
| } |
| else |
| { |
| /* The scheduler is suspended. uxSchedulerSuspended is updated |
| * only when the task is not requested to yield. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| portRELEASE_TASK_LOCK(); |
| portMEMORY_BARRIER(); |
| configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ); |
| |
| portENABLE_INTERRUPTS(); |
| |
| /* Enabling interrupts should cause this core to immediately |
| * service the pending interrupt and yield. If the run state is still |
| * yielding here then that is a problem. */ |
| configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ); |
| |
| portDISABLE_INTERRUPTS(); |
| portGET_TASK_LOCK(); |
| portGET_ISR_LOCK(); |
| |
| portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting ); |
| |
| if( uxPrevCriticalNesting == 0U ) |
| { |
| portRELEASE_ISR_LOCK(); |
| } |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| static void prvYieldForTask( const TCB_t * pxTCB ) |
| { |
| BaseType_t xLowestPriorityToPreempt; |
| BaseType_t xCurrentCoreTaskPriority; |
| BaseType_t xLowestPriorityCore = ( BaseType_t ) -1; |
| BaseType_t xCoreID; |
| |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| BaseType_t xYieldCount = 0; |
| #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ |
| |
| /* This must be called from a critical section. */ |
| configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U ); |
| |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| |
| /* No task should yield for this one if it is a lower priority |
| * than priority level of currently ready tasks. */ |
| if( pxTCB->uxPriority >= uxTopReadyPriority ) |
| #else |
| /* Yield is not required for a task which is already running. */ |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE ) |
| #endif |
| { |
| xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority; |
| |
| /* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB |
| * is 0. This is ok as we will give system idle tasks a priority of -1 below. */ |
| --xLowestPriorityToPreempt; |
| |
| for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ ) |
| { |
| xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority; |
| |
| /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */ |
| if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U ) |
| { |
| xCurrentCoreTaskPriority = xCurrentCoreTaskPriority - 1; |
| } |
| |
| if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) ) |
| { |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE ) |
| #endif |
| { |
| if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt ) |
| { |
| #if ( configUSE_CORE_AFFINITY == 1 ) |
| if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U ) |
| #endif |
| { |
| #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) |
| if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE ) |
| #endif |
| { |
| xLowestPriorityToPreempt = xCurrentCoreTaskPriority; |
| xLowestPriorityCore = xCoreID; |
| } |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| { |
| /* Yield all currently running non-idle tasks with a priority lower than |
| * the task that needs to run. */ |
| if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) && |
| ( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) ) |
| { |
| prvYieldCore( xCoreID ); |
| xYieldCount++; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) ) |
| #else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ |
| if( xLowestPriorityCore >= 0 ) |
| #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ |
| { |
| prvYieldCore( xLowestPriorityCore ); |
| } |
| |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| /* Verify that the calling core always yields to higher priority tasks. */ |
| if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0 ) && |
| ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) ) |
| { |
| configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) || |
| ( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) ); |
| } |
| #endif |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| static void prvSelectHighestPriorityTask( BaseType_t xCoreID ) |
| { |
| UBaseType_t uxCurrentPriority = uxTopReadyPriority; |
| BaseType_t xTaskScheduled = pdFALSE; |
| BaseType_t xDecrementTopPriority = pdTRUE; |
| |
| #if ( configUSE_CORE_AFFINITY == 1 ) |
| const TCB_t * pxPreviousTCB = NULL; |
| #endif |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| BaseType_t xPriorityDropped = pdFALSE; |
| #endif |
| |
| /* This function should be called when scheduler is running. */ |
| configASSERT( xSchedulerRunning == pdTRUE ); |
| |
| /* A new task is created and a running task with the same priority yields |
| * itself to run the new task. When a running task yields itself, it is still |
| * in the ready list. This running task will be selected before the new task |
| * since the new task is always added to the end of the ready list. |
| * The other problem is that the running task still in the same position of |
| * the ready list when it yields itself. It is possible that it will be selected |
| * earlier then other tasks which waits longer than this task. |
| * |
| * To fix these problems, the running task should be put to the end of the |
| * ready list before searching for the ready task in the ready list. */ |
| if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ), |
| &pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE ) |
| { |
| ( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem ); |
| vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ), |
| &pxCurrentTCBs[ xCoreID ]->xStateListItem ); |
| } |
| |
| while( xTaskScheduled == pdFALSE ) |
| { |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| { |
| if( uxCurrentPriority < uxTopReadyPriority ) |
| { |
| /* We can't schedule any tasks, other than idle, that have a |
| * priority lower than the priority of a task currently running |
| * on another core. */ |
| uxCurrentPriority = tskIDLE_PRIORITY; |
| } |
| } |
| #endif |
| |
| if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE ) |
| { |
| const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] ); |
| const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList ); |
| ListItem_t * pxIterator; |
| |
| /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority |
| * must not be decremented any further. */ |
| xDecrementTopPriority = pdFALSE; |
| |
| for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) ) |
| { |
| TCB_t * pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator ); |
| |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| { |
| /* When falling back to the idle priority because only one priority |
| * level is allowed to run at a time, we should ONLY schedule the true |
| * idle tasks, not user tasks at the idle priority. */ |
| if( uxCurrentPriority < uxTopReadyPriority ) |
| { |
| if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0 ) |
| { |
| continue; |
| } |
| } |
| } |
| #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ |
| |
| if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING ) |
| { |
| #if ( configUSE_CORE_AFFINITY == 1 ) |
| if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U ) |
| #endif |
| { |
| /* If the task is not being executed by any core swap it in. */ |
| pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING; |
| #if ( configUSE_CORE_AFFINITY == 1 ) |
| pxPreviousTCB = pxCurrentTCBs[ xCoreID ]; |
| #endif |
| pxTCB->xTaskRunState = xCoreID; |
| pxCurrentTCBs[ xCoreID ] = pxTCB; |
| xTaskScheduled = pdTRUE; |
| } |
| } |
| else if( pxTCB == pxCurrentTCBs[ xCoreID ] ) |
| { |
| configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) ); |
| |
| #if ( configUSE_CORE_AFFINITY == 1 ) |
| if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U ) |
| #endif |
| { |
| /* The task is already running on this core, mark it as scheduled. */ |
| pxTCB->xTaskRunState = xCoreID; |
| xTaskScheduled = pdTRUE; |
| } |
| } |
| else |
| { |
| /* This task is running on the core other than xCoreID. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| if( xTaskScheduled != pdFALSE ) |
| { |
| /* A task has been selected to run on this core. */ |
| break; |
| } |
| } |
| } |
| else |
| { |
| if( xDecrementTopPriority != pdFALSE ) |
| { |
| uxTopReadyPriority--; |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| { |
| xPriorityDropped = pdTRUE; |
| } |
| #endif |
| } |
| } |
| |
| /* There are configNUMBER_OF_CORES Idle tasks created when scheduler started. |
| * The scheduler should be able to select a task to run when uxCurrentPriority |
| * is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow |
| * tskIDLE_PRIORITY. */ |
| if( uxCurrentPriority > tskIDLE_PRIORITY ) |
| { |
| uxCurrentPriority--; |
| } |
| else |
| { |
| /* This function is called when idle task is not created. Break the |
| * loop to prevent uxCurrentPriority overrun. */ |
| break; |
| } |
| } |
| |
| #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) |
| { |
| if( xTaskScheduled == pdTRUE ) |
| { |
| if( xPriorityDropped != pdFALSE ) |
| { |
| /* There may be several ready tasks that were being prevented from running because there was |
| * a higher priority task running. Now that the last of the higher priority tasks is no longer |
| * running, make sure all the other idle tasks yield. */ |
| BaseType_t x; |
| |
| for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ ) |
| { |
| if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0 ) |
| { |
| prvYieldCore( x ); |
| } |
| } |
| } |
| } |
| } |
| #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ |
| |
| #if ( configUSE_CORE_AFFINITY == 1 ) |
| { |
| if( xTaskScheduled == pdTRUE ) |
| { |
| if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) ) |
| { |
| /* A ready task was just evicted from this core. See if it can be |
| * scheduled on any other core. */ |
| UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask; |
| BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority; |
| BaseType_t xLowestPriorityCore = -1; |
| BaseType_t x; |
| |
| if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U ) |
| { |
| xLowestPriority = xLowestPriority - 1; |
| } |
| |
| if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U ) |
| { |
| /* pxPreviousTCB was removed from this core and this core is not excluded |
| * from it's core affinity mask. |
| * |
| * pxPreviousTCB is preempted by the new higher priority task |
| * pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB, |
| * we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ] |
| * is allowed to run. The reason is - when more than one cores are |
| * eligible for an incoming task, we preempt the core with the minimum |
| * priority task. Because this core (i.e. xCoreID) was preempted for |
| * pxCurrentTCBs[ xCoreID ], this means that all the others cores |
| * where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority |
| * no lower than pxPreviousTCB's priority. Therefore, the only cores where |
| * which can be preempted for pxPreviousTCB are the ones where |
| * pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously, |
| * pxPreviousTCB is allowed to run). |
| * |
| * This is an optimization which reduces the number of cores needed to be |
| * searched for pxPreviousTCB to run. */ |
| uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask ); |
| } |
| else |
| { |
| /* pxPreviousTCB's core affinity mask is changed and it is no longer |
| * allowed to run on this core. Searching all the cores in pxPreviousTCB's |
| * new core affinity mask to find a core on which it can run. */ |
| } |
| |
| uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U ); |
| |
| for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- ) |
| { |
| UBaseType_t uxCore = ( UBaseType_t ) x; |
| BaseType_t xTaskPriority; |
| |
| if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U ) |
| { |
| xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority; |
| |
| if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U ) |
| { |
| xTaskPriority = xTaskPriority - ( BaseType_t ) 1; |
| } |
| |
| uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore ); |
| |
| if( ( xTaskPriority < xLowestPriority ) && |
| ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) && |
| ( xYieldPendings[ uxCore ] == pdFALSE ) ) |
| { |
| #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) |
| if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE ) |
| #endif |
| { |
| xLowestPriority = xTaskPriority; |
| xLowestPriorityCore = ( BaseType_t ) uxCore; |
| } |
| } |
| } |
| } |
| |
| if( xLowestPriorityCore >= 0 ) |
| { |
| prvYieldCore( xLowestPriorityCore ); |
| } |
| } |
| } |
| } |
| #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */ |
| } |
| |
| #endif /* ( configNUMBER_OF_CORES > 1 ) */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| |
| static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const uint32_t ulStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| StackType_t * const puxStackBuffer, |
| StaticTask_t * const pxTaskBuffer, |
| TaskHandle_t * const pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| |
| configASSERT( puxStackBuffer != NULL ); |
| configASSERT( pxTaskBuffer != NULL ); |
| |
| #if ( configASSERT_DEFINED == 1 ) |
| { |
| /* Sanity check that the size of the structure used to declare a |
| * variable of type StaticTask_t equals the size of the real task |
| * structure. */ |
| volatile size_t xSize = sizeof( StaticTask_t ); |
| configASSERT( xSize == sizeof( TCB_t ) ); |
| ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */ |
| } |
| #endif /* configASSERT_DEFINED */ |
| |
| if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) ) |
| { |
| /* The memory used for the task's TCB and stack are passed into this |
| * function - use them. */ |
| pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */ |
| ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); |
| pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer; |
| |
| #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */ |
| { |
| /* Tasks can be created statically or dynamically, so note this |
| * task was created statically in case the task is later deleted. */ |
| pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB; |
| } |
| #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ |
| |
| prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL ); |
| } |
| else |
| { |
| pxNewTCB = NULL; |
| } |
| |
| return pxNewTCB; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const uint32_t ulStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| StackType_t * const puxStackBuffer, |
| StaticTask_t * const pxTaskBuffer ) |
| { |
| TaskHandle_t xReturn = NULL; |
| TCB_t * pxNewTCB; |
| |
| traceENTER_xTaskCreateStatic( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer ); |
| |
| pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| { |
| /* Set the task's affinity before scheduling it. */ |
| pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY; |
| } |
| #endif |
| |
| prvAddNewTaskToReadyList( pxNewTCB ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xTaskCreateStatic( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const uint32_t ulStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| StackType_t * const puxStackBuffer, |
| StaticTask_t * const pxTaskBuffer, |
| UBaseType_t uxCoreAffinityMask ) |
| { |
| TaskHandle_t xReturn = NULL; |
| TCB_t * pxNewTCB; |
| |
| traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask ); |
| |
| pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| /* Set the task's affinity before scheduling it. */ |
| pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask; |
| |
| prvAddNewTaskToReadyList( pxNewTCB ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xTaskCreateStaticAffinitySet( xReturn ); |
| |
| return xReturn; |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ |
| |
| #endif /* SUPPORT_STATIC_ALLOCATION */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) |
| static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition, |
| TaskHandle_t * const pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| |
| configASSERT( pxTaskDefinition->puxStackBuffer != NULL ); |
| configASSERT( pxTaskDefinition->pxTaskBuffer != NULL ); |
| |
| if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) ) |
| { |
| /* Allocate space for the TCB. Where the memory comes from depends |
| * on the implementation of the port malloc function and whether or |
| * not static allocation is being used. */ |
| pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer; |
| ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); |
| |
| /* Store the stack location in the TCB. */ |
| pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; |
| |
| #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) |
| { |
| /* Tasks can be created statically or dynamically, so note this |
| * task was created statically in case the task is later deleted. */ |
| pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB; |
| } |
| #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ |
| |
| prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, |
| pxTaskDefinition->pcName, |
| ( uint32_t ) pxTaskDefinition->usStackDepth, |
| pxTaskDefinition->pvParameters, |
| pxTaskDefinition->uxPriority, |
| pxCreatedTask, pxNewTCB, |
| pxTaskDefinition->xRegions ); |
| } |
| else |
| { |
| pxNewTCB = NULL; |
| } |
| |
| return pxNewTCB; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, |
| TaskHandle_t * pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask ); |
| |
| configASSERT( pxTaskDefinition != NULL ); |
| |
| pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| { |
| /* Set the task's affinity before scheduling it. */ |
| pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY; |
| } |
| #endif |
| |
| prvAddNewTaskToReadyList( pxNewTCB ); |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; |
| } |
| |
| traceRETURN_xTaskCreateRestrictedStatic( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition, |
| UBaseType_t uxCoreAffinityMask, |
| TaskHandle_t * pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask ); |
| |
| configASSERT( pxTaskDefinition != NULL ); |
| |
| pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| /* Set the task's affinity before scheduling it. */ |
| pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask; |
| |
| prvAddNewTaskToReadyList( pxNewTCB ); |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; |
| } |
| |
| traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn ); |
| |
| return xReturn; |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ |
| |
| #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition, |
| TaskHandle_t * const pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| |
| configASSERT( pxTaskDefinition->puxStackBuffer ); |
| |
| if( pxTaskDefinition->puxStackBuffer != NULL ) |
| { |
| pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); |
| |
| /* Store the stack location in the TCB. */ |
| pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; |
| |
| #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) |
| { |
| /* Tasks can be created statically or dynamically, so note |
| * this task had a statically allocated stack in case it is |
| * later deleted. The TCB was allocated dynamically. */ |
| pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY; |
| } |
| #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ |
| |
| prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, |
| pxTaskDefinition->pcName, |
| ( uint32_t ) pxTaskDefinition->usStackDepth, |
| pxTaskDefinition->pvParameters, |
| pxTaskDefinition->uxPriority, |
| pxCreatedTask, pxNewTCB, |
| pxTaskDefinition->xRegions ); |
| } |
| } |
| else |
| { |
| pxNewTCB = NULL; |
| } |
| |
| return pxNewTCB; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, |
| TaskHandle_t * pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask ); |
| |
| pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| { |
| /* Set the task's affinity before scheduling it. */ |
| pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY; |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ |
| |
| prvAddNewTaskToReadyList( pxNewTCB ); |
| |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; |
| } |
| |
| traceRETURN_xTaskCreateRestricted( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition, |
| UBaseType_t uxCoreAffinityMask, |
| TaskHandle_t * pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask ); |
| |
| pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| /* Set the task's affinity before scheduling it. */ |
| pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask; |
| |
| prvAddNewTaskToReadyList( pxNewTCB ); |
| |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; |
| } |
| |
| traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn ); |
| |
| return xReturn; |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ |
| |
| |
| #endif /* portUSING_MPU_WRAPPERS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) |
| static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const configSTACK_DEPTH_TYPE usStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| TaskHandle_t * const pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| |
| /* If the stack grows down then allocate the stack then the TCB so the stack |
| * does not grow into the TCB. Likewise if the stack grows up then allocate |
| * the TCB then the stack. */ |
| #if ( portSTACK_GROWTH > 0 ) |
| { |
| /* Allocate space for the TCB. Where the memory comes from depends on |
| * the implementation of the port malloc function and whether or not static |
| * allocation is being used. */ |
| pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); |
| |
| /* Allocate space for the stack used by the task being created. |
| * The base of the stack memory stored in the TCB so the task can |
| * be deleted later if required. */ |
| pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| |
| if( pxNewTCB->pxStack == NULL ) |
| { |
| /* Could not allocate the stack. Delete the allocated TCB. */ |
| vPortFree( pxNewTCB ); |
| pxNewTCB = NULL; |
| } |
| } |
| } |
| #else /* portSTACK_GROWTH */ |
| { |
| StackType_t * pxStack; |
| |
| /* Allocate space for the stack used by the task being created. */ |
| pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */ |
| |
| if( pxStack != NULL ) |
| { |
| /* Allocate space for the TCB. */ |
| pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */ |
| |
| if( pxNewTCB != NULL ) |
| { |
| ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); |
| |
| /* Store the stack location in the TCB. */ |
| pxNewTCB->pxStack = pxStack; |
| } |
| else |
| { |
| /* The stack cannot be used as the TCB was not created. Free |
| * it again. */ |
| vPortFreeStack( pxStack ); |
| } |
| } |
| else |
| { |
| pxNewTCB = NULL; |
| } |
| } |
| #endif /* portSTACK_GROWTH */ |
| |
| if( pxNewTCB != NULL ) |
| { |
| #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */ |
| { |
| /* Tasks can be created statically or dynamically, so note this |
| * task was created dynamically in case it is later deleted. */ |
| pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB; |
| } |
| #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ |
| |
| prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL ); |
| } |
| |
| return pxNewTCB; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xTaskCreate( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const configSTACK_DEPTH_TYPE usStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| TaskHandle_t * const pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskCreate( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ); |
| |
| pxNewTCB = prvCreateTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| { |
| /* Set the task's affinity before scheduling it. */ |
| pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY; |
| } |
| #endif |
| |
| prvAddNewTaskToReadyList( pxNewTCB ); |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; |
| } |
| |
| traceRETURN_xTaskCreate( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const configSTACK_DEPTH_TYPE usStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| UBaseType_t uxCoreAffinityMask, |
| TaskHandle_t * const pxCreatedTask ) |
| { |
| TCB_t * pxNewTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask ); |
| |
| pxNewTCB = prvCreateTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ); |
| |
| if( pxNewTCB != NULL ) |
| { |
| /* Set the task's affinity before scheduling it. */ |
| pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask; |
| |
| prvAddNewTaskToReadyList( pxNewTCB ); |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; |
| } |
| |
| traceRETURN_xTaskCreateAffinitySet( xReturn ); |
| |
| return xReturn; |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ |
| |
| #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
| /*-----------------------------------------------------------*/ |
| |
| static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, |
| const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| const uint32_t ulStackDepth, |
| void * const pvParameters, |
| UBaseType_t uxPriority, |
| TaskHandle_t * const pxCreatedTask, |
| TCB_t * pxNewTCB, |
| const MemoryRegion_t * const xRegions ) |
| { |
| StackType_t * pxTopOfStack; |
| UBaseType_t x; |
| |
| #if ( portUSING_MPU_WRAPPERS == 1 ) |
| /* Should the task be created in privileged mode? */ |
| BaseType_t xRunPrivileged; |
| |
| if( ( uxPriority & portPRIVILEGE_BIT ) != 0U ) |
| { |
| xRunPrivileged = pdTRUE; |
| } |
| else |
| { |
| xRunPrivileged = pdFALSE; |
| } |
| uxPriority &= ~portPRIVILEGE_BIT; |
| #endif /* portUSING_MPU_WRAPPERS == 1 */ |
| |
| /* Avoid dependency on memset() if it is not required. */ |
| #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 ) |
| { |
| /* Fill the stack with a known value to assist debugging. */ |
| ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) ); |
| } |
| #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */ |
| |
| /* Calculate the top of stack address. This depends on whether the stack |
| * grows from high memory to low (as per the 80x86) or vice versa. |
| * portSTACK_GROWTH is used to make the result positive or negative as required |
| * by the port. */ |
| #if ( portSTACK_GROWTH < 0 ) |
| { |
| pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] ); |
| pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */ |
| |
| /* Check the alignment of the calculated top of stack is correct. */ |
| configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); |
| |
| #if ( configRECORD_STACK_HIGH_ADDRESS == 1 ) |
| { |
| /* Also record the stack's high address, which may assist |
| * debugging. */ |
| pxNewTCB->pxEndOfStack = pxTopOfStack; |
| } |
| #endif /* configRECORD_STACK_HIGH_ADDRESS */ |
| } |
| #else /* portSTACK_GROWTH */ |
| { |
| pxTopOfStack = pxNewTCB->pxStack; |
| pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */ |
| |
| /* Check the alignment of the calculated top of stack is correct. */ |
| configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); |
| |
| /* The other extreme of the stack space is required if stack checking is |
| * performed. */ |
| pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 ); |
| } |
| #endif /* portSTACK_GROWTH */ |
| |
| /* Store the task name in the TCB. */ |
| if( pcName != NULL ) |
| { |
| for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) |
| { |
| pxNewTCB->pcTaskName[ x ] = pcName[ x ]; |
| |
| /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than |
| * configMAX_TASK_NAME_LEN characters just in case the memory after the |
| * string is not accessible (extremely unlikely). */ |
| if( pcName[ x ] == ( char ) 0x00 ) |
| { |
| break; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| /* Ensure the name string is terminated in the case that the string length |
| * was greater or equal to configMAX_TASK_NAME_LEN. */ |
| pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0'; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* This is used as an array index so must ensure it's not too large. */ |
| configASSERT( uxPriority < configMAX_PRIORITIES ); |
| |
| if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) |
| { |
| uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| pxNewTCB->uxPriority = uxPriority; |
| #if ( configUSE_MUTEXES == 1 ) |
| { |
| pxNewTCB->uxBasePriority = uxPriority; |
| } |
| #endif /* configUSE_MUTEXES */ |
| |
| vListInitialiseItem( &( pxNewTCB->xStateListItem ) ); |
| vListInitialiseItem( &( pxNewTCB->xEventListItem ) ); |
| |
| /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get |
| * back to the containing TCB from a generic item in a list. */ |
| listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB ); |
| |
| /* Event lists are always in priority order. */ |
| listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB ); |
| |
| #if ( portUSING_MPU_WRAPPERS == 1 ) |
| { |
| vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth ); |
| } |
| #else |
| { |
| /* Avoid compiler warning about unreferenced parameter. */ |
| ( void ) xRegions; |
| } |
| #endif |
| |
| #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) |
| { |
| /* Allocate and initialize memory for the task's TLS Block. */ |
| configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack ); |
| } |
| #endif |
| |
| /* Initialize the TCB stack to look as if the task was already running, |
| * but had been interrupted by the scheduler. The return address is set |
| * to the start of the task function. Once the stack has been initialised |
| * the top of stack variable is updated. */ |
| #if ( portUSING_MPU_WRAPPERS == 1 ) |
| { |
| /* If the port has capability to detect stack overflow, |
| * pass the stack end address to the stack initialization |
| * function as well. */ |
| #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) |
| { |
| #if ( portSTACK_GROWTH < 0 ) |
| { |
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) ); |
| } |
| #else /* portSTACK_GROWTH */ |
| { |
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) ); |
| } |
| #endif /* portSTACK_GROWTH */ |
| } |
| #else /* portHAS_STACK_OVERFLOW_CHECKING */ |
| { |
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) ); |
| } |
| #endif /* portHAS_STACK_OVERFLOW_CHECKING */ |
| } |
| #else /* portUSING_MPU_WRAPPERS */ |
| { |
| /* If the port has capability to detect stack overflow, |
| * pass the stack end address to the stack initialization |
| * function as well. */ |
| #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) |
| { |
| #if ( portSTACK_GROWTH < 0 ) |
| { |
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters ); |
| } |
| #else /* portSTACK_GROWTH */ |
| { |
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters ); |
| } |
| #endif /* portSTACK_GROWTH */ |
| } |
| #else /* portHAS_STACK_OVERFLOW_CHECKING */ |
| { |
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters ); |
| } |
| #endif /* portHAS_STACK_OVERFLOW_CHECKING */ |
| } |
| #endif /* portUSING_MPU_WRAPPERS */ |
| |
| /* Initialize task state and task attributes. */ |
| #if ( configNUMBER_OF_CORES > 1 ) |
| { |
| pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING; |
| |
| /* Is this an idle task? */ |
| if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) ) |
| { |
| pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE; |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| if( pxCreatedTask != NULL ) |
| { |
| /* Pass the handle out in an anonymous way. The handle can be used to |
| * change the created task's priority, delete the created task, etc.*/ |
| *pxCreatedTask = ( TaskHandle_t ) pxNewTCB; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| |
| static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) |
| { |
| /* Ensure interrupts don't access the task lists while the lists are being |
| * updated. */ |
| taskENTER_CRITICAL(); |
| { |
| uxCurrentNumberOfTasks++; |
| |
| if( pxCurrentTCB == NULL ) |
| { |
| /* There are no other tasks, or all the other tasks are in |
| * the suspended state - make this the current task. */ |
| pxCurrentTCB = pxNewTCB; |
| |
| if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) |
| { |
| /* This is the first task to be created so do the preliminary |
| * initialisation required. We will not recover if this call |
| * fails, but we will report the failure. */ |
| prvInitialiseTaskLists(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* If the scheduler is not already running, make this task the |
| * current task if it is the highest priority task to be created |
| * so far. */ |
| if( xSchedulerRunning == pdFALSE ) |
| { |
| if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority ) |
| { |
| pxCurrentTCB = pxNewTCB; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| uxTaskNumber++; |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| { |
| /* Add a counter into the TCB for tracing only. */ |
| pxNewTCB->uxTCBNumber = uxTaskNumber; |
| } |
| #endif /* configUSE_TRACE_FACILITY */ |
| traceTASK_CREATE( pxNewTCB ); |
| |
| prvAddTaskToReadyList( pxNewTCB ); |
| |
| portSETUP_TCB( pxNewTCB ); |
| } |
| taskEXIT_CRITICAL(); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* If the created task is of a higher priority than the current task |
| * then it should run now. */ |
| taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) |
| { |
| /* Ensure interrupts don't access the task lists while the lists are being |
| * updated. */ |
| taskENTER_CRITICAL(); |
| { |
| uxCurrentNumberOfTasks++; |
| |
| if( xSchedulerRunning == pdFALSE ) |
| { |
| if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) |
| { |
| /* This is the first task to be created so do the preliminary |
| * initialisation required. We will not recover if this call |
| * fails, but we will report the failure. */ |
| prvInitialiseTaskLists(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| if( ( pxNewTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U ) |
| { |
| BaseType_t xCoreID; |
| |
| /* Check if a core is free. */ |
| for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ ) |
| { |
| if( pxCurrentTCBs[ xCoreID ] == NULL ) |
| { |
| pxNewTCB->xTaskRunState = xCoreID; |
| pxCurrentTCBs[ xCoreID ] = pxNewTCB; |
| break; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| uxTaskNumber++; |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| { |
| /* Add a counter into the TCB for tracing only. */ |
| pxNewTCB->uxTCBNumber = uxTaskNumber; |
| } |
| #endif /* configUSE_TRACE_FACILITY */ |
| traceTASK_CREATE( pxNewTCB ); |
| |
| prvAddTaskToReadyList( pxNewTCB ); |
| |
| portSETUP_TCB( pxNewTCB ); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* If the created task is of a higher priority than another |
| * currently running task and preemption is on then it should |
| * run now. */ |
| taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| taskEXIT_CRITICAL(); |
| } |
| |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) |
| |
| static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue, |
| size_t n ) |
| { |
| size_t uxCharsWritten; |
| |
| if( iSnprintfReturnValue < 0 ) |
| { |
| /* Encoding error - Return 0 to indicate that nothing |
| * was written to the buffer. */ |
| uxCharsWritten = 0; |
| } |
| else if( iSnprintfReturnValue >= ( int ) n ) |
| { |
| /* This is the case when the supplied buffer is not |
| * large to hold the generated string. Return the |
| * number of characters actually written without |
| * counting the terminating NULL character. */ |
| uxCharsWritten = n - 1; |
| } |
| else |
| { |
| /* Complete string was written to the buffer. */ |
| uxCharsWritten = ( size_t ) iSnprintfReturnValue; |
| } |
| |
| return uxCharsWritten; |
| } |
| |
| #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| |
| void vTaskDelete( TaskHandle_t xTaskToDelete ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_vTaskDelete( xTaskToDelete ); |
| |
| taskENTER_CRITICAL(); |
| { |
| /* If null is passed in here then it is the calling task that is |
| * being deleted. */ |
| pxTCB = prvGetTCBFromHandle( xTaskToDelete ); |
| |
| /* Remove task from the ready/delayed list. */ |
| if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
| { |
| taskRESET_READY_PRIORITY( pxTCB->uxPriority ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Is the task waiting on an event also? */ |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
| { |
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Increment the uxTaskNumber also so kernel aware debuggers can |
| * detect that the task lists need re-generating. This is done before |
| * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will |
| * not return. */ |
| uxTaskNumber++; |
| |
| /* If the task is running (or yielding), we must add it to the |
| * termination list so that an idle task can delete it when it is |
| * no longer running. */ |
| if( taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) != pdFALSE ) |
| { |
| /* A running task or a task which is scheduled to yield is being |
| * deleted. This cannot complete when the task is still running |
| * on a core, as a context switch to another task is required. |
| * Place the task in the termination list. The idle task will check |
| * the termination list and free up any memory allocated by the |
| * scheduler for the TCB and stack of the deleted task. */ |
| vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) ); |
| |
| /* Increment the ucTasksDeleted variable so the idle task knows |
| * there is a task that has been deleted and that it should therefore |
| * check the xTasksWaitingTermination list. */ |
| ++uxDeletedTasksWaitingCleanUp; |
| |
| /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as |
| * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */ |
| traceTASK_DELETE( pxTCB ); |
| |
| /* The pre-delete hook is primarily for the Windows simulator, |
| * in which Windows specific clean up operations are performed, |
| * after which it is not possible to yield away from this task - |
| * hence xYieldPending is used to latch that a context switch is |
| * required. */ |
| #if ( configNUMBER_OF_CORES == 1 ) |
| portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) ); |
| #else |
| portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) ); |
| #endif |
| } |
| else |
| { |
| --uxCurrentNumberOfTasks; |
| traceTASK_DELETE( pxTCB ); |
| |
| /* Reset the next expected unblock time in case it referred to |
| * the task that has just been deleted. */ |
| prvResetNextTaskUnblockTime(); |
| } |
| } |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| taskEXIT_CRITICAL(); |
| |
| /* If the task is not deleting itself, call prvDeleteTCB from outside of |
| * critical section. If a task deletes itself, prvDeleteTCB is called |
| * from prvCheckTasksWaitingTermination which is called from Idle task. */ |
| if( pxTCB != pxCurrentTCB ) |
| { |
| prvDeleteTCB( pxTCB ); |
| } |
| |
| /* Force a reschedule if it is the currently running task that has just |
| * been deleted. */ |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| if( pxTCB == pxCurrentTCB ) |
| { |
| configASSERT( uxSchedulerSuspended == 0 ); |
| portYIELD_WITHIN_API(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| /* If a running task is not deleting itself, call prvDeleteTCB. If a running |
| * task deletes itself, prvDeleteTCB is called from prvCheckTasksWaitingTermination |
| * which is called from Idle task. */ |
| if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING ) |
| { |
| prvDeleteTCB( pxTCB ); |
| } |
| |
| /* Force a reschedule if the task that has just been deleted was running. */ |
| if( ( xSchedulerRunning != pdFALSE ) && ( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) ) |
| { |
| if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() ) |
| { |
| configASSERT( uxSchedulerSuspended == 0 ); |
| vTaskYieldWithinAPI(); |
| } |
| else |
| { |
| prvYieldCore( pxTCB->xTaskRunState ); |
| } |
| } |
| |
| taskEXIT_CRITICAL(); |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| traceRETURN_vTaskDelete(); |
| } |
| |
| #endif /* INCLUDE_vTaskDelete */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_xTaskDelayUntil == 1 ) |
| |
| BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime, |
| const TickType_t xTimeIncrement ) |
| { |
| TickType_t xTimeToWake; |
| BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE; |
| |
| traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement ); |
| |
| configASSERT( pxPreviousWakeTime ); |
| configASSERT( ( xTimeIncrement > 0U ) ); |
| |
| vTaskSuspendAll(); |
| { |
| /* Minor optimisation. The tick count cannot change in this |
| * block. */ |
| const TickType_t xConstTickCount = xTickCount; |
| |
| configASSERT( uxSchedulerSuspended == 1U ); |
| |
| /* Generate the tick time at which the task wants to wake. */ |
| xTimeToWake = *pxPreviousWakeTime + xTimeIncrement; |
| |
| if( xConstTickCount < *pxPreviousWakeTime ) |
| { |
| /* The tick count has overflowed since this function was |
| * lasted called. In this case the only time we should ever |
| * actually delay is if the wake time has also overflowed, |
| * and the wake time is greater than the tick time. When this |
| * is the case it is as if neither time had overflowed. */ |
| if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) ) |
| { |
| xShouldDelay = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* The tick time has not overflowed. In this case we will |
| * delay if either the wake time has overflowed, and/or the |
| * tick time is less than the wake time. */ |
| if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) ) |
| { |
| xShouldDelay = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| /* Update the wake time ready for the next call. */ |
| *pxPreviousWakeTime = xTimeToWake; |
| |
| if( xShouldDelay != pdFALSE ) |
| { |
| traceTASK_DELAY_UNTIL( xTimeToWake ); |
| |
| /* prvAddCurrentTaskToDelayedList() needs the block time, not |
| * the time to wake, so subtract the current tick count. */ |
| prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| xAlreadyYielded = xTaskResumeAll(); |
| |
| /* Force a reschedule if xTaskResumeAll has not already done so, we may |
| * have put ourselves to sleep. */ |
| if( xAlreadyYielded == pdFALSE ) |
| { |
| taskYIELD_WITHIN_API(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xTaskDelayUntil( xShouldDelay ); |
| |
| return xShouldDelay; |
| } |
| |
| #endif /* INCLUDE_xTaskDelayUntil */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_vTaskDelay == 1 ) |
| |
| void vTaskDelay( const TickType_t xTicksToDelay ) |
| { |
| BaseType_t xAlreadyYielded = pdFALSE; |
| |
| traceENTER_vTaskDelay( xTicksToDelay ); |
| |
| /* A delay time of zero just forces a reschedule. */ |
| if( xTicksToDelay > ( TickType_t ) 0U ) |
| { |
| vTaskSuspendAll(); |
| { |
| configASSERT( uxSchedulerSuspended == 1U ); |
| |
| traceTASK_DELAY(); |
| |
| /* A task that is removed from the event list while the |
| * scheduler is suspended will not get placed in the ready |
| * list or removed from the blocked list until the scheduler |
| * is resumed. |
| * |
| * This task cannot be in an event list as it is the currently |
| * executing task. */ |
| prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE ); |
| } |
| xAlreadyYielded = xTaskResumeAll(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Force a reschedule if xTaskResumeAll has not already done so, we may |
| * have put ourselves to sleep. */ |
| if( xAlreadyYielded == pdFALSE ) |
| { |
| taskYIELD_WITHIN_API(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskDelay(); |
| } |
| |
| #endif /* INCLUDE_vTaskDelay */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) ) |
| |
| eTaskState eTaskGetState( TaskHandle_t xTask ) |
| { |
| eTaskState eReturn; |
| List_t const * pxStateList; |
| List_t const * pxEventList; |
| List_t const * pxDelayedList; |
| List_t const * pxOverflowedDelayedList; |
| const TCB_t * const pxTCB = xTask; |
| |
| traceENTER_eTaskGetState( xTask ); |
| |
| configASSERT( pxTCB ); |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| if( pxTCB == pxCurrentTCB ) |
| { |
| /* The task calling this function is querying its own state. */ |
| eReturn = eRunning; |
| } |
| else |
| #endif |
| { |
| taskENTER_CRITICAL(); |
| { |
| pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) ); |
| pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ); |
| pxDelayedList = pxDelayedTaskList; |
| pxOverflowedDelayedList = pxOverflowDelayedTaskList; |
| } |
| taskEXIT_CRITICAL(); |
| |
| if( pxEventList == &xPendingReadyList ) |
| { |
| /* The task has been placed on the pending ready list, so its |
| * state is eReady regardless of what list the task's state list |
| * item is currently placed on. */ |
| eReturn = eReady; |
| } |
| else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) ) |
| { |
| /* The task being queried is referenced from one of the Blocked |
| * lists. */ |
| eReturn = eBlocked; |
| } |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| else if( pxStateList == &xSuspendedTaskList ) |
| { |
| /* The task being queried is referenced from the suspended |
| * list. Is it genuinely suspended or is it blocked |
| * indefinitely? */ |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ) |
| { |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| { |
| BaseType_t x; |
| |
| /* The task does not appear on the event list item of |
| * and of the RTOS objects, but could still be in the |
| * blocked state if it is waiting on its notification |
| * rather than waiting on an object. If not, is |
| * suspended. */ |
| eReturn = eSuspended; |
| |
| for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) |
| { |
| if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) |
| { |
| eReturn = eBlocked; |
| break; |
| } |
| } |
| } |
| #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ |
| { |
| eReturn = eSuspended; |
| } |
| #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ |
| } |
| else |
| { |
| eReturn = eBlocked; |
| } |
| } |
| #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */ |
| |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) ) |
| { |
| /* The task being queried is referenced from the deleted |
| * tasks list, or it is not referenced from any lists at |
| * all. */ |
| eReturn = eDeleted; |
| } |
| #endif |
| |
| else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */ |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| /* If the task is not in any other state, it must be in the |
| * Ready (including pending ready) state. */ |
| eReturn = eReady; |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) |
| { |
| /* Is it actively running on a core? */ |
| eReturn = eRunning; |
| } |
| else |
| { |
| /* If the task is not in any other state, it must be in the |
| * Ready (including pending ready) state. */ |
| eReturn = eReady; |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| } |
| |
| traceRETURN_eTaskGetState( eReturn ); |
| |
| return eReturn; |
| } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ |
| |
| #endif /* INCLUDE_eTaskGetState */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_uxTaskPriorityGet == 1 ) |
| |
| UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask ) |
| { |
| TCB_t const * pxTCB; |
| UBaseType_t uxReturn; |
| |
| traceENTER_uxTaskPriorityGet( xTask ); |
| |
| taskENTER_CRITICAL(); |
| { |
| /* If null is passed in here then it is the priority of the task |
| * that called uxTaskPriorityGet() that is being queried. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| uxReturn = pxTCB->uxPriority; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_uxTaskPriorityGet( uxReturn ); |
| |
| return uxReturn; |
| } |
| |
| #endif /* INCLUDE_uxTaskPriorityGet */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_uxTaskPriorityGet == 1 ) |
| |
| UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask ) |
| { |
| TCB_t const * pxTCB; |
| UBaseType_t uxReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| |
| traceENTER_uxTaskPriorityGetFromISR( xTask ); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a |
| * maximum system call (or maximum API call) interrupt priority. |
| * Interrupts that are above the maximum system call priority are keep |
| * permanently enabled, even when the RTOS kernel is in a critical section, |
| * but cannot make any calls to FreeRTOS API functions. If configASSERT() |
| * is defined in FreeRTOSConfig.h then |
| * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has |
| * been assigned a priority above the configured maximum system call |
| * priority. Only FreeRTOS functions that end in FromISR can be called |
| * from interrupts that have been assigned a priority at or (logically) |
| * below the maximum system call interrupt priority. FreeRTOS maintains a |
| * separate interrupt safe API to ensure interrupt entry is as fast and as |
| * simple as possible. More information (albeit Cortex-M specific) is |
| * provided on the following link: |
| * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); |
| { |
| /* If null is passed in here then it is the priority of the calling |
| * task that is being queried. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| uxReturn = pxTCB->uxPriority; |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_uxTaskPriorityGetFromISR( uxReturn ); |
| |
| return uxReturn; |
| } |
| |
| #endif /* INCLUDE_uxTaskPriorityGet */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) |
| |
| UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask ) |
| { |
| TCB_t const * pxTCB; |
| UBaseType_t uxReturn; |
| |
| traceENTER_uxTaskBasePriorityGet( xTask ); |
| |
| taskENTER_CRITICAL(); |
| { |
| /* If null is passed in here then it is the base priority of the task |
| * that called uxTaskBasePriorityGet() that is being queried. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| uxReturn = pxTCB->uxBasePriority; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_uxTaskBasePriorityGet( uxReturn ); |
| |
| return uxReturn; |
| } |
| |
| #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) |
| |
| UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask ) |
| { |
| TCB_t const * pxTCB; |
| UBaseType_t uxReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| |
| traceENTER_uxTaskBasePriorityGetFromISR( xTask ); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a |
| * maximum system call (or maximum API call) interrupt priority. |
| * Interrupts that are above the maximum system call priority are keep |
| * permanently enabled, even when the RTOS kernel is in a critical section, |
| * but cannot make any calls to FreeRTOS API functions. If configASSERT() |
| * is defined in FreeRTOSConfig.h then |
| * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has |
| * been assigned a priority above the configured maximum system call |
| * priority. Only FreeRTOS functions that end in FromISR can be called |
| * from interrupts that have been assigned a priority at or (logically) |
| * below the maximum system call interrupt priority. FreeRTOS maintains a |
| * separate interrupt safe API to ensure interrupt entry is as fast and as |
| * simple as possible. More information (albeit Cortex-M specific) is |
| * provided on the following link: |
| * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); |
| { |
| /* If null is passed in here then it is the base priority of the calling |
| * task that is being queried. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| uxReturn = pxTCB->uxBasePriority; |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn ); |
| |
| return uxReturn; |
| } |
| |
| #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_vTaskPrioritySet == 1 ) |
| |
| void vTaskPrioritySet( TaskHandle_t xTask, |
| UBaseType_t uxNewPriority ) |
| { |
| TCB_t * pxTCB; |
| UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry; |
| BaseType_t xYieldRequired = pdFALSE; |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| BaseType_t xYieldForTask = pdFALSE; |
| #endif |
| |
| traceENTER_vTaskPrioritySet( xTask, uxNewPriority ); |
| |
| configASSERT( uxNewPriority < configMAX_PRIORITIES ); |
| |
| /* Ensure the new priority is valid. */ |
| if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) |
| { |
| uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| taskENTER_CRITICAL(); |
| { |
| /* If null is passed in here then it is the priority of the calling |
| * task that is being changed. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| traceTASK_PRIORITY_SET( pxTCB, uxNewPriority ); |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| { |
| uxCurrentBasePriority = pxTCB->uxBasePriority; |
| } |
| #else |
| { |
| uxCurrentBasePriority = pxTCB->uxPriority; |
| } |
| #endif |
| |
| if( uxCurrentBasePriority != uxNewPriority ) |
| { |
| /* The priority change may have readied a task of higher |
| * priority than a running task. */ |
| if( uxNewPriority > uxCurrentBasePriority ) |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| if( pxTCB != pxCurrentTCB ) |
| { |
| /* The priority of a task other than the currently |
| * running task is being raised. Is the priority being |
| * raised above that of the running task? */ |
| if( uxNewPriority > pxCurrentTCB->uxPriority ) |
| { |
| xYieldRequired = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| /* The priority of the running task is being raised, |
| * but the running task must already be the highest |
| * priority task able to run so no yield is required. */ |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| /* The priority of a task is being raised so |
| * perform a yield for this task later. */ |
| xYieldForTask = pdTRUE; |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) |
| { |
| /* Setting the priority of a running task down means |
| * there may now be another task of higher priority that |
| * is ready to execute. */ |
| #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) |
| if( pxTCB->xPreemptionDisable == pdFALSE ) |
| #endif |
| { |
| xYieldRequired = pdTRUE; |
| } |
| } |
| else |
| { |
| /* Setting the priority of any other task down does not |
| * require a yield as the running task must be above the |
| * new priority of the task being modified. */ |
| } |
| |
| /* Remember the ready list the task might be referenced from |
| * before its uxPriority member is changed so the |
| * taskRESET_READY_PRIORITY() macro can function correctly. */ |
| uxPriorityUsedOnEntry = pxTCB->uxPriority; |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| { |
| /* Only change the priority being used if the task is not |
| * currently using an inherited priority or the new priority |
| * is bigger than the inherited priority. */ |
| if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) ) |
| { |
| pxTCB->uxPriority = uxNewPriority; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* The base priority gets set whatever. */ |
| pxTCB->uxBasePriority = uxNewPriority; |
| } |
| #else /* if ( configUSE_MUTEXES == 1 ) */ |
| { |
| pxTCB->uxPriority = uxNewPriority; |
| } |
| #endif /* if ( configUSE_MUTEXES == 1 ) */ |
| |
| /* Only reset the event list item value if the value is not |
| * being used for anything else. */ |
| if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) |
| { |
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* If the task is in the blocked or suspended list we need do |
| * nothing more than change its priority variable. However, if |
| * the task is in a ready list it needs to be removed and placed |
| * in the list appropriate to its new priority. */ |
| if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) |
| { |
| /* The task is currently in its ready list - remove before |
| * adding it to its new ready list. As we are in a critical |
| * section we can do this even if the scheduler is suspended. */ |
| if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
| { |
| /* It is known that the task is in its ready list so |
| * there is no need to check again and the port level |
| * reset macro can be called directly. */ |
| portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| prvAddTaskToReadyList( pxTCB ); |
| } |
| else |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| #else |
| { |
| /* It's possible that xYieldForTask was already set to pdTRUE because |
| * its priority is being raised. However, since it is not in a ready list |
| * we don't actually need to yield for it. */ |
| xYieldForTask = pdFALSE; |
| } |
| #endif |
| } |
| |
| if( xYieldRequired != pdFALSE ) |
| { |
| /* The running task priority is set down. Request the task to yield. */ |
| taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ); |
| } |
| else |
| { |
| #if ( configNUMBER_OF_CORES > 1 ) |
| if( xYieldForTask != pdFALSE ) |
| { |
| /* The priority of the task is being raised. If a running |
| * task has priority lower than this task, it should yield |
| * for this task. */ |
| taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ); |
| } |
| else |
| #endif /* if ( configNUMBER_OF_CORES > 1 ) */ |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| /* Remove compiler warning about unused variables when the port |
| * optimised task selection is not being used. */ |
| ( void ) uxPriorityUsedOnEntry; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_vTaskPrioritySet(); |
| } |
| |
| #endif /* INCLUDE_vTaskPrioritySet */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| void vTaskCoreAffinitySet( const TaskHandle_t xTask, |
| UBaseType_t uxCoreAffinityMask ) |
| { |
| TCB_t * pxTCB; |
| BaseType_t xCoreID; |
| UBaseType_t uxPrevCoreAffinityMask; |
| |
| #if ( configUSE_PREEMPTION == 1 ) |
| UBaseType_t uxPrevNotAllowedCores; |
| #endif |
| |
| traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask ); |
| |
| taskENTER_CRITICAL(); |
| { |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask; |
| pxTCB->uxCoreAffinityMask = uxCoreAffinityMask; |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) |
| { |
| xCoreID = ( BaseType_t ) pxTCB->xTaskRunState; |
| |
| /* If the task can no longer run on the core it was running, |
| * request the core to yield. */ |
| if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U ) |
| { |
| prvYieldCore( xCoreID ); |
| } |
| } |
| else |
| { |
| #if ( configUSE_PREEMPTION == 1 ) |
| { |
| /* Calculate the cores on which this task was not allowed to |
| * run previously. */ |
| uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U ); |
| |
| /* Does the new core mask enables this task to run on any of the |
| * previously not allowed cores? If yes, check if this task can be |
| * scheduled on any of those cores. */ |
| if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U ) |
| { |
| prvYieldForTask( pxTCB ); |
| } |
| } |
| #else /* #if( configUSE_PREEMPTION == 1 ) */ |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| #endif /* #if( configUSE_PREEMPTION == 1 ) */ |
| } |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_vTaskCoreAffinitySet(); |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) |
| UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask ) |
| { |
| const TCB_t * pxTCB; |
| UBaseType_t uxCoreAffinityMask; |
| |
| traceENTER_vTaskCoreAffinityGet( xTask ); |
| |
| taskENTER_CRITICAL(); |
| { |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| uxCoreAffinityMask = pxTCB->uxCoreAffinityMask; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask ); |
| |
| return uxCoreAffinityMask; |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) |
| |
| void vTaskPreemptionDisable( const TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_vTaskPreemptionDisable( xTask ); |
| |
| taskENTER_CRITICAL(); |
| { |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| pxTCB->xPreemptionDisable = pdTRUE; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_vTaskPreemptionDisable(); |
| } |
| |
| #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) |
| |
| void vTaskPreemptionEnable( const TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| BaseType_t xCoreID; |
| |
| traceENTER_vTaskPreemptionEnable( xTask ); |
| |
| taskENTER_CRITICAL(); |
| { |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| pxTCB->xPreemptionDisable = pdFALSE; |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) |
| { |
| xCoreID = ( BaseType_t ) pxTCB->xTaskRunState; |
| prvYieldCore( xCoreID ); |
| } |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_vTaskPreemptionEnable(); |
| } |
| |
| #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| |
| void vTaskSuspend( TaskHandle_t xTaskToSuspend ) |
| { |
| TCB_t * pxTCB; |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| BaseType_t xTaskRunningOnCore; |
| #endif |
| |
| traceENTER_vTaskSuspend( xTaskToSuspend ); |
| |
| taskENTER_CRITICAL(); |
| { |
| /* If null is passed in here then it is the running task that is |
| * being suspended. */ |
| pxTCB = prvGetTCBFromHandle( xTaskToSuspend ); |
| |
| traceTASK_SUSPEND( pxTCB ); |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| xTaskRunningOnCore = pxTCB->xTaskRunState; |
| #endif |
| |
| /* Remove task from the ready/delayed list and place in the |
| * suspended list. */ |
| if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
| { |
| taskRESET_READY_PRIORITY( pxTCB->uxPriority ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Is the task waiting on an event also? */ |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
| { |
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ); |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| { |
| BaseType_t x; |
| |
| for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) |
| { |
| if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) |
| { |
| /* The task was blocked to wait for a notification, but is |
| * now suspended, so no notification was received. */ |
| pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION; |
| } |
| } |
| } |
| #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ |
| } |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| taskEXIT_CRITICAL(); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* Reset the next expected unblock time in case it referred to the |
| * task that is now in the Suspended state. */ |
| taskENTER_CRITICAL(); |
| { |
| prvResetNextTaskUnblockTime(); |
| } |
| taskEXIT_CRITICAL(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| if( pxTCB == pxCurrentTCB ) |
| { |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* The current task has just been suspended. */ |
| configASSERT( uxSchedulerSuspended == 0 ); |
| portYIELD_WITHIN_API(); |
| } |
| else |
| { |
| /* The scheduler is not running, but the task that was pointed |
| * to by pxCurrentTCB has just been suspended and pxCurrentTCB |
| * must be adjusted to point to a different task. */ |
| if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */ |
| { |
| /* No other tasks are ready, so set pxCurrentTCB back to |
| * NULL so when the next task is created pxCurrentTCB will |
| * be set to point to it no matter what its relative priority |
| * is. */ |
| pxCurrentTCB = NULL; |
| } |
| else |
| { |
| vTaskSwitchContext(); |
| } |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* Reset the next expected unblock time in case it referred to the |
| * task that is now in the Suspended state. */ |
| prvResetNextTaskUnblockTime(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) |
| { |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| if( xTaskRunningOnCore == ( BaseType_t ) portGET_CORE_ID() ) |
| { |
| /* The current task has just been suspended. */ |
| configASSERT( uxSchedulerSuspended == 0 ); |
| vTaskYieldWithinAPI(); |
| } |
| else |
| { |
| prvYieldCore( xTaskRunningOnCore ); |
| } |
| } |
| else |
| { |
| /* This code path is not possible because only Idle tasks are |
| * assigned a core before the scheduler is started ( i.e. |
| * taskTASK_IS_RUNNING is only true for idle tasks before |
| * the scheduler is started ) and idle tasks cannot be |
| * suspended. */ |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| taskEXIT_CRITICAL(); |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| traceRETURN_vTaskSuspend(); |
| } |
| |
| #endif /* INCLUDE_vTaskSuspend */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| |
| static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) |
| { |
| BaseType_t xReturn = pdFALSE; |
| const TCB_t * const pxTCB = xTask; |
| |
| /* Accesses xPendingReadyList so must be called from a critical |
| * section. */ |
| |
| /* It does not make sense to check if the calling task is suspended. */ |
| configASSERT( xTask ); |
| |
| /* Is the task being resumed actually in the suspended list? */ |
| if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE ) |
| { |
| /* Has the task already been resumed from within an ISR? */ |
| if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE ) |
| { |
| /* Is it in the suspended list because it is in the Suspended |
| * state, or because it is blocked with no timeout? */ |
| if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */ |
| { |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| { |
| BaseType_t x; |
| |
| /* The task does not appear on the event list item of |
| * and of the RTOS objects, but could still be in the |
| * blocked state if it is waiting on its notification |
| * rather than waiting on an object. If not, is |
| * suspended. */ |
| xReturn = pdTRUE; |
| |
| for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) |
| { |
| if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) |
| { |
| xReturn = pdFALSE; |
| break; |
| } |
| } |
| } |
| #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ |
| { |
| xReturn = pdTRUE; |
| } |
| #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| return xReturn; |
| } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ |
| |
| #endif /* INCLUDE_vTaskSuspend */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| |
| void vTaskResume( TaskHandle_t xTaskToResume ) |
| { |
| TCB_t * const pxTCB = xTaskToResume; |
| |
| traceENTER_vTaskResume( xTaskToResume ); |
| |
| /* It does not make sense to resume the calling task. */ |
| configASSERT( xTaskToResume ); |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| |
| /* The parameter cannot be NULL as it is impossible to resume the |
| * currently executing task. */ |
| if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) ) |
| #else |
| |
| /* The parameter cannot be NULL as it is impossible to resume the |
| * currently executing task. It is also impossible to resume a task |
| * that is actively running on another core but it is not safe |
| * to check their run state here. Therefore, we get into a critical |
| * section and check if the task is actually suspended or not. */ |
| if( pxTCB != NULL ) |
| #endif |
| { |
| taskENTER_CRITICAL(); |
| { |
| if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) |
| { |
| traceTASK_RESUME( pxTCB ); |
| |
| /* The ready list can be accessed even if the scheduler is |
| * suspended because this is inside a critical section. */ |
| ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
| prvAddTaskToReadyList( pxTCB ); |
| |
| /* This yield may not cause the task just resumed to run, |
| * but will leave the lists in the correct state for the |
| * next yield. */ |
| taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| taskEXIT_CRITICAL(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskResume(); |
| } |
| |
| #endif /* INCLUDE_vTaskSuspend */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) |
| |
| BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) |
| { |
| BaseType_t xYieldRequired = pdFALSE; |
| TCB_t * const pxTCB = xTaskToResume; |
| UBaseType_t uxSavedInterruptStatus; |
| |
| traceENTER_xTaskResumeFromISR( xTaskToResume ); |
| |
| configASSERT( xTaskToResume ); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a |
| * maximum system call (or maximum API call) interrupt priority. |
| * Interrupts that are above the maximum system call priority are keep |
| * permanently enabled, even when the RTOS kernel is in a critical section, |
| * but cannot make any calls to FreeRTOS API functions. If configASSERT() |
| * is defined in FreeRTOSConfig.h then |
| * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has |
| * been assigned a priority above the configured maximum system call |
| * priority. Only FreeRTOS functions that end in FromISR can be called |
| * from interrupts that have been assigned a priority at or (logically) |
| * below the maximum system call interrupt priority. FreeRTOS maintains a |
| * separate interrupt safe API to ensure interrupt entry is as fast and as |
| * simple as possible. More information (albeit Cortex-M specific) is |
| * provided on the following link: |
| * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); |
| { |
| if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) |
| { |
| traceTASK_RESUME_FROM_ISR( pxTCB ); |
| |
| /* Check the ready lists can be accessed. */ |
| if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| /* Ready lists can be accessed so move the task from the |
| * suspended list to the ready list directly. */ |
| if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
| { |
| xYieldRequired = pdTRUE; |
| |
| /* Mark that a yield is pending in case the user is not |
| * using the return value to initiate a context switch |
| * from the ISR using portYIELD_FROM_ISR. */ |
| xYieldPendings[ 0 ] = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
| prvAddTaskToReadyList( pxTCB ); |
| } |
| else |
| { |
| /* The delayed or ready lists cannot be accessed so the task |
| * is held in the pending ready list until the scheduler is |
| * unsuspended. */ |
| vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); |
| } |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) |
| { |
| prvYieldForTask( pxTCB ); |
| |
| if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE ) |
| { |
| xYieldRequired = pdTRUE; |
| } |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_xTaskResumeFromISR( xYieldRequired ); |
| |
| return xYieldRequired; |
| } |
| |
| #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| static BaseType_t prvCreateIdleTasks( void ) |
| { |
| BaseType_t xReturn = pdPASS; |
| BaseType_t xCoreID; |
| char cIdleName[ configMAX_TASK_NAME_LEN ]; |
| TaskFunction_t pxIdleTaskFunction = NULL; |
| BaseType_t xIdleTaskNameIndex; |
| |
| for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ ) |
| { |
| cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ]; |
| |
| /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than |
| * configMAX_TASK_NAME_LEN characters just in case the memory after the |
| * string is not accessible (extremely unlikely). */ |
| if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 ) |
| { |
| break; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| /* Add each idle task at the lowest priority. */ |
| for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ ) |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| pxIdleTaskFunction = prvIdleTask; |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| /* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks |
| * are also created to ensure that each core has an idle task to |
| * run when no other task is available to run. */ |
| if( xCoreID == 0 ) |
| { |
| pxIdleTaskFunction = prvIdleTask; |
| } |
| else |
| { |
| pxIdleTaskFunction = prvPassiveIdleTask; |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| /* Update the idle task name with suffix to differentiate the idle tasks. |
| * This function is not required in single core FreeRTOS since there is |
| * only one idle task. */ |
| #if ( configNUMBER_OF_CORES > 1 ) |
| { |
| /* Append the idle task number to the end of the name if there is space. */ |
| if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN ) |
| { |
| cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' ); |
| |
| /* And append a null character if there is space. */ |
| if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN ) |
| { |
| cIdleName[ xIdleTaskNameIndex + 1 ] = '\0'; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| { |
| StaticTask_t * pxIdleTaskTCBBuffer = NULL; |
| StackType_t * pxIdleTaskStackBuffer = NULL; |
| uint32_t ulIdleTaskStackSize; |
| |
| /* The Idle task is created using user provided RAM - obtain the |
| * address of the RAM then create the idle task. */ |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); |
| } |
| #else |
| { |
| if( xCoreID == 0 ) |
| { |
| vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); |
| } |
| else |
| { |
| vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize, xCoreID - 1 ); |
| } |
| } |
| #endif /* if ( configNUMBER_OF_CORES == 1 ) */ |
| xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction, |
| cIdleName, |
| ulIdleTaskStackSize, |
| ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */ |
| portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ |
| pxIdleTaskStackBuffer, |
| pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ |
| |
| if( xIdleTaskHandles[ xCoreID ] != NULL ) |
| { |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| } |
| } |
| #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ |
| { |
| /* The Idle task is being created using dynamically allocated RAM. */ |
| xReturn = xTaskCreate( pxIdleTaskFunction, |
| cIdleName, |
| configMINIMAL_STACK_SIZE, |
| ( void * ) NULL, |
| portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ |
| &xIdleTaskHandles[ xCoreID ] ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ |
| } |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| |
| /* Break the loop if any of the idle task is failed to be created. */ |
| if( xReturn == pdFAIL ) |
| { |
| break; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| return xReturn; |
| } |
| |
| /*-----------------------------------------------------------*/ |
| |
| void vTaskStartScheduler( void ) |
| { |
| BaseType_t xReturn; |
| |
| traceENTER_vTaskStartScheduler(); |
| |
| #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) |
| { |
| /* Sanity check that the UBaseType_t must have greater than or equal to |
| * the number of bits as confNUMBER_OF_CORES. */ |
| configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES ); |
| } |
| #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */ |
| |
| xReturn = prvCreateIdleTasks(); |
| |
| #if ( configUSE_TIMERS == 1 ) |
| { |
| if( xReturn == pdPASS ) |
| { |
| xReturn = xTimerCreateTimerTask(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* configUSE_TIMERS */ |
| |
| if( xReturn == pdPASS ) |
| { |
| /* freertos_tasks_c_additions_init() should only be called if the user |
| * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is |
| * the only macro called by the function. */ |
| #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT |
| { |
| freertos_tasks_c_additions_init(); |
| } |
| #endif |
| |
| /* Interrupts are turned off here, to ensure a tick does not occur |
| * before or during the call to xPortStartScheduler(). The stacks of |
| * the created tasks contain a status word with interrupts switched on |
| * so interrupts will automatically get re-enabled when the first task |
| * starts to run. */ |
| portDISABLE_INTERRUPTS(); |
| |
| #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) |
| { |
| /* Switch C-Runtime's TLS Block to point to the TLS |
| * block specific to the task that will run first. */ |
| configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock ); |
| } |
| #endif |
| |
| xNextTaskUnblockTime = portMAX_DELAY; |
| xSchedulerRunning = pdTRUE; |
| xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT; |
| |
| /* If configGENERATE_RUN_TIME_STATS is defined then the following |
| * macro must be defined to configure the timer/counter used to generate |
| * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS |
| * is set to 0 and the following line fails to build then ensure you do not |
| * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your |
| * FreeRTOSConfig.h file. */ |
| portCONFIGURE_TIMER_FOR_RUN_TIME_STATS(); |
| |
| traceTASK_SWITCHED_IN(); |
| |
| /* Setting up the timer tick is hardware specific and thus in the |
| * portable interface. */ |
| xPortStartScheduler(); |
| |
| /* In most cases, xPortStartScheduler() will not return. If it |
| * returns pdTRUE then there was not enough heap memory available |
| * to create either the Idle or the Timer task. If it returned |
| * pdFALSE, then the application called xTaskEndScheduler(). |
| * Most ports don't implement xTaskEndScheduler() as there is |
| * nothing to return to. */ |
| } |
| else |
| { |
| /* This line will only be reached if the kernel could not be started, |
| * because there was not enough FreeRTOS heap to create the idle task |
| * or the timer task. */ |
| configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ); |
| } |
| |
| /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0, |
| * meaning xIdleTaskHandles are not used anywhere else. */ |
| ( void ) xIdleTaskHandles; |
| |
| /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority |
| * from getting optimized out as it is no longer used by the kernel. */ |
| ( void ) uxTopUsedPriority; |
| |
| traceRETURN_vTaskStartScheduler(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vTaskEndScheduler( void ) |
| { |
| traceENTER_vTaskEndScheduler(); |
| |
| /* Stop the scheduler interrupts and call the portable scheduler end |
| * routine so the original ISRs can be restored if necessary. The port |
| * layer must ensure interrupts enable bit is left in the correct state. */ |
| portDISABLE_INTERRUPTS(); |
| xSchedulerRunning = pdFALSE; |
| vPortEndScheduler(); |
| |
| traceRETURN_vTaskEndScheduler(); |
| } |
| /*----------------------------------------------------------*/ |
| |
| void vTaskSuspendAll( void ) |
| { |
| traceENTER_vTaskSuspendAll(); |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| /* A critical section is not required as the variable is of type |
| * BaseType_t. Please read Richard Barry's reply in the following link to a |
| * post in the FreeRTOS support forum before reporting this as a bug! - |
| * https://goo.gl/wu4acr */ |
| |
| /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that |
| * do not otherwise exhibit real time behaviour. */ |
| portSOFTWARE_BARRIER(); |
| |
| /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment |
| * is used to allow calls to vTaskSuspendAll() to nest. */ |
| ++uxSchedulerSuspended; |
| |
| /* Enforces ordering for ports and optimised compilers that may otherwise place |
| * the above increment elsewhere. */ |
| portMEMORY_BARRIER(); |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| UBaseType_t ulState; |
| |
| /* This must only be called from within a task. */ |
| portASSERT_IF_IN_ISR(); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks. |
| * We must disable interrupts before we grab the locks in the event that this task is |
| * interrupted and switches context before incrementing uxSchedulerSuspended. |
| * It is safe to re-enable interrupts after releasing the ISR lock and incrementing |
| * uxSchedulerSuspended since that will prevent context switches. */ |
| ulState = portSET_INTERRUPT_MASK(); |
| |
| /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that |
| * do not otherwise exhibit real time behaviour. */ |
| portSOFTWARE_BARRIER(); |
| |
| portGET_TASK_LOCK(); |
| |
| /* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The |
| * purpose is to prevent altering the variable when fromISR APIs are readying |
| * it. */ |
| if( uxSchedulerSuspended == 0U ) |
| { |
| if( portGET_CRITICAL_NESTING_COUNT() == 0U ) |
| { |
| prvCheckForRunStateChange(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| portGET_ISR_LOCK(); |
| |
| /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment |
| * is used to allow calls to vTaskSuspendAll() to nest. */ |
| ++uxSchedulerSuspended; |
| portRELEASE_ISR_LOCK(); |
| |
| portCLEAR_INTERRUPT_MASK( ulState ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| traceRETURN_vTaskSuspendAll(); |
| } |
| |
| /*----------------------------------------------------------*/ |
| |
| #if ( configUSE_TICKLESS_IDLE != 0 ) |
| |
| static TickType_t prvGetExpectedIdleTime( void ) |
| { |
| TickType_t xReturn; |
| UBaseType_t uxHigherPriorityReadyTasks = pdFALSE; |
| |
| /* uxHigherPriorityReadyTasks takes care of the case where |
| * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority |
| * task that are in the Ready state, even though the idle task is |
| * running. */ |
| #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) |
| { |
| if( uxTopReadyPriority > tskIDLE_PRIORITY ) |
| { |
| uxHigherPriorityReadyTasks = pdTRUE; |
| } |
| } |
| #else |
| { |
| const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01; |
| |
| /* When port optimised task selection is used the uxTopReadyPriority |
| * variable is used as a bit map. If bits other than the least |
| * significant bit are set then there are tasks that have a priority |
| * above the idle priority that are in the Ready state. This takes |
| * care of the case where the co-operative scheduler is in use. */ |
| if( uxTopReadyPriority > uxLeastSignificantBit ) |
| { |
| uxHigherPriorityReadyTasks = pdTRUE; |
| } |
| } |
| #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */ |
| |
| if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY ) |
| { |
| xReturn = 0; |
| } |
| else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 ) |
| { |
| /* There are other idle priority tasks in the ready state. If |
| * time slicing is used then the very next tick interrupt must be |
| * processed. */ |
| xReturn = 0; |
| } |
| else if( uxHigherPriorityReadyTasks != pdFALSE ) |
| { |
| /* There are tasks in the Ready state that have a priority above the |
| * idle priority. This path can only be reached if |
| * configUSE_PREEMPTION is 0. */ |
| xReturn = 0; |
| } |
| else |
| { |
| xReturn = xNextTaskUnblockTime - xTickCount; |
| } |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_TICKLESS_IDLE */ |
| /*----------------------------------------------------------*/ |
| |
| BaseType_t xTaskResumeAll( void ) |
| { |
| TCB_t * pxTCB = NULL; |
| BaseType_t xAlreadyYielded = pdFALSE; |
| |
| traceENTER_xTaskResumeAll(); |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| if( xSchedulerRunning != pdFALSE ) |
| #endif |
| { |
| /* It is possible that an ISR caused a task to be removed from an event |
| * list while the scheduler was suspended. If this was the case then the |
| * removed task will have been added to the xPendingReadyList. Once the |
| * scheduler has been resumed it is safe to move all the pending ready |
| * tasks from this list into their appropriate ready list. */ |
| taskENTER_CRITICAL(); |
| { |
| BaseType_t xCoreID; |
| xCoreID = ( BaseType_t ) portGET_CORE_ID(); |
| |
| /* If uxSchedulerSuspended is zero then this function does not match a |
| * previous call to vTaskSuspendAll(). */ |
| configASSERT( uxSchedulerSuspended != 0U ); |
| |
| --uxSchedulerSuspended; |
| portRELEASE_TASK_LOCK(); |
| |
| if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) |
| { |
| if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U ) |
| { |
| /* Move any readied tasks from the pending list into the |
| * appropriate ready list. */ |
| while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE ) |
| { |
| pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| listREMOVE_ITEM( &( pxTCB->xEventListItem ) ); |
| portMEMORY_BARRIER(); |
| listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); |
| prvAddTaskToReadyList( pxTCB ); |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| /* If the moved task has a priority higher than the current |
| * task then a yield must be performed. */ |
| if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
| { |
| xYieldPendings[ xCoreID ] = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| /* All appropriate tasks yield at the moment a task is added to xPendingReadyList. |
| * If the current core yielded then vTaskSwitchContext() has already been called |
| * which sets xYieldPendings for the current core to pdTRUE. */ |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| |
| if( pxTCB != NULL ) |
| { |
| /* A task was unblocked while the scheduler was suspended, |
| * which may have prevented the next unblock time from being |
| * re-calculated, in which case re-calculate it now. Mainly |
| * important for low power tickless implementations, where |
| * this can prevent an unnecessary exit from low power |
| * state. */ |
| prvResetNextTaskUnblockTime(); |
| } |
| |
| /* If any ticks occurred while the scheduler was suspended then |
| * they should be processed now. This ensures the tick count does |
| * not slip, and that any delayed tasks are resumed at the correct |
| * time. |
| * |
| * It should be safe to call xTaskIncrementTick here from any core |
| * since we are in a critical section and xTaskIncrementTick itself |
| * protects itself within a critical section. Suspending the scheduler |
| * from any core causes xTaskIncrementTick to increment uxPendedCounts. */ |
| { |
| TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */ |
| |
| if( xPendedCounts > ( TickType_t ) 0U ) |
| { |
| do |
| { |
| if( xTaskIncrementTick() != pdFALSE ) |
| { |
| /* Other cores are interrupted from |
| * within xTaskIncrementTick(). */ |
| xYieldPendings[ xCoreID ] = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| --xPendedCounts; |
| } while( xPendedCounts > ( TickType_t ) 0U ); |
| |
| xPendedTicks = 0; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| if( xYieldPendings[ xCoreID ] != pdFALSE ) |
| { |
| #if ( configUSE_PREEMPTION != 0 ) |
| { |
| xAlreadyYielded = pdTRUE; |
| } |
| #endif /* #if ( configUSE_PREEMPTION != 0 ) */ |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB ); |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| taskEXIT_CRITICAL(); |
| } |
| |
| traceRETURN_xTaskResumeAll( xAlreadyYielded ); |
| |
| return xAlreadyYielded; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| TickType_t xTaskGetTickCount( void ) |
| { |
| TickType_t xTicks; |
| |
| traceENTER_xTaskGetTickCount(); |
| |
| /* Critical section required if running on a 16 bit processor. */ |
| portTICK_TYPE_ENTER_CRITICAL(); |
| { |
| xTicks = xTickCount; |
| } |
| portTICK_TYPE_EXIT_CRITICAL(); |
| |
| traceRETURN_xTaskGetTickCount( xTicks ); |
| |
| return xTicks; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| TickType_t xTaskGetTickCountFromISR( void ) |
| { |
| TickType_t xReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| |
| traceENTER_xTaskGetTickCountFromISR(); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a maximum |
| * system call (or maximum API call) interrupt priority. Interrupts that are |
| * above the maximum system call priority are kept permanently enabled, even |
| * when the RTOS kernel is in a critical section, but cannot make any calls to |
| * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has been |
| * assigned a priority above the configured maximum system call priority. |
| * Only FreeRTOS functions that end in FromISR can be called from interrupts |
| * that have been assigned a priority at or (logically) below the maximum |
| * system call interrupt priority. FreeRTOS maintains a separate interrupt |
| * safe API to ensure interrupt entry is as fast and as simple as possible. |
| * More information (albeit Cortex-M specific) is provided on the following |
| * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR(); |
| { |
| xReturn = xTickCount; |
| } |
| portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_xTaskGetTickCountFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| UBaseType_t uxTaskGetNumberOfTasks( void ) |
| { |
| traceENTER_uxTaskGetNumberOfTasks(); |
| |
| /* A critical section is not required because the variables are of type |
| * BaseType_t. */ |
| traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks ); |
| |
| return uxCurrentNumberOfTasks; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_pcTaskGetName( xTaskToQuery ); |
| |
| /* If null is passed in here then the name of the calling task is being |
| * queried. */ |
| pxTCB = prvGetTCBFromHandle( xTaskToQuery ); |
| configASSERT( pxTCB ); |
| |
| traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) ); |
| |
| return &( pxTCB->pcTaskName[ 0 ] ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_xTaskGetHandle == 1 ) |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, |
| const char pcNameToQuery[] ) |
| { |
| TCB_t * pxNextTCB; |
| TCB_t * pxFirstTCB; |
| TCB_t * pxReturn = NULL; |
| UBaseType_t x; |
| char cNextChar; |
| BaseType_t xBreakLoop; |
| |
| /* This function is called with the scheduler suspended. */ |
| |
| if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) |
| { |
| listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| |
| do |
| { |
| listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| |
| /* Check each character in the name looking for a match or |
| * mismatch. */ |
| xBreakLoop = pdFALSE; |
| |
| for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) |
| { |
| cNextChar = pxNextTCB->pcTaskName[ x ]; |
| |
| if( cNextChar != pcNameToQuery[ x ] ) |
| { |
| /* Characters didn't match. */ |
| xBreakLoop = pdTRUE; |
| } |
| else if( cNextChar == ( char ) 0x00 ) |
| { |
| /* Both strings terminated, a match must have been |
| * found. */ |
| pxReturn = pxNextTCB; |
| xBreakLoop = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| if( xBreakLoop != pdFALSE ) |
| { |
| break; |
| } |
| } |
| |
| if( pxReturn != NULL ) |
| { |
| /* The handle has been found. */ |
| break; |
| } |
| } while( pxNextTCB != pxFirstTCB ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| return pxReturn; |
| } |
| #else /* if ( configNUMBER_OF_CORES == 1 ) */ |
| static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, |
| const char pcNameToQuery[] ) |
| { |
| TCB_t * pxReturn = NULL; |
| UBaseType_t x; |
| char cNextChar; |
| BaseType_t xBreakLoop; |
| const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList ); |
| ListItem_t * pxIterator; |
| |
| /* This function is called with the scheduler suspended. */ |
| |
| if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) |
| { |
| for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) ) |
| { |
| TCB_t * pxTCB = listGET_LIST_ITEM_OWNER( pxIterator ); |
| |
| /* Check each character in the name looking for a match or |
| * mismatch. */ |
| xBreakLoop = pdFALSE; |
| |
| for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) |
| { |
| cNextChar = pxTCB->pcTaskName[ x ]; |
| |
| if( cNextChar != pcNameToQuery[ x ] ) |
| { |
| /* Characters didn't match. */ |
| xBreakLoop = pdTRUE; |
| } |
| else if( cNextChar == ( char ) 0x00 ) |
| { |
| /* Both strings terminated, a match must have been |
| * found. */ |
| pxReturn = pxTCB; |
| xBreakLoop = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| if( xBreakLoop != pdFALSE ) |
| { |
| break; |
| } |
| } |
| |
| if( pxReturn != NULL ) |
| { |
| /* The handle has been found. */ |
| break; |
| } |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| return pxReturn; |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| #endif /* INCLUDE_xTaskGetHandle */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_xTaskGetHandle == 1 ) |
| |
| TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| { |
| UBaseType_t uxQueue = configMAX_PRIORITIES; |
| TCB_t * pxTCB; |
| |
| traceENTER_xTaskGetHandle( pcNameToQuery ); |
| |
| /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */ |
| configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN ); |
| |
| vTaskSuspendAll(); |
| { |
| /* Search the ready lists. */ |
| do |
| { |
| uxQueue--; |
| pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery ); |
| |
| if( pxTCB != NULL ) |
| { |
| /* Found the handle. */ |
| break; |
| } |
| } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| |
| /* Search the delayed lists. */ |
| if( pxTCB == NULL ) |
| { |
| pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery ); |
| } |
| |
| if( pxTCB == NULL ) |
| { |
| pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery ); |
| } |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| { |
| if( pxTCB == NULL ) |
| { |
| /* Search the suspended list. */ |
| pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery ); |
| } |
| } |
| #endif |
| |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| { |
| if( pxTCB == NULL ) |
| { |
| /* Search the deleted list. */ |
| pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery ); |
| } |
| } |
| #endif |
| } |
| ( void ) xTaskResumeAll(); |
| |
| traceRETURN_xTaskGetHandle( pxTCB ); |
| |
| return pxTCB; |
| } |
| |
| #endif /* INCLUDE_xTaskGetHandle */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| |
| BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask, |
| StackType_t ** ppuxStackBuffer, |
| StaticTask_t ** ppxTaskBuffer ) |
| { |
| BaseType_t xReturn; |
| TCB_t * pxTCB; |
| |
| traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer ); |
| |
| configASSERT( ppuxStackBuffer != NULL ); |
| configASSERT( ppxTaskBuffer != NULL ); |
| |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 ) |
| { |
| if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB ) |
| { |
| *ppuxStackBuffer = pxTCB->pxStack; |
| *ppxTaskBuffer = ( StaticTask_t * ) pxTCB; |
| xReturn = pdTRUE; |
| } |
| else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY ) |
| { |
| *ppuxStackBuffer = pxTCB->pxStack; |
| *ppxTaskBuffer = NULL; |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| xReturn = pdFALSE; |
| } |
| } |
| #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */ |
| { |
| *ppuxStackBuffer = pxTCB->pxStack; |
| *ppxTaskBuffer = ( StaticTask_t * ) pxTCB; |
| xReturn = pdTRUE; |
| } |
| #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */ |
| |
| traceRETURN_xTaskGetStaticBuffers( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, |
| const UBaseType_t uxArraySize, |
| configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime ) |
| { |
| UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES; |
| |
| traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime ); |
| |
| vTaskSuspendAll(); |
| { |
| /* Is there a space in the array for each task in the system? */ |
| if( uxArraySize >= uxCurrentNumberOfTasks ) |
| { |
| /* Fill in an TaskStatus_t structure with information on each |
| * task in the Ready state. */ |
| do |
| { |
| uxQueue--; |
| uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) ); |
| } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| |
| /* Fill in an TaskStatus_t structure with information on each |
| * task in the Blocked state. */ |
| uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) ); |
| uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) ); |
| |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| { |
| /* Fill in an TaskStatus_t structure with information on |
| * each task that has been deleted but not yet cleaned up. */ |
| uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) ); |
| } |
| #endif |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| { |
| /* Fill in an TaskStatus_t structure with information on |
| * each task in the Suspended state. */ |
| uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) ); |
| } |
| #endif |
| |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
| { |
| if( pulTotalRunTime != NULL ) |
| { |
| #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE |
| portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) ); |
| #else |
| *pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE(); |
| #endif |
| } |
| } |
| #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ |
| { |
| if( pulTotalRunTime != NULL ) |
| { |
| *pulTotalRunTime = 0; |
| } |
| } |
| #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| ( void ) xTaskResumeAll(); |
| |
| traceRETURN_uxTaskGetSystemState( uxTask ); |
| |
| return uxTask; |
| } |
| |
| #endif /* configUSE_TRACE_FACILITY */ |
| /*----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| |
| TaskHandle_t xTaskGetIdleTaskHandle( void ) |
| { |
| traceENTER_xTaskGetIdleTaskHandle(); |
| |
| /* If xTaskGetIdleTaskHandle() is called before the scheduler has been |
| * started, then xIdleTaskHandles will be NULL. */ |
| configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) ); |
| |
| traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] ); |
| |
| return xIdleTaskHandles[ 0 ]; |
| } |
| |
| #else /* if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| TaskHandle_t xTaskGetIdleTaskHandle( BaseType_t xCoreID ) |
| { |
| traceENTER_xTaskGetIdleTaskHandle( xCoreID ); |
| |
| /* Ensure the core ID is valid. */ |
| configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE ); |
| |
| /* If xTaskGetIdleTaskHandle() is called before the scheduler has been |
| * started, then xIdleTaskHandles will be NULL. */ |
| configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) ); |
| |
| traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ xCoreID ] ); |
| |
| return xIdleTaskHandles[ xCoreID ]; |
| } |
| |
| #endif /* if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| #endif /* INCLUDE_xTaskGetIdleTaskHandle */ |
| /*----------------------------------------------------------*/ |
| |
| /* This conditional compilation should use inequality to 0, not equality to 1. |
| * This is to ensure vTaskStepTick() is available when user defined low power mode |
| * implementations require configUSE_TICKLESS_IDLE to be set to a value other than |
| * 1. */ |
| #if ( configUSE_TICKLESS_IDLE != 0 ) |
| |
| void vTaskStepTick( TickType_t xTicksToJump ) |
| { |
| traceENTER_vTaskStepTick( xTicksToJump ); |
| |
| /* Correct the tick count value after a period during which the tick |
| * was suppressed. Note this does *not* call the tick hook function for |
| * each stepped tick. */ |
| configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime ); |
| |
| if( ( xTickCount + xTicksToJump ) == xNextTaskUnblockTime ) |
| { |
| /* Arrange for xTickCount to reach xNextTaskUnblockTime in |
| * xTaskIncrementTick() when the scheduler resumes. This ensures |
| * that any delayed tasks are resumed at the correct time. */ |
| configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U ); |
| configASSERT( xTicksToJump != ( TickType_t ) 0 ); |
| |
| /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */ |
| taskENTER_CRITICAL(); |
| { |
| xPendedTicks++; |
| } |
| taskEXIT_CRITICAL(); |
| xTicksToJump--; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| xTickCount += xTicksToJump; |
| |
| traceINCREASE_TICK_COUNT( xTicksToJump ); |
| traceRETURN_vTaskStepTick(); |
| } |
| |
| #endif /* configUSE_TICKLESS_IDLE */ |
| /*----------------------------------------------------------*/ |
| |
| BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp ) |
| { |
| BaseType_t xYieldOccurred; |
| |
| traceENTER_xTaskCatchUpTicks( xTicksToCatchUp ); |
| |
| /* Must not be called with the scheduler suspended as the implementation |
| * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */ |
| configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U ); |
| |
| /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when |
| * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */ |
| vTaskSuspendAll(); |
| |
| /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */ |
| taskENTER_CRITICAL(); |
| { |
| xPendedTicks += xTicksToCatchUp; |
| } |
| taskEXIT_CRITICAL(); |
| xYieldOccurred = xTaskResumeAll(); |
| |
| traceRETURN_xTaskCatchUpTicks( xYieldOccurred ); |
| |
| return xYieldOccurred; |
| } |
| /*----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_xTaskAbortDelay == 1 ) |
| |
| BaseType_t xTaskAbortDelay( TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB = xTask; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskAbortDelay( xTask ); |
| |
| configASSERT( pxTCB ); |
| |
| vTaskSuspendAll(); |
| { |
| /* A task can only be prematurely removed from the Blocked state if |
| * it is actually in the Blocked state. */ |
| if( eTaskGetState( xTask ) == eBlocked ) |
| { |
| xReturn = pdPASS; |
| |
| /* Remove the reference to the task from the blocked list. An |
| * interrupt won't touch the xStateListItem because the |
| * scheduler is suspended. */ |
| ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
| |
| /* Is the task waiting on an event also? If so remove it from |
| * the event list too. Interrupts can touch the event list item, |
| * even though the scheduler is suspended, so a critical section |
| * is used. */ |
| taskENTER_CRITICAL(); |
| { |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
| { |
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); |
| |
| /* This lets the task know it was forcibly removed from the |
| * blocked state so it should not re-evaluate its block time and |
| * then block again. */ |
| pxTCB->ucDelayAborted = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| /* Place the unblocked task into the appropriate ready list. */ |
| prvAddTaskToReadyList( pxTCB ); |
| |
| /* A task being unblocked cannot cause an immediate context |
| * switch if preemption is turned off. */ |
| #if ( configUSE_PREEMPTION == 1 ) |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| /* Preemption is on, but a context switch should only be |
| * performed if the unblocked task has a priority that is |
| * higher than the currently executing task. */ |
| if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
| { |
| /* Pend the yield to be performed when the scheduler |
| * is unsuspended. */ |
| xYieldPendings[ 0 ] = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| taskENTER_CRITICAL(); |
| { |
| prvYieldForTask( pxTCB ); |
| } |
| taskEXIT_CRITICAL(); |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| #endif /* #if ( configUSE_PREEMPTION == 1 ) */ |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| } |
| } |
| ( void ) xTaskResumeAll(); |
| |
| traceRETURN_xTaskAbortDelay( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* INCLUDE_xTaskAbortDelay */ |
| /*----------------------------------------------------------*/ |
| |
| BaseType_t xTaskIncrementTick( void ) |
| { |
| TCB_t * pxTCB; |
| TickType_t xItemValue; |
| BaseType_t xSwitchRequired = pdFALSE; |
| |
| #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) |
| BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE }; |
| #endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */ |
| |
| traceENTER_xTaskIncrementTick(); |
| |
| /* Called by the portable layer each time a tick interrupt occurs. |
| * Increments the tick then checks to see if the new tick value will cause any |
| * tasks to be unblocked. */ |
| traceTASK_INCREMENT_TICK( xTickCount ); |
| |
| /* Tick increment should occur on every kernel timer event. Core 0 has the |
| * responsibility to increment the tick, or increment the pended ticks if the |
| * scheduler is suspended. If pended ticks is greater than zero, the core that |
| * calls xTaskResumeAll has the responsibility to increment the tick. */ |
| if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) |
| { |
| /* Minor optimisation. The tick count cannot change in this |
| * block. */ |
| const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1; |
| |
| /* Increment the RTOS tick, switching the delayed and overflowed |
| * delayed lists if it wraps to 0. */ |
| xTickCount = xConstTickCount; |
| |
| if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */ |
| { |
| taskSWITCH_DELAYED_LISTS(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* See if this tick has made a timeout expire. Tasks are stored in |
| * the queue in the order of their wake time - meaning once one task |
| * has been found whose block time has not expired there is no need to |
| * look any further down the list. */ |
| if( xConstTickCount >= xNextTaskUnblockTime ) |
| { |
| for( ; ; ) |
| { |
| if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) |
| { |
| /* The delayed list is empty. Set xNextTaskUnblockTime |
| * to the maximum possible value so it is extremely |
| * unlikely that the |
| * if( xTickCount >= xNextTaskUnblockTime ) test will pass |
| * next time through. */ |
| xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| break; |
| } |
| else |
| { |
| /* The delayed list is not empty, get the value of the |
| * item at the head of the delayed list. This is the time |
| * at which the task at the head of the delayed list must |
| * be removed from the Blocked state. */ |
| pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) ); |
| |
| if( xConstTickCount < xItemValue ) |
| { |
| /* It is not time to unblock this item yet, but the |
| * item value is the time at which the task at the head |
| * of the blocked list must be removed from the Blocked |
| * state - so record the item value in |
| * xNextTaskUnblockTime. */ |
| xNextTaskUnblockTime = xItemValue; |
| break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* It is time to remove the item from the Blocked state. */ |
| listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); |
| |
| /* Is the task waiting on an event also? If so remove |
| * it from the event list. */ |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
| { |
| listREMOVE_ITEM( &( pxTCB->xEventListItem ) ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Place the unblocked task into the appropriate ready |
| * list. */ |
| prvAddTaskToReadyList( pxTCB ); |
| |
| /* A task being unblocked cannot cause an immediate |
| * context switch if preemption is turned off. */ |
| #if ( configUSE_PREEMPTION == 1 ) |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| /* Preemption is on, but a context switch should |
| * only be performed if the unblocked task's |
| * priority is higher than the currently executing |
| * task. |
| * The case of equal priority tasks sharing |
| * processing time (which happens when both |
| * preemption and time slicing are on) is |
| * handled below.*/ |
| if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
| { |
| xSwitchRequired = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* #if( configNUMBER_OF_CORES == 1 ) */ |
| { |
| prvYieldForTask( pxTCB ); |
| } |
| #endif /* #if( configNUMBER_OF_CORES == 1 ) */ |
| } |
| #endif /* #if ( configUSE_PREEMPTION == 1 ) */ |
| } |
| } |
| } |
| |
| /* Tasks of equal priority to the currently running task will share |
| * processing time (time slice) if preemption is on, and the application |
| * writer has not explicitly turned time slicing off. */ |
| #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 ) |
| { |
| xSwitchRequired = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| BaseType_t xCoreID; |
| |
| for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ ) |
| { |
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1 ) |
| { |
| xYieldRequiredForCore[ xCoreID ] = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| #endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */ |
| |
| #if ( configUSE_TICK_HOOK == 1 ) |
| { |
| /* Guard against the tick hook being called when the pended tick |
| * count is being unwound (when the scheduler is being unlocked). */ |
| if( xPendedTicks == ( TickType_t ) 0 ) |
| { |
| vApplicationTickHook(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* configUSE_TICK_HOOK */ |
| |
| #if ( configUSE_PREEMPTION == 1 ) |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| /* For single core the core ID is always 0. */ |
| if( xYieldPendings[ 0 ] != pdFALSE ) |
| { |
| xSwitchRequired = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| BaseType_t xCoreID, xCurrentCoreID; |
| xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID(); |
| |
| for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ ) |
| { |
| #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) |
| if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE ) |
| #endif |
| { |
| if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) ) |
| { |
| if( xCoreID == xCurrentCoreID ) |
| { |
| xSwitchRequired = pdTRUE; |
| } |
| else |
| { |
| prvYieldCore( xCoreID ); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| #endif /* #if ( configUSE_PREEMPTION == 1 ) */ |
| } |
| else |
| { |
| ++xPendedTicks; |
| |
| /* The tick hook gets called at regular intervals, even if the |
| * scheduler is locked. */ |
| #if ( configUSE_TICK_HOOK == 1 ) |
| { |
| vApplicationTickHook(); |
| } |
| #endif |
| } |
| |
| traceRETURN_xTaskIncrementTick( xSwitchRequired ); |
| |
| return xSwitchRequired; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
| |
| void vTaskSetApplicationTaskTag( TaskHandle_t xTask, |
| TaskHookFunction_t pxHookFunction ) |
| { |
| TCB_t * xTCB; |
| |
| traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction ); |
| |
| /* If xTask is NULL then it is the task hook of the calling task that is |
| * getting set. */ |
| if( xTask == NULL ) |
| { |
| xTCB = ( TCB_t * ) pxCurrentTCB; |
| } |
| else |
| { |
| xTCB = xTask; |
| } |
| |
| /* Save the hook function in the TCB. A critical section is required as |
| * the value can be accessed from an interrupt. */ |
| taskENTER_CRITICAL(); |
| { |
| xTCB->pxTaskTag = pxHookFunction; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_vTaskSetApplicationTaskTag(); |
| } |
| |
| #endif /* configUSE_APPLICATION_TASK_TAG */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
| |
| TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| TaskHookFunction_t xReturn; |
| |
| traceENTER_xTaskGetApplicationTaskTag( xTask ); |
| |
| /* If xTask is NULL then set the calling task's hook. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| /* Save the hook function in the TCB. A critical section is required as |
| * the value can be accessed from an interrupt. */ |
| taskENTER_CRITICAL(); |
| { |
| xReturn = pxTCB->pxTaskTag; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xTaskGetApplicationTaskTag( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_APPLICATION_TASK_TAG */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
| |
| TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| TaskHookFunction_t xReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| |
| traceENTER_xTaskGetApplicationTaskTagFromISR( xTask ); |
| |
| /* If xTask is NULL then set the calling task's hook. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| /* Save the hook function in the TCB. A critical section is required as |
| * the value can be accessed from an interrupt. */ |
| uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); |
| { |
| xReturn = pxTCB->pxTaskTag; |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_APPLICATION_TASK_TAG */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
| |
| BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, |
| void * pvParameter ) |
| { |
| TCB_t * xTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter ); |
| |
| /* If xTask is NULL then we are calling our own task hook. */ |
| if( xTask == NULL ) |
| { |
| xTCB = pxCurrentTCB; |
| } |
| else |
| { |
| xTCB = xTask; |
| } |
| |
| if( xTCB->pxTaskTag != NULL ) |
| { |
| xReturn = xTCB->pxTaskTag( pvParameter ); |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| } |
| |
| traceRETURN_xTaskCallApplicationTaskHook( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_APPLICATION_TASK_TAG */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| void vTaskSwitchContext( void ) |
| { |
| traceENTER_vTaskSwitchContext(); |
| |
| if( uxSchedulerSuspended != ( UBaseType_t ) 0U ) |
| { |
| /* The scheduler is currently suspended - do not allow a context |
| * switch. */ |
| xYieldPendings[ 0 ] = pdTRUE; |
| } |
| else |
| { |
| xYieldPendings[ 0 ] = pdFALSE; |
| traceTASK_SWITCHED_OUT(); |
| |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
| { |
| #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE |
| portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] ); |
| #else |
| ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE(); |
| #endif |
| |
| /* Add the amount of time the task has been running to the |
| * accumulated time so far. The time the task started running was |
| * stored in ulTaskSwitchedInTime. Note that there is no overflow |
| * protection here so count values are only valid until the timer |
| * overflows. The guard against negative values is to protect |
| * against suspect run time stat counter implementations - which |
| * are provided by the application, not the kernel. */ |
| if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] ) |
| { |
| pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ]; |
| } |
| #endif /* configGENERATE_RUN_TIME_STATS */ |
| |
| /* Check for stack overflow, if configured. */ |
| taskCHECK_FOR_STACK_OVERFLOW(); |
| |
| /* Before the currently running task is switched out, save its errno. */ |
| #if ( configUSE_POSIX_ERRNO == 1 ) |
| { |
| pxCurrentTCB->iTaskErrno = FreeRTOS_errno; |
| } |
| #endif |
| |
| /* Select a new task to run using either the generic C or port |
| * optimised asm code. */ |
| taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| traceTASK_SWITCHED_IN(); |
| |
| /* After the new task is switched in, update the global errno. */ |
| #if ( configUSE_POSIX_ERRNO == 1 ) |
| { |
| FreeRTOS_errno = pxCurrentTCB->iTaskErrno; |
| } |
| #endif |
| |
| #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) |
| { |
| /* Switch C-Runtime's TLS Block to point to the TLS |
| * Block specific to this task. */ |
| configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock ); |
| } |
| #endif |
| } |
| |
| traceRETURN_vTaskSwitchContext(); |
| } |
| #else /* if ( configNUMBER_OF_CORES == 1 ) */ |
| void vTaskSwitchContext( BaseType_t xCoreID ) |
| { |
| traceENTER_vTaskSwitchContext(); |
| |
| /* Acquire both locks: |
| * - The ISR lock protects the ready list from simultaneous access by |
| * both other ISRs and tasks. |
| * - We also take the task lock to pause here in case another core has |
| * suspended the scheduler. We don't want to simply set xYieldPending |
| * and move on if another core suspended the scheduler. We should only |
| * do that if the current core has suspended the scheduler. */ |
| |
| portGET_TASK_LOCK(); /* Must always acquire the task lock first. */ |
| portGET_ISR_LOCK(); |
| { |
| /* vTaskSwitchContext() must never be called from within a critical section. |
| * This is not necessarily true for single core FreeRTOS, but it is for this |
| * SMP port. */ |
| configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 ); |
| |
| if( uxSchedulerSuspended != ( UBaseType_t ) 0U ) |
| { |
| /* The scheduler is currently suspended - do not allow a context |
| * switch. */ |
| xYieldPendings[ xCoreID ] = pdTRUE; |
| } |
| else |
| { |
| xYieldPendings[ xCoreID ] = pdFALSE; |
| traceTASK_SWITCHED_OUT(); |
| |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
| { |
| #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE |
| portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] ); |
| #else |
| ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE(); |
| #endif |
| |
| /* Add the amount of time the task has been running to the |
| * accumulated time so far. The time the task started running was |
| * stored in ulTaskSwitchedInTime. Note that there is no overflow |
| * protection here so count values are only valid until the timer |
| * overflows. The guard against negative values is to protect |
| * against suspect run time stat counter implementations - which |
| * are provided by the application, not the kernel. */ |
| if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] ) |
| { |
| pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ]; |
| } |
| #endif /* configGENERATE_RUN_TIME_STATS */ |
| |
| /* Check for stack overflow, if configured. */ |
| taskCHECK_FOR_STACK_OVERFLOW(); |
| |
| /* Before the currently running task is switched out, save its errno. */ |
| #if ( configUSE_POSIX_ERRNO == 1 ) |
| { |
| pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno; |
| } |
| #endif |
| |
| /* Select a new task to run. */ |
| taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ); |
| traceTASK_SWITCHED_IN(); |
| |
| /* After the new task is switched in, update the global errno. */ |
| #if ( configUSE_POSIX_ERRNO == 1 ) |
| { |
| FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno; |
| } |
| #endif |
| |
| #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) |
| { |
| /* Switch C-Runtime's TLS Block to point to the TLS |
| * Block specific to this task. */ |
| configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock ); |
| } |
| #endif |
| } |
| } |
| portRELEASE_ISR_LOCK(); |
| portRELEASE_TASK_LOCK(); |
| |
| traceRETURN_vTaskSwitchContext(); |
| } |
| #endif /* if ( configNUMBER_OF_CORES > 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| void vTaskPlaceOnEventList( List_t * const pxEventList, |
| const TickType_t xTicksToWait ) |
| { |
| traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait ); |
| |
| configASSERT( pxEventList ); |
| |
| /* THIS FUNCTION MUST BE CALLED WITH THE |
| * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */ |
| |
| /* Place the event list item of the TCB in the appropriate event list. |
| * This is placed in the list in priority order so the highest priority task |
| * is the first to be woken by the event. |
| * |
| * Note: Lists are sorted in ascending order by ListItem_t.xItemValue. |
| * Normally, the xItemValue of a TCB's ListItem_t members is: |
| * xItemValue = ( configMAX_PRIORITIES - uxPriority ) |
| * Therefore, the event list is sorted in descending priority order. |
| * |
| * The queue that contains the event list is locked, preventing |
| * simultaneous access from interrupts. */ |
| vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) ); |
| |
| prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); |
| |
| traceRETURN_vTaskPlaceOnEventList(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, |
| const TickType_t xItemValue, |
| const TickType_t xTicksToWait ) |
| { |
| traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait ); |
| |
| configASSERT( pxEventList ); |
| |
| /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by |
| * the event groups implementation. */ |
| configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U ); |
| |
| /* Store the item value in the event list item. It is safe to access the |
| * event list item here as interrupts won't access the event list item of a |
| * task that is not in the Blocked state. */ |
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); |
| |
| /* Place the event list item of the TCB at the end of the appropriate event |
| * list. It is safe to access the event list here because it is part of an |
| * event group implementation - and interrupts don't access event groups |
| * directly (instead they access them indirectly by pending function calls to |
| * the task level). */ |
| listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) ); |
| |
| prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); |
| |
| traceRETURN_vTaskPlaceOnUnorderedEventList(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TIMERS == 1 ) |
| |
| void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, |
| TickType_t xTicksToWait, |
| const BaseType_t xWaitIndefinitely ) |
| { |
| traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely ); |
| |
| configASSERT( pxEventList ); |
| |
| /* This function should not be called by application code hence the |
| * 'Restricted' in its name. It is not part of the public API. It is |
| * designed for use by kernel code, and has special calling requirements - |
| * it should be called with the scheduler suspended. */ |
| |
| |
| /* Place the event list item of the TCB in the appropriate event list. |
| * In this case it is assume that this is the only task that is going to |
| * be waiting on this event list, so the faster vListInsertEnd() function |
| * can be used in place of vListInsert. */ |
| listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) ); |
| |
| /* If the task should block indefinitely then set the block time to a |
| * value that will be recognised as an indefinite delay inside the |
| * prvAddCurrentTaskToDelayedList() function. */ |
| if( xWaitIndefinitely != pdFALSE ) |
| { |
| xTicksToWait = portMAX_DELAY; |
| } |
| |
| traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) ); |
| prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely ); |
| |
| traceRETURN_vTaskPlaceOnEventListRestricted(); |
| } |
| |
| #endif /* configUSE_TIMERS */ |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) |
| { |
| TCB_t * pxUnblockedTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskRemoveFromEventList( pxEventList ); |
| |
| /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be |
| * called from a critical section within an ISR. */ |
| |
| /* The event list is sorted in priority order, so the first in the list can |
| * be removed as it is known to be the highest priority. Remove the TCB from |
| * the delayed list, and add it to the ready list. |
| * |
| * If an event is for a queue that is locked then this function will never |
| * get called - the lock count on the queue will get modified instead. This |
| * means exclusive access to the event list is guaranteed here. |
| * |
| * This function assumes that a check has already been made to ensure that |
| * pxEventList is not empty. */ |
| pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| configASSERT( pxUnblockedTCB ); |
| listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) ); |
| |
| if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) |
| { |
| listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) ); |
| prvAddTaskToReadyList( pxUnblockedTCB ); |
| |
| #if ( configUSE_TICKLESS_IDLE != 0 ) |
| { |
| /* If a task is blocked on a kernel object then xNextTaskUnblockTime |
| * might be set to the blocked task's time out time. If the task is |
| * unblocked for a reason other than a timeout xNextTaskUnblockTime is |
| * normally left unchanged, because it is automatically reset to a new |
| * value when the tick count equals xNextTaskUnblockTime. However if |
| * tickless idling is used it might be more important to enter sleep mode |
| * at the earliest possible time - so reset xNextTaskUnblockTime here to |
| * ensure it is updated at the earliest possible time. */ |
| prvResetNextTaskUnblockTime(); |
| } |
| #endif |
| } |
| else |
| { |
| /* The delayed and ready lists cannot be accessed, so hold this task |
| * pending until the scheduler is resumed. */ |
| listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) ); |
| } |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) |
| { |
| /* Return true if the task removed from the event list has a higher |
| * priority than the calling task. This allows the calling task to know if |
| * it should force a context switch now. */ |
| xReturn = pdTRUE; |
| |
| /* Mark that a yield is pending in case the user is not using the |
| * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ |
| xYieldPendings[ 0 ] = pdTRUE; |
| } |
| else |
| { |
| xReturn = pdFALSE; |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| xReturn = pdFALSE; |
| |
| #if ( configUSE_PREEMPTION == 1 ) |
| { |
| prvYieldForTask( pxUnblockedTCB ); |
| |
| if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE ) |
| { |
| xReturn = pdTRUE; |
| } |
| } |
| #endif /* #if ( configUSE_PREEMPTION == 1 ) */ |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| traceRETURN_xTaskRemoveFromEventList( xReturn ); |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, |
| const TickType_t xItemValue ) |
| { |
| TCB_t * pxUnblockedTCB; |
| |
| traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue ); |
| |
| /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by |
| * the event flags implementation. */ |
| configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U ); |
| |
| /* Store the new item value in the event list. */ |
| listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); |
| |
| /* Remove the event list form the event flag. Interrupts do not access |
| * event flags. */ |
| pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| configASSERT( pxUnblockedTCB ); |
| listREMOVE_ITEM( pxEventListItem ); |
| |
| #if ( configUSE_TICKLESS_IDLE != 0 ) |
| { |
| /* If a task is blocked on a kernel object then xNextTaskUnblockTime |
| * might be set to the blocked task's time out time. If the task is |
| * unblocked for a reason other than a timeout xNextTaskUnblockTime is |
| * normally left unchanged, because it is automatically reset to a new |
| * value when the tick count equals xNextTaskUnblockTime. However if |
| * tickless idling is used it might be more important to enter sleep mode |
| * at the earliest possible time - so reset xNextTaskUnblockTime here to |
| * ensure it is updated at the earliest possible time. */ |
| prvResetNextTaskUnblockTime(); |
| } |
| #endif |
| |
| /* Remove the task from the delayed list and add it to the ready list. The |
| * scheduler is suspended so interrupts will not be accessing the ready |
| * lists. */ |
| listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) ); |
| prvAddTaskToReadyList( pxUnblockedTCB ); |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) |
| { |
| /* The unblocked task has a priority above that of the calling task, so |
| * a context switch is required. This function is called with the |
| * scheduler suspended so xYieldPending is set so the context switch |
| * occurs immediately that the scheduler is resumed (unsuspended). */ |
| xYieldPendings[ 0 ] = pdTRUE; |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| #if ( configUSE_PREEMPTION == 1 ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| prvYieldForTask( pxUnblockedTCB ); |
| } |
| taskEXIT_CRITICAL(); |
| } |
| #endif |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| traceRETURN_vTaskRemoveFromUnorderedEventList(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) |
| { |
| traceENTER_vTaskSetTimeOutState( pxTimeOut ); |
| |
| configASSERT( pxTimeOut ); |
| taskENTER_CRITICAL(); |
| { |
| pxTimeOut->xOverflowCount = xNumOfOverflows; |
| pxTimeOut->xTimeOnEntering = xTickCount; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_vTaskSetTimeOutState(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut ) |
| { |
| traceENTER_vTaskInternalSetTimeOutState( pxTimeOut ); |
| |
| /* For internal use only as it does not use a critical section. */ |
| pxTimeOut->xOverflowCount = xNumOfOverflows; |
| pxTimeOut->xTimeOnEntering = xTickCount; |
| |
| traceRETURN_vTaskInternalSetTimeOutState(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, |
| TickType_t * const pxTicksToWait ) |
| { |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait ); |
| |
| configASSERT( pxTimeOut ); |
| configASSERT( pxTicksToWait ); |
| |
| taskENTER_CRITICAL(); |
| { |
| /* Minor optimisation. The tick count cannot change in this block. */ |
| const TickType_t xConstTickCount = xTickCount; |
| const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering; |
| |
| #if ( INCLUDE_xTaskAbortDelay == 1 ) |
| if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE ) |
| { |
| /* The delay was aborted, which is not the same as a time out, |
| * but has the same result. */ |
| pxCurrentTCB->ucDelayAborted = pdFALSE; |
| xReturn = pdTRUE; |
| } |
| else |
| #endif |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| if( *pxTicksToWait == portMAX_DELAY ) |
| { |
| /* If INCLUDE_vTaskSuspend is set to 1 and the block time |
| * specified is the maximum block time then the task should block |
| * indefinitely, and therefore never time out. */ |
| xReturn = pdFALSE; |
| } |
| else |
| #endif |
| |
| if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */ |
| { |
| /* The tick count is greater than the time at which |
| * vTaskSetTimeout() was called, but has also overflowed since |
| * vTaskSetTimeOut() was called. It must have wrapped all the way |
| * around and gone past again. This passed since vTaskSetTimeout() |
| * was called. */ |
| xReturn = pdTRUE; |
| *pxTicksToWait = ( TickType_t ) 0; |
| } |
| else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */ |
| { |
| /* Not a genuine timeout. Adjust parameters for time remaining. */ |
| *pxTicksToWait -= xElapsedTime; |
| vTaskInternalSetTimeOutState( pxTimeOut ); |
| xReturn = pdFALSE; |
| } |
| else |
| { |
| *pxTicksToWait = ( TickType_t ) 0; |
| xReturn = pdTRUE; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xTaskCheckForTimeOut( xReturn ); |
| |
| return xReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vTaskMissedYield( void ) |
| { |
| traceENTER_vTaskMissedYield(); |
| |
| /* Must be called from within a critical section. */ |
| xYieldPendings[ portGET_CORE_ID() ] = pdTRUE; |
| |
| traceRETURN_vTaskMissedYield(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) |
| { |
| UBaseType_t uxReturn; |
| TCB_t const * pxTCB; |
| |
| traceENTER_uxTaskGetTaskNumber( xTask ); |
| |
| if( xTask != NULL ) |
| { |
| pxTCB = xTask; |
| uxReturn = pxTCB->uxTaskNumber; |
| } |
| else |
| { |
| uxReturn = 0U; |
| } |
| |
| traceRETURN_uxTaskGetTaskNumber( uxReturn ); |
| |
| return uxReturn; |
| } |
| |
| #endif /* configUSE_TRACE_FACILITY */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| void vTaskSetTaskNumber( TaskHandle_t xTask, |
| const UBaseType_t uxHandle ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_vTaskSetTaskNumber( xTask, uxHandle ); |
| |
| if( xTask != NULL ) |
| { |
| pxTCB = xTask; |
| pxTCB->uxTaskNumber = uxHandle; |
| } |
| |
| traceRETURN_vTaskSetTaskNumber(); |
| } |
| |
| #endif /* configUSE_TRACE_FACILITY */ |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * ----------------------------------------------------------- |
| * The passive idle task. |
| * ---------------------------------------------------------- |
| * |
| * The passive idle task is used for all the additional cores in a SMP |
| * system. There must be only 1 active idle task and the rest are passive |
| * idle tasks. |
| * |
| * The portTASK_FUNCTION() macro is used to allow port/compiler specific |
| * language extensions. The equivalent prototype for this function is: |
| * |
| * void prvPassiveIdleTask( void *pvParameters ); |
| */ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters ) |
| { |
| ( void ) pvParameters; |
| |
| taskYIELD(); |
| |
| for( ; configCONTROL_INFINITE_LOOP(); ) |
| { |
| #if ( configUSE_PREEMPTION == 0 ) |
| { |
| /* If we are not using preemption we keep forcing a task switch to |
| * see if any other task has become available. If we are using |
| * preemption we don't need to do this as any task becoming available |
| * will automatically get the processor anyway. */ |
| taskYIELD(); |
| } |
| #endif /* configUSE_PREEMPTION */ |
| |
| #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) |
| { |
| /* When using preemption tasks of equal priority will be |
| * timesliced. If a task that is sharing the idle priority is ready |
| * to run then the idle task should yield before the end of the |
| * timeslice. |
| * |
| * A critical region is not required here as we are just reading from |
| * the list, and an occasional incorrect value will not matter. If |
| * the ready list at the idle priority contains one more task than the |
| * number of idle tasks, which is equal to the configured numbers of cores |
| * then a task other than the idle task is ready to execute. */ |
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES ) |
| { |
| taskYIELD(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ |
| |
| #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) |
| { |
| /* Call the user defined function from within the idle task. This |
| * allows the application designer to add background functionality |
| * without the overhead of a separate task. |
| * |
| * This hook is intended to manage core activity such as disabling cores that go idle. |
| * |
| * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, |
| * CALL A FUNCTION THAT MIGHT BLOCK. */ |
| vApplicationPassiveIdleHook(); |
| } |
| #endif /* configUSE_PASSIVE_IDLE_HOOK */ |
| } |
| } |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| /* |
| * ----------------------------------------------------------- |
| * The idle task. |
| * ---------------------------------------------------------- |
| * |
| * The portTASK_FUNCTION() macro is used to allow port/compiler specific |
| * language extensions. The equivalent prototype for this function is: |
| * |
| * void prvIdleTask( void *pvParameters ); |
| * |
| */ |
| |
| static portTASK_FUNCTION( prvIdleTask, pvParameters ) |
| { |
| /* Stop warnings. */ |
| ( void ) pvParameters; |
| |
| /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE |
| * SCHEDULER IS STARTED. **/ |
| |
| /* In case a task that has a secure context deletes itself, in which case |
| * the idle task is responsible for deleting the task's secure context, if |
| * any. */ |
| portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE ); |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| { |
| /* SMP all cores start up in the idle task. This initial yield gets the application |
| * tasks started. */ |
| taskYIELD(); |
| } |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| for( ; configCONTROL_INFINITE_LOOP(); ) |
| { |
| /* See if any tasks have deleted themselves - if so then the idle task |
| * is responsible for freeing the deleted task's TCB and stack. */ |
| prvCheckTasksWaitingTermination(); |
| |
| #if ( configUSE_PREEMPTION == 0 ) |
| { |
| /* If we are not using preemption we keep forcing a task switch to |
| * see if any other task has become available. If we are using |
| * preemption we don't need to do this as any task becoming available |
| * will automatically get the processor anyway. */ |
| taskYIELD(); |
| } |
| #endif /* configUSE_PREEMPTION */ |
| |
| #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) |
| { |
| /* When using preemption tasks of equal priority will be |
| * timesliced. If a task that is sharing the idle priority is ready |
| * to run then the idle task should yield before the end of the |
| * timeslice. |
| * |
| * A critical region is not required here as we are just reading from |
| * the list, and an occasional incorrect value will not matter. If |
| * the ready list at the idle priority contains one more task than the |
| * number of idle tasks, which is equal to the configured numbers of cores |
| * then a task other than the idle task is ready to execute. */ |
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES ) |
| { |
| taskYIELD(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ |
| |
| #if ( configUSE_IDLE_HOOK == 1 ) |
| { |
| /* Call the user defined function from within the idle task. */ |
| vApplicationIdleHook(); |
| } |
| #endif /* configUSE_IDLE_HOOK */ |
| |
| /* This conditional compilation should use inequality to 0, not equality |
| * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when |
| * user defined low power mode implementations require |
| * configUSE_TICKLESS_IDLE to be set to a value other than 1. */ |
| #if ( configUSE_TICKLESS_IDLE != 0 ) |
| { |
| TickType_t xExpectedIdleTime; |
| |
| /* It is not desirable to suspend then resume the scheduler on |
| * each iteration of the idle task. Therefore, a preliminary |
| * test of the expected idle time is performed without the |
| * scheduler suspended. The result here is not necessarily |
| * valid. */ |
| xExpectedIdleTime = prvGetExpectedIdleTime(); |
| |
| if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) |
| { |
| vTaskSuspendAll(); |
| { |
| /* Now the scheduler is suspended, the expected idle |
| * time can be sampled again, and this time its value can |
| * be used. */ |
| configASSERT( xNextTaskUnblockTime >= xTickCount ); |
| xExpectedIdleTime = prvGetExpectedIdleTime(); |
| |
| /* Define the following macro to set xExpectedIdleTime to 0 |
| * if the application does not want |
| * portSUPPRESS_TICKS_AND_SLEEP() to be called. */ |
| configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime ); |
| |
| if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) |
| { |
| traceLOW_POWER_IDLE_BEGIN(); |
| portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ); |
| traceLOW_POWER_IDLE_END(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| ( void ) xTaskResumeAll(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* configUSE_TICKLESS_IDLE */ |
| |
| #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) |
| { |
| /* Call the user defined function from within the idle task. This |
| * allows the application designer to add background functionality |
| * without the overhead of a separate task. |
| * |
| * This hook is intended to manage core activity such as disabling cores that go idle. |
| * |
| * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, |
| * CALL A FUNCTION THAT MIGHT BLOCK. */ |
| vApplicationPassiveIdleHook(); |
| } |
| #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */ |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TICKLESS_IDLE != 0 ) |
| |
| eSleepModeStatus eTaskConfirmSleepModeStatus( void ) |
| { |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| /* The idle task exists in addition to the application tasks. */ |
| const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES; |
| #endif /* INCLUDE_vTaskSuspend */ |
| |
| eSleepModeStatus eReturn = eStandardSleep; |
| |
| traceENTER_eTaskConfirmSleepModeStatus(); |
| |
| /* This function must be called from a critical section. */ |
| |
| if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 ) |
| { |
| /* A task was made ready while the scheduler was suspended. */ |
| eReturn = eAbortSleep; |
| } |
| else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE ) |
| { |
| /* A yield was pended while the scheduler was suspended. */ |
| eReturn = eAbortSleep; |
| } |
| else if( xPendedTicks != 0 ) |
| { |
| /* A tick interrupt has already occurred but was held pending |
| * because the scheduler is suspended. */ |
| eReturn = eAbortSleep; |
| } |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) ) |
| { |
| /* If all the tasks are in the suspended list (which might mean they |
| * have an infinite block time rather than actually being suspended) |
| * then it is safe to turn all clocks off and just wait for external |
| * interrupts. */ |
| eReturn = eNoTasksWaitingTimeout; |
| } |
| #endif /* INCLUDE_vTaskSuspend */ |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_eTaskConfirmSleepModeStatus( eReturn ); |
| |
| return eReturn; |
| } |
| |
| #endif /* configUSE_TICKLESS_IDLE */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) |
| |
| void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, |
| BaseType_t xIndex, |
| void * pvValue ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue ); |
| |
| if( ( xIndex >= 0 ) && |
| ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) ) |
| { |
| pxTCB = prvGetTCBFromHandle( xTaskToSet ); |
| configASSERT( pxTCB != NULL ); |
| pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue; |
| } |
| |
| traceRETURN_vTaskSetThreadLocalStoragePointer(); |
| } |
| |
| #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) |
| |
| void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, |
| BaseType_t xIndex ) |
| { |
| void * pvReturn = NULL; |
| TCB_t * pxTCB; |
| |
| traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex ); |
| |
| if( ( xIndex >= 0 ) && |
| ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) ) |
| { |
| pxTCB = prvGetTCBFromHandle( xTaskToQuery ); |
| pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ]; |
| } |
| else |
| { |
| pvReturn = NULL; |
| } |
| |
| traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn ); |
| |
| return pvReturn; |
| } |
| |
| #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( portUSING_MPU_WRAPPERS == 1 ) |
| |
| void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, |
| const MemoryRegion_t * const pxRegions ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions ); |
| |
| /* If null is passed in here then we are modifying the MPU settings of |
| * the calling task. */ |
| pxTCB = prvGetTCBFromHandle( xTaskToModify ); |
| |
| vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 ); |
| |
| traceRETURN_vTaskAllocateMPURegions(); |
| } |
| |
| #endif /* portUSING_MPU_WRAPPERS */ |
| /*-----------------------------------------------------------*/ |
| |
| static void prvInitialiseTaskLists( void ) |
| { |
| UBaseType_t uxPriority; |
| |
| for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ ) |
| { |
| vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) ); |
| } |
| |
| vListInitialise( &xDelayedTaskList1 ); |
| vListInitialise( &xDelayedTaskList2 ); |
| vListInitialise( &xPendingReadyList ); |
| |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| { |
| vListInitialise( &xTasksWaitingTermination ); |
| } |
| #endif /* INCLUDE_vTaskDelete */ |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| { |
| vListInitialise( &xSuspendedTaskList ); |
| } |
| #endif /* INCLUDE_vTaskSuspend */ |
| |
| /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList |
| * using list2. */ |
| pxDelayedTaskList = &xDelayedTaskList1; |
| pxOverflowDelayedTaskList = &xDelayedTaskList2; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static void prvCheckTasksWaitingTermination( void ) |
| { |
| /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/ |
| |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| { |
| TCB_t * pxTCB; |
| |
| /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL() |
| * being called too often in the idle task. */ |
| while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U ) |
| { |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| taskENTER_CRITICAL(); |
| { |
| { |
| pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
| --uxCurrentNumberOfTasks; |
| --uxDeletedTasksWaitingCleanUp; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| prvDeleteTCB( pxTCB ); |
| } |
| #else /* #if( configNUMBER_OF_CORES == 1 ) */ |
| { |
| pxTCB = NULL; |
| |
| taskENTER_CRITICAL(); |
| { |
| /* For SMP, multiple idles can be running simultaneously |
| * and we need to check that other idles did not cleanup while we were |
| * waiting to enter the critical section. */ |
| if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U ) |
| { |
| pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| |
| if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING ) |
| { |
| ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
| --uxCurrentNumberOfTasks; |
| --uxDeletedTasksWaitingCleanUp; |
| } |
| else |
| { |
| /* The TCB to be deleted still has not yet been switched out |
| * by the scheduler, so we will just exit this loop early and |
| * try again next time. */ |
| taskEXIT_CRITICAL(); |
| break; |
| } |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| if( pxTCB != NULL ) |
| { |
| prvDeleteTCB( pxTCB ); |
| } |
| } |
| #endif /* #if( configNUMBER_OF_CORES == 1 ) */ |
| } |
| } |
| #endif /* INCLUDE_vTaskDelete */ |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| void vTaskGetInfo( TaskHandle_t xTask, |
| TaskStatus_t * pxTaskStatus, |
| BaseType_t xGetFreeStackSpace, |
| eTaskState eState ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState ); |
| |
| /* xTask is NULL then get the state of the calling task. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| pxTaskStatus->xHandle = pxTCB; |
| pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] ); |
| pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority; |
| pxTaskStatus->pxStackBase = pxTCB->pxStack; |
| #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) ) |
| pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack; |
| pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack; |
| #endif |
| pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber; |
| |
| #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) |
| { |
| pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask; |
| } |
| #endif |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| { |
| pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority; |
| } |
| #else |
| { |
| pxTaskStatus->uxBasePriority = 0; |
| } |
| #endif |
| |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
| { |
| pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter; |
| } |
| #else |
| { |
| pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0; |
| } |
| #endif |
| |
| /* Obtaining the task state is a little fiddly, so is only done if the |
| * value of eState passed into this function is eInvalid - otherwise the |
| * state is just set to whatever is passed in. */ |
| if( eState != eInvalid ) |
| { |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) |
| { |
| pxTaskStatus->eCurrentState = eRunning; |
| } |
| else |
| { |
| pxTaskStatus->eCurrentState = eState; |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| { |
| /* If the task is in the suspended list then there is a |
| * chance it is actually just blocked indefinitely - so really |
| * it should be reported as being in the Blocked state. */ |
| if( eState == eSuspended ) |
| { |
| vTaskSuspendAll(); |
| { |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
| { |
| pxTaskStatus->eCurrentState = eBlocked; |
| } |
| else |
| { |
| BaseType_t x; |
| |
| /* The task does not appear on the event list item of |
| * and of the RTOS objects, but could still be in the |
| * blocked state if it is waiting on its notification |
| * rather than waiting on an object. If not, is |
| * suspended. */ |
| for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) |
| { |
| if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) |
| { |
| pxTaskStatus->eCurrentState = eBlocked; |
| break; |
| } |
| } |
| } |
| } |
| ( void ) xTaskResumeAll(); |
| } |
| } |
| #endif /* INCLUDE_vTaskSuspend */ |
| |
| /* Tasks can be in pending ready list and other state list at the |
| * same time. These tasks are in ready state no matter what state |
| * list the task is in. */ |
| taskENTER_CRITICAL(); |
| { |
| if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE ) |
| { |
| pxTaskStatus->eCurrentState = eReady; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| } |
| } |
| else |
| { |
| pxTaskStatus->eCurrentState = eTaskGetState( pxTCB ); |
| } |
| |
| /* Obtaining the stack space takes some time, so the xGetFreeStackSpace |
| * parameter is provided to allow it to be skipped. */ |
| if( xGetFreeStackSpace != pdFALSE ) |
| { |
| #if ( portSTACK_GROWTH > 0 ) |
| { |
| pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack ); |
| } |
| #else |
| { |
| pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack ); |
| } |
| #endif |
| } |
| else |
| { |
| pxTaskStatus->usStackHighWaterMark = 0; |
| } |
| |
| traceRETURN_vTaskGetInfo(); |
| } |
| |
| #endif /* configUSE_TRACE_FACILITY */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TRACE_FACILITY == 1 ) |
| |
| static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray, |
| List_t * pxList, |
| eTaskState eState ) |
| { |
| configLIST_VOLATILE TCB_t * pxNextTCB; |
| configLIST_VOLATILE TCB_t * pxFirstTCB; |
| UBaseType_t uxTask = 0; |
| |
| if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) |
| { |
| listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| |
| /* Populate an TaskStatus_t structure within the |
| * pxTaskStatusArray array for each task that is referenced from |
| * pxList. See the definition of TaskStatus_t in task.h for the |
| * meaning of each TaskStatus_t structure member. */ |
| do |
| { |
| listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ |
| vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState ); |
| uxTask++; |
| } while( pxNextTCB != pxFirstTCB ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| return uxTask; |
| } |
| |
| #endif /* configUSE_TRACE_FACILITY */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) |
| |
| static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) |
| { |
| uint32_t ulCount = 0U; |
| |
| while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE ) |
| { |
| pucStackByte -= portSTACK_GROWTH; |
| ulCount++; |
| } |
| |
| ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */ |
| |
| return ( configSTACK_DEPTH_TYPE ) ulCount; |
| } |
| |
| #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) |
| |
| /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the |
| * same except for their return type. Using configSTACK_DEPTH_TYPE allows the |
| * user to determine the return type. It gets around the problem of the value |
| * overflowing on 8-bit types without breaking backward compatibility for |
| * applications that expect an 8-bit return type. */ |
| configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| uint8_t * pucEndOfStack; |
| configSTACK_DEPTH_TYPE uxReturn; |
| |
| traceENTER_uxTaskGetStackHighWaterMark2( xTask ); |
| |
| /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are |
| * the same except for their return type. Using configSTACK_DEPTH_TYPE |
| * allows the user to determine the return type. It gets around the |
| * problem of the value overflowing on 8-bit types without breaking |
| * backward compatibility for applications that expect an 8-bit return |
| * type. */ |
| |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| #if portSTACK_GROWTH < 0 |
| { |
| pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; |
| } |
| #else |
| { |
| pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; |
| } |
| #endif |
| |
| uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack ); |
| |
| traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn ); |
| |
| return uxReturn; |
| } |
| |
| #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) |
| |
| UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| uint8_t * pucEndOfStack; |
| UBaseType_t uxReturn; |
| |
| traceENTER_uxTaskGetStackHighWaterMark( xTask ); |
| |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| #if portSTACK_GROWTH < 0 |
| { |
| pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; |
| } |
| #else |
| { |
| pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; |
| } |
| #endif |
| |
| uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack ); |
| |
| traceRETURN_uxTaskGetStackHighWaterMark( uxReturn ); |
| |
| return uxReturn; |
| } |
| |
| #endif /* INCLUDE_uxTaskGetStackHighWaterMark */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( INCLUDE_vTaskDelete == 1 ) |
| |
| static void prvDeleteTCB( TCB_t * pxTCB ) |
| { |
| /* This call is required specifically for the TriCore port. It must be |
| * above the vPortFree() calls. The call is also used by ports/demos that |
| * want to allocate and clean RAM statically. */ |
| portCLEAN_UP_TCB( pxTCB ); |
| |
| #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) |
| { |
| /* Free up the memory allocated for the task's TLS Block. */ |
| configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock ); |
| } |
| #endif |
| |
| #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) |
| { |
| /* The task can only have been allocated dynamically - free both |
| * the stack and TCB. */ |
| vPortFreeStack( pxTCB->pxStack ); |
| vPortFree( pxTCB ); |
| } |
| #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */ |
| { |
| /* The task could have been allocated statically or dynamically, so |
| * check what was statically allocated before trying to free the |
| * memory. */ |
| if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ) |
| { |
| /* Both the stack and TCB were allocated dynamically, so both |
| * must be freed. */ |
| vPortFreeStack( pxTCB->pxStack ); |
| vPortFree( pxTCB ); |
| } |
| else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY ) |
| { |
| /* Only the stack was statically allocated, so the TCB is the |
| * only memory that must be freed. */ |
| vPortFree( pxTCB ); |
| } |
| else |
| { |
| /* Neither the stack nor the TCB were allocated dynamically, so |
| * nothing needs to be freed. */ |
| configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB ); |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
| } |
| |
| #endif /* INCLUDE_vTaskDelete */ |
| /*-----------------------------------------------------------*/ |
| |
| static void prvResetNextTaskUnblockTime( void ) |
| { |
| if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) |
| { |
| /* The new current delayed list is empty. Set xNextTaskUnblockTime to |
| * the maximum possible value so it is extremely unlikely that the |
| * if( xTickCount >= xNextTaskUnblockTime ) test will pass until |
| * there is an item in the delayed list. */ |
| xNextTaskUnblockTime = portMAX_DELAY; |
| } |
| else |
| { |
| /* The new current delayed list is not empty, get the value of |
| * the item at the head of the delayed list. This is the time at |
| * which the task at the head of the delayed list should be removed |
| * from the Blocked state. */ |
| xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList ); |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 ) |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| TaskHandle_t xTaskGetCurrentTaskHandle( void ) |
| { |
| TaskHandle_t xReturn; |
| |
| traceENTER_xTaskGetCurrentTaskHandle(); |
| |
| /* A critical section is not required as this is not called from |
| * an interrupt and the current TCB will always be the same for any |
| * individual execution thread. */ |
| xReturn = pxCurrentTCB; |
| |
| traceRETURN_xTaskGetCurrentTaskHandle( xReturn ); |
| |
| return xReturn; |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| TaskHandle_t xTaskGetCurrentTaskHandle( void ) |
| { |
| TaskHandle_t xReturn; |
| UBaseType_t uxSavedInterruptStatus; |
| |
| traceENTER_xTaskGetCurrentTaskHandle(); |
| |
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK(); |
| { |
| xReturn = pxCurrentTCBs[ portGET_CORE_ID() ]; |
| } |
| portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus ); |
| |
| traceRETURN_xTaskGetCurrentTaskHandle( xReturn ); |
| |
| return xReturn; |
| } |
| |
| TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID ) |
| { |
| TaskHandle_t xReturn = NULL; |
| |
| traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID ); |
| |
| if( taskVALID_CORE_ID( xCoreID ) != pdFALSE ) |
| { |
| xReturn = pxCurrentTCBs[ xCoreID ]; |
| } |
| |
| traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn ); |
| |
| return xReturn; |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| |
| #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| |
| BaseType_t xTaskGetSchedulerState( void ) |
| { |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskGetSchedulerState(); |
| |
| if( xSchedulerRunning == pdFALSE ) |
| { |
| xReturn = taskSCHEDULER_NOT_STARTED; |
| } |
| else |
| { |
| #if ( configNUMBER_OF_CORES > 1 ) |
| taskENTER_CRITICAL(); |
| #endif |
| { |
| if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) |
| { |
| xReturn = taskSCHEDULER_RUNNING; |
| } |
| else |
| { |
| xReturn = taskSCHEDULER_SUSPENDED; |
| } |
| } |
| #if ( configNUMBER_OF_CORES > 1 ) |
| taskEXIT_CRITICAL(); |
| #endif |
| } |
| |
| traceRETURN_xTaskGetSchedulerState( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| |
| BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) |
| { |
| TCB_t * const pxMutexHolderTCB = pxMutexHolder; |
| BaseType_t xReturn = pdFALSE; |
| |
| traceENTER_xTaskPriorityInherit( pxMutexHolder ); |
| |
| /* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority |
| * inheritance is not applied in this scenario. */ |
| if( pxMutexHolder != NULL ) |
| { |
| /* If the holder of the mutex has a priority below the priority of |
| * the task attempting to obtain the mutex then it will temporarily |
| * inherit the priority of the task attempting to obtain the mutex. */ |
| if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority ) |
| { |
| /* Adjust the mutex holder state to account for its new |
| * priority. Only reset the event list item value if the value is |
| * not being used for anything else. */ |
| if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) |
| { |
| listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* If the task being modified is in the ready state it will need |
| * to be moved into a new list. */ |
| if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE ) |
| { |
| if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
| { |
| /* It is known that the task is in its ready list so |
| * there is no need to check again and the port level |
| * reset macro can be called directly. */ |
| portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Inherit the priority before being moved into the new list. */ |
| pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority; |
| prvAddTaskToReadyList( pxMutexHolderTCB ); |
| #if ( configNUMBER_OF_CORES > 1 ) |
| { |
| /* The priority of the task is raised. Yield for this task |
| * if it is not running. */ |
| if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE ) |
| { |
| prvYieldForTask( pxMutexHolderTCB ); |
| } |
| } |
| #endif /* if ( configNUMBER_OF_CORES > 1 ) */ |
| } |
| else |
| { |
| /* Just inherit the priority. */ |
| pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority; |
| } |
| |
| traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority ); |
| |
| /* Inheritance occurred. */ |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority ) |
| { |
| /* The base priority of the mutex holder is lower than the |
| * priority of the task attempting to take the mutex, but the |
| * current priority of the mutex holder is not lower than the |
| * priority of the task attempting to take the mutex. |
| * Therefore the mutex holder must have already inherited a |
| * priority, but inheritance would have occurred if that had |
| * not been the case. */ |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xTaskPriorityInherit( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| |
| BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) |
| { |
| TCB_t * const pxTCB = pxMutexHolder; |
| BaseType_t xReturn = pdFALSE; |
| |
| traceENTER_xTaskPriorityDisinherit( pxMutexHolder ); |
| |
| if( pxMutexHolder != NULL ) |
| { |
| /* A task can only have an inherited priority if it holds the mutex. |
| * If the mutex is held by a task then it cannot be given from an |
| * interrupt, and if a mutex is given by the holding task then it must |
| * be the running state task. */ |
| configASSERT( pxTCB == pxCurrentTCB ); |
| configASSERT( pxTCB->uxMutexesHeld ); |
| ( pxTCB->uxMutexesHeld )--; |
| |
| /* Has the holder of the mutex inherited the priority of another |
| * task? */ |
| if( pxTCB->uxPriority != pxTCB->uxBasePriority ) |
| { |
| /* Only disinherit if no other mutexes are held. */ |
| if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 ) |
| { |
| /* A task can only have an inherited priority if it holds |
| * the mutex. If the mutex is held by a task then it cannot be |
| * given from an interrupt, and if a mutex is given by the |
| * holding task then it must be the running state task. Remove |
| * the holding task from the ready list. */ |
| if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
| { |
| portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Disinherit the priority before adding the task into the |
| * new ready list. */ |
| traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority ); |
| pxTCB->uxPriority = pxTCB->uxBasePriority; |
| |
| /* Reset the event list item value. It cannot be in use for |
| * any other purpose if this task is running, and it must be |
| * running to give back the mutex. */ |
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| prvAddTaskToReadyList( pxTCB ); |
| #if ( configNUMBER_OF_CORES > 1 ) |
| { |
| /* The priority of the task is dropped. Yield the core on |
| * which the task is running. */ |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) |
| { |
| prvYieldCore( pxTCB->xTaskRunState ); |
| } |
| } |
| #endif /* if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| /* Return true to indicate that a context switch is required. |
| * This is only actually required in the corner case whereby |
| * multiple mutexes were held and the mutexes were given back |
| * in an order different to that in which they were taken. |
| * If a context switch did not occur when the first mutex was |
| * returned, even if a task was waiting on it, then a context |
| * switch should occur when the last mutex is returned whether |
| * a task is waiting on it or not. */ |
| xReturn = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_xTaskPriorityDisinherit( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| |
| void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder, |
| UBaseType_t uxHighestPriorityWaitingTask ) |
| { |
| TCB_t * const pxTCB = pxMutexHolder; |
| UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse; |
| const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1; |
| |
| traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask ); |
| |
| if( pxMutexHolder != NULL ) |
| { |
| /* If pxMutexHolder is not NULL then the holder must hold at least |
| * one mutex. */ |
| configASSERT( pxTCB->uxMutexesHeld ); |
| |
| /* Determine the priority to which the priority of the task that |
| * holds the mutex should be set. This will be the greater of the |
| * holding task's base priority and the priority of the highest |
| * priority task that is waiting to obtain the mutex. */ |
| if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask ) |
| { |
| uxPriorityToUse = uxHighestPriorityWaitingTask; |
| } |
| else |
| { |
| uxPriorityToUse = pxTCB->uxBasePriority; |
| } |
| |
| /* Does the priority need to change? */ |
| if( pxTCB->uxPriority != uxPriorityToUse ) |
| { |
| /* Only disinherit if no other mutexes are held. This is a |
| * simplification in the priority inheritance implementation. If |
| * the task that holds the mutex is also holding other mutexes then |
| * the other mutexes may have caused the priority inheritance. */ |
| if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld ) |
| { |
| /* If a task has timed out because it already holds the |
| * mutex it was trying to obtain then it cannot of inherited |
| * its own priority. */ |
| configASSERT( pxTCB != pxCurrentTCB ); |
| |
| /* Disinherit the priority, remembering the previous |
| * priority to facilitate determining the subject task's |
| * state. */ |
| traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse ); |
| uxPriorityUsedOnEntry = pxTCB->uxPriority; |
| pxTCB->uxPriority = uxPriorityToUse; |
| |
| /* Only reset the event list item value if the value is not |
| * being used for anything else. */ |
| if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) |
| { |
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* If the running task is not the task that holds the mutex |
| * then the task that holds the mutex could be in either the |
| * Ready, Blocked or Suspended states. Only remove the task |
| * from its current state list if it is in the Ready state as |
| * the task's priority is going to change and there is one |
| * Ready list per priority. */ |
| if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) |
| { |
| if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
| { |
| /* It is known that the task is in its ready list so |
| * there is no need to check again and the port level |
| * reset macro can be called directly. */ |
| portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| prvAddTaskToReadyList( pxTCB ); |
| #if ( configNUMBER_OF_CORES > 1 ) |
| { |
| /* The priority of the task is dropped. Yield the core on |
| * which the task is running. */ |
| if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) |
| { |
| prvYieldCore( pxTCB->xTaskRunState ); |
| } |
| } |
| #endif /* if ( configNUMBER_OF_CORES > 1 ) */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskPriorityDisinheritAfterTimeout(); |
| } |
| |
| #endif /* configUSE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| /* If not in a critical section then yield immediately. |
| * Otherwise set xYieldPendings to true to wait to |
| * yield until exiting the critical section. |
| */ |
| void vTaskYieldWithinAPI( void ) |
| { |
| traceENTER_vTaskYieldWithinAPI(); |
| |
| if( portGET_CRITICAL_NESTING_COUNT() == 0U ) |
| { |
| portYIELD(); |
| } |
| else |
| { |
| xYieldPendings[ portGET_CORE_ID() ] = pdTRUE; |
| } |
| |
| traceRETURN_vTaskYieldWithinAPI(); |
| } |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) |
| |
| void vTaskEnterCritical( void ) |
| { |
| traceENTER_vTaskEnterCritical(); |
| |
| portDISABLE_INTERRUPTS(); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| ( pxCurrentTCB->uxCriticalNesting )++; |
| |
| /* This is not the interrupt safe version of the enter critical |
| * function so assert() if it is being called from an interrupt |
| * context. Only API functions that end in "FromISR" can be used in an |
| * interrupt. Only assert if the critical nesting count is 1 to |
| * protect against recursive calls if the assert function also uses a |
| * critical section. */ |
| if( pxCurrentTCB->uxCriticalNesting == 1 ) |
| { |
| portASSERT_IF_IN_ISR(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskEnterCritical(); |
| } |
| |
| #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| void vTaskEnterCritical( void ) |
| { |
| traceENTER_vTaskEnterCritical(); |
| |
| portDISABLE_INTERRUPTS(); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| if( portGET_CRITICAL_NESTING_COUNT() == 0U ) |
| { |
| portGET_TASK_LOCK(); |
| portGET_ISR_LOCK(); |
| } |
| |
| portINCREMENT_CRITICAL_NESTING_COUNT(); |
| |
| /* This is not the interrupt safe version of the enter critical |
| * function so assert() if it is being called from an interrupt |
| * context. Only API functions that end in "FromISR" can be used in an |
| * interrupt. Only assert if the critical nesting count is 1 to |
| * protect against recursive calls if the assert function also uses a |
| * critical section. */ |
| if( portGET_CRITICAL_NESTING_COUNT() == 1U ) |
| { |
| portASSERT_IF_IN_ISR(); |
| |
| if( uxSchedulerSuspended == 0U ) |
| { |
| /* The only time there would be a problem is if this is called |
| * before a context switch and vTaskExitCritical() is called |
| * after pxCurrentTCB changes. Therefore this should not be |
| * used within vTaskSwitchContext(). */ |
| prvCheckForRunStateChange(); |
| } |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskEnterCritical(); |
| } |
| |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| UBaseType_t vTaskEnterCriticalFromISR( void ) |
| { |
| UBaseType_t uxSavedInterruptStatus = 0; |
| |
| traceENTER_vTaskEnterCriticalFromISR(); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
| |
| if( portGET_CRITICAL_NESTING_COUNT() == 0U ) |
| { |
| portGET_ISR_LOCK(); |
| } |
| |
| portINCREMENT_CRITICAL_NESTING_COUNT(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus ); |
| |
| return uxSavedInterruptStatus; |
| } |
| |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) |
| |
| void vTaskExitCritical( void ) |
| { |
| traceENTER_vTaskExitCritical(); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* If pxCurrentTCB->uxCriticalNesting is zero then this function |
| * does not match a previous call to vTaskEnterCritical(). */ |
| configASSERT( pxCurrentTCB->uxCriticalNesting > 0U ); |
| |
| /* This function should not be called in ISR. Use vTaskExitCriticalFromISR |
| * to exit critical section from ISR. */ |
| portASSERT_IF_IN_ISR(); |
| |
| if( pxCurrentTCB->uxCriticalNesting > 0U ) |
| { |
| ( pxCurrentTCB->uxCriticalNesting )--; |
| |
| if( pxCurrentTCB->uxCriticalNesting == 0U ) |
| { |
| portENABLE_INTERRUPTS(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskExitCritical(); |
| } |
| |
| #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| void vTaskExitCritical( void ) |
| { |
| traceENTER_vTaskExitCritical(); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* If critical nesting count is zero then this function |
| * does not match a previous call to vTaskEnterCritical(). */ |
| configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U ); |
| |
| /* This function should not be called in ISR. Use vTaskExitCriticalFromISR |
| * to exit critical section from ISR. */ |
| portASSERT_IF_IN_ISR(); |
| |
| if( portGET_CRITICAL_NESTING_COUNT() > 0U ) |
| { |
| portDECREMENT_CRITICAL_NESTING_COUNT(); |
| |
| if( portGET_CRITICAL_NESTING_COUNT() == 0U ) |
| { |
| BaseType_t xYieldCurrentTask; |
| |
| /* Get the xYieldPending stats inside the critical section. */ |
| xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ]; |
| |
| portRELEASE_ISR_LOCK(); |
| portRELEASE_TASK_LOCK(); |
| portENABLE_INTERRUPTS(); |
| |
| /* When a task yields in a critical section it just sets |
| * xYieldPending to true. So now that we have exited the |
| * critical section check if xYieldPending is true, and |
| * if so yield. */ |
| if( xYieldCurrentTask != pdFALSE ) |
| { |
| portYIELD(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskExitCritical(); |
| } |
| |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus ) |
| { |
| traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus ); |
| |
| if( xSchedulerRunning != pdFALSE ) |
| { |
| /* If critical nesting count is zero then this function |
| * does not match a previous call to vTaskEnterCritical(). */ |
| configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U ); |
| |
| if( portGET_CRITICAL_NESTING_COUNT() > 0U ) |
| { |
| portDECREMENT_CRITICAL_NESTING_COUNT(); |
| |
| if( portGET_CRITICAL_NESTING_COUNT() == 0U ) |
| { |
| portRELEASE_ISR_LOCK(); |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskExitCriticalFromISR(); |
| } |
| |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) |
| |
| static char * prvWriteNameToBuffer( char * pcBuffer, |
| const char * pcTaskName ) |
| { |
| size_t x; |
| |
| /* Start by copying the entire string. */ |
| ( void ) strcpy( pcBuffer, pcTaskName ); |
| |
| /* Pad the end of the string with spaces to ensure columns line up when |
| * printed out. */ |
| for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ ) |
| { |
| pcBuffer[ x ] = ' '; |
| } |
| |
| /* Terminate. */ |
| pcBuffer[ x ] = ( char ) 0x00; |
| |
| /* Return the new end of string. */ |
| return &( pcBuffer[ x ] ); |
| } |
| |
| #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) |
| |
| void vTaskListTasks( char * pcWriteBuffer, |
| size_t uxBufferLength ) |
| { |
| TaskStatus_t * pxTaskStatusArray; |
| size_t uxConsumedBufferLength = 0; |
| size_t uxCharsWrittenBySnprintf; |
| int iSnprintfReturnValue; |
| BaseType_t xOutputBufferFull = pdFALSE; |
| UBaseType_t uxArraySize, x; |
| char cStatus; |
| |
| traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength ); |
| |
| /* |
| * PLEASE NOTE: |
| * |
| * This function is provided for convenience only, and is used by many |
| * of the demo applications. Do not consider it to be part of the |
| * scheduler. |
| * |
| * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the |
| * uxTaskGetSystemState() output into a human readable table that |
| * displays task: names, states, priority, stack usage and task number. |
| * Stack usage specified as the number of unused StackType_t words stack can hold |
| * on top of stack - not the number of bytes. |
| * |
| * vTaskListTasks() has a dependency on the snprintf() C library function that |
| * might bloat the code size, use a lot of stack, and provide different |
| * results on different platforms. An alternative, tiny, third party, |
| * and limited functionality implementation of snprintf() is provided in |
| * many of the FreeRTOS/Demo sub-directories in a file called |
| * printf-stdarg.c (note printf-stdarg.c does not provide a full |
| * snprintf() implementation!). |
| * |
| * It is recommended that production systems call uxTaskGetSystemState() |
| * directly to get access to raw stats data, rather than indirectly |
| * through a call to vTaskListTasks(). |
| */ |
| |
| |
| /* Make sure the write buffer does not contain a string. */ |
| *pcWriteBuffer = ( char ) 0x00; |
| |
| /* Take a snapshot of the number of tasks in case it changes while this |
| * function is executing. */ |
| uxArraySize = uxCurrentNumberOfTasks; |
| |
| /* Allocate an array index for each task. NOTE! if |
| * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will |
| * equate to NULL. */ |
| pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */ |
| |
| if( pxTaskStatusArray != NULL ) |
| { |
| /* Generate the (binary) data. */ |
| uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL ); |
| |
| /* Create a human readable table from the binary data. */ |
| for( x = 0; ( x < uxArraySize ) && ( xOutputBufferFull == pdFALSE ); x++ ) |
| { |
| switch( pxTaskStatusArray[ x ].eCurrentState ) |
| { |
| case eRunning: |
| cStatus = tskRUNNING_CHAR; |
| break; |
| |
| case eReady: |
| cStatus = tskREADY_CHAR; |
| break; |
| |
| case eBlocked: |
| cStatus = tskBLOCKED_CHAR; |
| break; |
| |
| case eSuspended: |
| cStatus = tskSUSPENDED_CHAR; |
| break; |
| |
| case eDeleted: |
| cStatus = tskDELETED_CHAR; |
| break; |
| |
| case eInvalid: /* Fall through. */ |
| default: /* Should not get here, but it is included |
| * to prevent static checking errors. */ |
| cStatus = ( char ) 0x00; |
| break; |
| } |
| |
| /* Is there enough space in the buffer to hold task name? */ |
| if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength ) |
| { |
| /* Write the task name to the string, padding with spaces so it |
| * can be printed in tabular form more easily. */ |
| pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); |
| /* Do not count the terminating null character. */ |
| uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1 ); |
| |
| /* Is there space left in the buffer? -1 is done because snprintf |
| * writes a terminating null character. So we are essentially |
| * checking if the buffer has space to write at least one non-null |
| * character. */ |
| if( uxConsumedBufferLength < ( uxBufferLength - 1 ) ) |
| { |
| /* Write the rest of the string. */ |
| #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) |
| iSnprintfReturnValue = snprintf( pcWriteBuffer, |
| uxBufferLength - uxConsumedBufferLength, |
| "\t%c\t%u\t%u\t%u\t0x%x\r\n", |
| cStatus, |
| ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, |
| ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, |
| ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber, |
| ( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ |
| #else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */ |
| iSnprintfReturnValue = snprintf( pcWriteBuffer, |
| uxBufferLength - uxConsumedBufferLength, |
| "\t%c\t%u\t%u\t%u\r\n", |
| cStatus, |
| ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, |
| ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, |
| ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ |
| #endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */ |
| uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength ); |
| |
| uxConsumedBufferLength += uxCharsWrittenBySnprintf; |
| pcWriteBuffer += uxCharsWrittenBySnprintf; /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */ |
| } |
| else |
| { |
| xOutputBufferFull = pdTRUE; |
| } |
| } |
| else |
| { |
| xOutputBufferFull = pdTRUE; |
| } |
| } |
| |
| /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION |
| * is 0 then vPortFree() will be #defined to nothing. */ |
| vPortFree( pxTaskStatusArray ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskListTasks(); |
| } |
| |
| #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ |
| /*----------------------------------------------------------*/ |
| |
| #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) ) |
| |
| void vTaskGetRunTimeStatistics( char * pcWriteBuffer, |
| size_t uxBufferLength ) |
| { |
| TaskStatus_t * pxTaskStatusArray; |
| size_t uxConsumedBufferLength = 0; |
| size_t uxCharsWrittenBySnprintf; |
| int iSnprintfReturnValue; |
| BaseType_t xOutputBufferFull = pdFALSE; |
| UBaseType_t uxArraySize, x; |
| configRUN_TIME_COUNTER_TYPE ulTotalTime, ulStatsAsPercentage; |
| |
| traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength ); |
| |
| /* |
| * PLEASE NOTE: |
| * |
| * This function is provided for convenience only, and is used by many |
| * of the demo applications. Do not consider it to be part of the |
| * scheduler. |
| * |
| * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part |
| * of the uxTaskGetSystemState() output into a human readable table that |
| * displays the amount of time each task has spent in the Running state |
| * in both absolute and percentage terms. |
| * |
| * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library |
| * function that might bloat the code size, use a lot of stack, and |
| * provide different results on different platforms. An alternative, |
| * tiny, third party, and limited functionality implementation of |
| * snprintf() is provided in many of the FreeRTOS/Demo sub-directories in |
| * a file called printf-stdarg.c (note printf-stdarg.c does not provide |
| * a full snprintf() implementation!). |
| * |
| * It is recommended that production systems call uxTaskGetSystemState() |
| * directly to get access to raw stats data, rather than indirectly |
| * through a call to vTaskGetRunTimeStatistics(). |
| */ |
| |
| /* Make sure the write buffer does not contain a string. */ |
| *pcWriteBuffer = ( char ) 0x00; |
| |
| /* Take a snapshot of the number of tasks in case it changes while this |
| * function is executing. */ |
| uxArraySize = uxCurrentNumberOfTasks; |
| |
| /* Allocate an array index for each task. NOTE! If |
| * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will |
| * equate to NULL. */ |
| pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */ |
| |
| if( pxTaskStatusArray != NULL ) |
| { |
| /* Generate the (binary) data. */ |
| uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime ); |
| |
| /* For percentage calculations. */ |
| ulTotalTime /= 100UL; |
| |
| /* Avoid divide by zero errors. */ |
| if( ulTotalTime > 0UL ) |
| { |
| /* Create a human readable table from the binary data. */ |
| for( x = 0; ( x < uxArraySize ) && ( xOutputBufferFull == pdFALSE ); x++ ) |
| { |
| /* What percentage of the total run time has the task used? |
| * This will always be rounded down to the nearest integer. |
| * ulTotalRunTime has already been divided by 100. */ |
| ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime; |
| |
| /* Is there enough space in the buffer to hold task name? */ |
| if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength ) |
| { |
| /* Write the task name to the string, padding with |
| * spaces so it can be printed in tabular form more |
| * easily. */ |
| pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); |
| /* Do not count the terminating null character. */ |
| uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1 ); |
| |
| /* Is there space left in the buffer? -1 is done because snprintf |
| * writes a terminating null character. So we are essentially |
| * checking if the buffer has space to write at least one non-null |
| * character. */ |
| if( uxConsumedBufferLength < ( uxBufferLength - 1 ) ) |
| { |
| if( ulStatsAsPercentage > 0UL ) |
| { |
| #ifdef portLU_PRINTF_SPECIFIER_REQUIRED |
| { |
| iSnprintfReturnValue = snprintf( pcWriteBuffer, |
| uxBufferLength - uxConsumedBufferLength, |
| "\t%lu\t\t%lu%%\r\n", |
| pxTaskStatusArray[ x ].ulRunTimeCounter, |
| ulStatsAsPercentage ); |
| } |
| #else |
| { |
| /* sizeof( int ) == sizeof( long ) so a smaller |
| * printf() library can be used. */ |
| iSnprintfReturnValue = snprintf( pcWriteBuffer, |
| uxBufferLength - uxConsumedBufferLength, |
| "\t%u\t\t%u%%\r\n", |
| ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, |
| ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ |
| } |
| #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */ |
| } |
| else |
| { |
| /* If the percentage is zero here then the task has |
| * consumed less than 1% of the total run time. */ |
| #ifdef portLU_PRINTF_SPECIFIER_REQUIRED |
| { |
| iSnprintfReturnValue = snprintf( pcWriteBuffer, |
| uxBufferLength - uxConsumedBufferLength, |
| "\t%lu\t\t<1%%\r\n", |
| pxTaskStatusArray[ x ].ulRunTimeCounter ); |
| } |
| #else |
| { |
| /* sizeof( int ) == sizeof( long ) so a smaller |
| * printf() library can be used. */ |
| iSnprintfReturnValue = snprintf( pcWriteBuffer, |
| uxBufferLength - uxConsumedBufferLength, |
| "\t%u\t\t<1%%\r\n", |
| ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ |
| } |
| #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */ |
| } |
| |
| uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength ); |
| uxConsumedBufferLength += uxCharsWrittenBySnprintf; |
| pcWriteBuffer += uxCharsWrittenBySnprintf; /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */ |
| } |
| else |
| { |
| xOutputBufferFull = pdTRUE; |
| } |
| } |
| else |
| { |
| xOutputBufferFull = pdTRUE; |
| } |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION |
| * is 0 then vPortFree() will be #defined to nothing. */ |
| vPortFree( pxTaskStatusArray ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| traceRETURN_vTaskGetRunTimeStatistics(); |
| } |
| |
| #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| TickType_t uxTaskResetEventItemValue( void ) |
| { |
| TickType_t uxReturn; |
| |
| traceENTER_uxTaskResetEventItemValue(); |
| |
| uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) ); |
| |
| /* Reset the event list item to its normal value - so it can be used with |
| * queues and semaphores. */ |
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| |
| traceRETURN_uxTaskResetEventItemValue( uxReturn ); |
| |
| return uxReturn; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MUTEXES == 1 ) |
| |
| TaskHandle_t pvTaskIncrementMutexHeldCount( void ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_pvTaskIncrementMutexHeldCount(); |
| |
| pxTCB = pxCurrentTCB; |
| |
| /* If xSemaphoreCreateMutex() is called before any tasks have been created |
| * then pxCurrentTCB will be NULL. */ |
| if( pxTCB != NULL ) |
| { |
| ( pxTCB->uxMutexesHeld )++; |
| } |
| |
| traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB ); |
| |
| return pxTCB; |
| } |
| |
| #endif /* configUSE_MUTEXES */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| |
| uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn, |
| BaseType_t xClearCountOnExit, |
| TickType_t xTicksToWait ) |
| { |
| uint32_t ulReturn; |
| BaseType_t xAlreadyYielded; |
| |
| traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait ); |
| |
| configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES ); |
| |
| taskENTER_CRITICAL(); |
| |
| /* Only block if the notification count is not already non-zero. */ |
| if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0UL ) |
| { |
| /* Mark this task as waiting for a notification. */ |
| pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION; |
| |
| if( xTicksToWait > ( TickType_t ) 0 ) |
| { |
| traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn ); |
| |
| /* We MUST suspend the scheduler before exiting the critical |
| * section (i.e. before enabling interrupts). |
| * |
| * If we do not do so, a notification sent from an ISR, which |
| * happens after exiting the critical section and before |
| * suspending the scheduler, will get lost. The sequence of |
| * events will be: |
| * 1. Exit critical section. |
| * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the |
| * task to the Ready list. |
| * 3. Suspend scheduler. |
| * 4. prvAddCurrentTaskToDelayedList moves the task to the |
| * delayed or suspended list. |
| * 5. Resume scheduler does not touch the task (because it is |
| * not on the pendingReady list), effectively losing the |
| * notification from the ISR. |
| * |
| * The same does not happen when we suspend the scheduler before |
| * exiting the critical section. The sequence of events in this |
| * case will be: |
| * 1. Suspend scheduler. |
| * 2. Exit critical section. |
| * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the |
| * task to the pendingReady list as the scheduler is |
| * suspended. |
| * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or |
| * suspended list. Note that this operation does not nullify |
| * the add to pendingReady list done in the above step because |
| * a different list item, namely xEventListItem, is used for |
| * adding the task to the pendingReady list. In other words, |
| * the task still remains on the pendingReady list. |
| * 5. Resume scheduler moves the task from pendingReady list to |
| * the Ready list. |
| */ |
| vTaskSuspendAll(); |
| { |
| taskEXIT_CRITICAL(); |
| |
| prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); |
| } |
| xAlreadyYielded = xTaskResumeAll(); |
| |
| if( xAlreadyYielded == pdFALSE ) |
| { |
| taskYIELD_WITHIN_API(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| taskEXIT_CRITICAL(); |
| } |
| } |
| else |
| { |
| taskEXIT_CRITICAL(); |
| } |
| |
| taskENTER_CRITICAL(); |
| { |
| traceTASK_NOTIFY_TAKE( uxIndexToWaitOn ); |
| ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ]; |
| |
| if( ulReturn != 0UL ) |
| { |
| if( xClearCountOnExit != pdFALSE ) |
| { |
| pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = 0UL; |
| } |
| else |
| { |
| pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1; |
| } |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_ulTaskGenericNotifyTake( ulReturn ); |
| |
| return ulReturn; |
| } |
| |
| #endif /* configUSE_TASK_NOTIFICATIONS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| |
| BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn, |
| uint32_t ulBitsToClearOnEntry, |
| uint32_t ulBitsToClearOnExit, |
| uint32_t * pulNotificationValue, |
| TickType_t xTicksToWait ) |
| { |
| BaseType_t xReturn, xAlreadyYielded; |
| |
| traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait ); |
| |
| configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES ); |
| |
| taskENTER_CRITICAL(); |
| |
| /* Only block if a notification is not already pending. */ |
| if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED ) |
| { |
| /* Clear bits in the task's notification value as bits may get |
| * set by the notifying task or interrupt. This can be used to |
| * clear the value to zero. */ |
| pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry; |
| |
| /* Mark this task as waiting for a notification. */ |
| pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION; |
| |
| if( xTicksToWait > ( TickType_t ) 0 ) |
| { |
| traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn ); |
| |
| /* We MUST suspend the scheduler before exiting the critical |
| * section (i.e. before enabling interrupts). |
| * |
| * If we do not do so, a notification sent from an ISR, which |
| * happens after exiting the critical section and before |
| * suspending the scheduler, will get lost. The sequence of |
| * events will be: |
| * 1. Exit critical section. |
| * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the |
| * task to the Ready list. |
| * 3. Suspend scheduler. |
| * 4. prvAddCurrentTaskToDelayedList moves the task to the |
| * delayed or suspended list. |
| * 5. Resume scheduler does not touch the task (because it is |
| * not on the pendingReady list), effectively losing the |
| * notification from the ISR. |
| * |
| * The same does not happen when we suspend the scheduler before |
| * exiting the critical section. The sequence of events in this |
| * case will be: |
| * 1. Suspend scheduler. |
| * 2. Exit critical section. |
| * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the |
| * task to the pendingReady list as the scheduler is |
| * suspended. |
| * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or |
| * suspended list. Note that this operation does not nullify |
| * the add to pendingReady list done in the above step because |
| * a different list item, namely xEventListItem, is used for |
| * adding the task to the pendingReady list. In other words, |
| * the task still remains on the pendingReady list. |
| * 5. Resume scheduler moves the task from pendingReady list to |
| * the Ready list. |
| */ |
| vTaskSuspendAll(); |
| { |
| taskEXIT_CRITICAL(); |
| |
| prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); |
| } |
| xAlreadyYielded = xTaskResumeAll(); |
| |
| if( xAlreadyYielded == pdFALSE ) |
| { |
| taskYIELD_WITHIN_API(); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| else |
| { |
| taskEXIT_CRITICAL(); |
| } |
| } |
| else |
| { |
| taskEXIT_CRITICAL(); |
| } |
| |
| taskENTER_CRITICAL(); |
| { |
| traceTASK_NOTIFY_WAIT( uxIndexToWaitOn ); |
| |
| if( pulNotificationValue != NULL ) |
| { |
| /* Output the current notification value, which may or may not |
| * have changed. */ |
| *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ]; |
| } |
| |
| /* If ucNotifyValue is set then either the task never entered the |
| * blocked state (because a notification was already pending) or the |
| * task unblocked because of a notification. Otherwise the task |
| * unblocked because of a timeout. */ |
| if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED ) |
| { |
| /* A notification was not received. */ |
| xReturn = pdFALSE; |
| } |
| else |
| { |
| /* A notification was already pending or a notification was |
| * received while the task was waiting. */ |
| pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit; |
| xReturn = pdTRUE; |
| } |
| |
| pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xTaskGenericNotifyWait( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_TASK_NOTIFICATIONS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| |
| BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, |
| UBaseType_t uxIndexToNotify, |
| uint32_t ulValue, |
| eNotifyAction eAction, |
| uint32_t * pulPreviousNotificationValue ) |
| { |
| TCB_t * pxTCB; |
| BaseType_t xReturn = pdPASS; |
| uint8_t ucOriginalNotifyState; |
| |
| traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue ); |
| |
| configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); |
| configASSERT( xTaskToNotify ); |
| pxTCB = xTaskToNotify; |
| |
| taskENTER_CRITICAL(); |
| { |
| if( pulPreviousNotificationValue != NULL ) |
| { |
| *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ]; |
| } |
| |
| ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; |
| |
| pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; |
| |
| switch( eAction ) |
| { |
| case eSetBits: |
| pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue; |
| break; |
| |
| case eIncrement: |
| ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; |
| break; |
| |
| case eSetValueWithOverwrite: |
| pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; |
| break; |
| |
| case eSetValueWithoutOverwrite: |
| |
| if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) |
| { |
| pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; |
| } |
| else |
| { |
| /* The value could not be written to the task. */ |
| xReturn = pdFAIL; |
| } |
| |
| break; |
| |
| case eNoAction: |
| |
| /* The task is being notified without its notify value being |
| * updated. */ |
| break; |
| |
| default: |
| |
| /* Should not get here if all enums are handled. |
| * Artificially force an assert by testing a value the |
| * compiler can't assume is const. */ |
| configASSERT( xTickCount == ( TickType_t ) 0 ); |
| |
| break; |
| } |
| |
| traceTASK_NOTIFY( uxIndexToNotify ); |
| |
| /* If the task is in the blocked state specifically to wait for a |
| * notification then unblock it now. */ |
| if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) |
| { |
| listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); |
| prvAddTaskToReadyList( pxTCB ); |
| |
| /* The task should not have been on an event list. */ |
| configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); |
| |
| #if ( configUSE_TICKLESS_IDLE != 0 ) |
| { |
| /* If a task is blocked waiting for a notification then |
| * xNextTaskUnblockTime might be set to the blocked task's time |
| * out time. If the task is unblocked for a reason other than |
| * a timeout xNextTaskUnblockTime is normally left unchanged, |
| * because it will automatically get reset to a new value when |
| * the tick count equals xNextTaskUnblockTime. However if |
| * tickless idling is used it might be more important to enter |
| * sleep mode at the earliest possible time - so reset |
| * xNextTaskUnblockTime here to ensure it is updated at the |
| * earliest possible time. */ |
| prvResetNextTaskUnblockTime(); |
| } |
| #endif |
| |
| /* Check if the notified task has a priority above the currently |
| * executing task. */ |
| taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ); |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xTaskGenericNotify( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_TASK_NOTIFICATIONS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| |
| BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, |
| UBaseType_t uxIndexToNotify, |
| uint32_t ulValue, |
| eNotifyAction eAction, |
| uint32_t * pulPreviousNotificationValue, |
| BaseType_t * pxHigherPriorityTaskWoken ) |
| { |
| TCB_t * pxTCB; |
| uint8_t ucOriginalNotifyState; |
| BaseType_t xReturn = pdPASS; |
| UBaseType_t uxSavedInterruptStatus; |
| |
| traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken ); |
| |
| configASSERT( xTaskToNotify ); |
| configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a |
| * maximum system call (or maximum API call) interrupt priority. |
| * Interrupts that are above the maximum system call priority are keep |
| * permanently enabled, even when the RTOS kernel is in a critical section, |
| * but cannot make any calls to FreeRTOS API functions. If configASSERT() |
| * is defined in FreeRTOSConfig.h then |
| * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has |
| * been assigned a priority above the configured maximum system call |
| * priority. Only FreeRTOS functions that end in FromISR can be called |
| * from interrupts that have been assigned a priority at or (logically) |
| * below the maximum system call interrupt priority. FreeRTOS maintains a |
| * separate interrupt safe API to ensure interrupt entry is as fast and as |
| * simple as possible. More information (albeit Cortex-M specific) is |
| * provided on the following link: |
| * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| pxTCB = xTaskToNotify; |
| |
| uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); |
| { |
| if( pulPreviousNotificationValue != NULL ) |
| { |
| *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ]; |
| } |
| |
| ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; |
| pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; |
| |
| switch( eAction ) |
| { |
| case eSetBits: |
| pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue; |
| break; |
| |
| case eIncrement: |
| ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; |
| break; |
| |
| case eSetValueWithOverwrite: |
| pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; |
| break; |
| |
| case eSetValueWithoutOverwrite: |
| |
| if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) |
| { |
| pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; |
| } |
| else |
| { |
| /* The value could not be written to the task. */ |
| xReturn = pdFAIL; |
| } |
| |
| break; |
| |
| case eNoAction: |
| |
| /* The task is being notified without its notify value being |
| * updated. */ |
| break; |
| |
| default: |
| |
| /* Should not get here if all enums are handled. |
| * Artificially force an assert by testing a value the |
| * compiler can't assume is const. */ |
| configASSERT( xTickCount == ( TickType_t ) 0 ); |
| break; |
| } |
| |
| traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify ); |
| |
| /* If the task is in the blocked state specifically to wait for a |
| * notification then unblock it now. */ |
| if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) |
| { |
| /* The task should not have been on an event list. */ |
| configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); |
| |
| if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) |
| { |
| listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); |
| prvAddTaskToReadyList( pxTCB ); |
| } |
| else |
| { |
| /* The delayed and ready lists cannot be accessed, so hold |
| * this task pending until the scheduler is resumed. */ |
| listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); |
| } |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
| { |
| /* The notified task has a priority above the currently |
| * executing task so a yield is required. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| |
| /* Mark that a yield is pending in case the user is not |
| * using the "xHigherPriorityTaskWoken" parameter to an ISR |
| * safe FreeRTOS function. */ |
| xYieldPendings[ 0 ] = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| #if ( configUSE_PREEMPTION == 1 ) |
| { |
| prvYieldForTask( pxTCB ); |
| |
| if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) |
| { |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| } |
| } |
| #endif /* if ( configUSE_PREEMPTION == 1 ) */ |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_xTaskGenericNotifyFromISR( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_TASK_NOTIFICATIONS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| |
| void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify, |
| UBaseType_t uxIndexToNotify, |
| BaseType_t * pxHigherPriorityTaskWoken ) |
| { |
| TCB_t * pxTCB; |
| uint8_t ucOriginalNotifyState; |
| UBaseType_t uxSavedInterruptStatus; |
| |
| traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken ); |
| |
| configASSERT( xTaskToNotify ); |
| configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); |
| |
| /* RTOS ports that support interrupt nesting have the concept of a |
| * maximum system call (or maximum API call) interrupt priority. |
| * Interrupts that are above the maximum system call priority are keep |
| * permanently enabled, even when the RTOS kernel is in a critical section, |
| * but cannot make any calls to FreeRTOS API functions. If configASSERT() |
| * is defined in FreeRTOSConfig.h then |
| * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| * failure if a FreeRTOS API function is called from an interrupt that has |
| * been assigned a priority above the configured maximum system call |
| * priority. Only FreeRTOS functions that end in FromISR can be called |
| * from interrupts that have been assigned a priority at or (logically) |
| * below the maximum system call interrupt priority. FreeRTOS maintains a |
| * separate interrupt safe API to ensure interrupt entry is as fast and as |
| * simple as possible. More information (albeit Cortex-M specific) is |
| * provided on the following link: |
| * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| |
| pxTCB = xTaskToNotify; |
| |
| uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); |
| { |
| ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; |
| pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; |
| |
| /* 'Giving' is equivalent to incrementing a count in a counting |
| * semaphore. */ |
| ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; |
| |
| traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify ); |
| |
| /* If the task is in the blocked state specifically to wait for a |
| * notification then unblock it now. */ |
| if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) |
| { |
| /* The task should not have been on an event list. */ |
| configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); |
| |
| if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) |
| { |
| listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); |
| prvAddTaskToReadyList( pxTCB ); |
| } |
| else |
| { |
| /* The delayed and ready lists cannot be accessed, so hold |
| * this task pending until the scheduler is resumed. */ |
| listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); |
| } |
| |
| #if ( configNUMBER_OF_CORES == 1 ) |
| { |
| if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
| { |
| /* The notified task has a priority above the currently |
| * executing task so a yield is required. */ |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| |
| /* Mark that a yield is pending in case the user is not |
| * using the "xHigherPriorityTaskWoken" parameter in an ISR |
| * safe FreeRTOS function. */ |
| xYieldPendings[ 0 ] = pdTRUE; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| #else /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| { |
| #if ( configUSE_PREEMPTION == 1 ) |
| { |
| prvYieldForTask( pxTCB ); |
| |
| if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) |
| { |
| if( pxHigherPriorityTaskWoken != NULL ) |
| { |
| *pxHigherPriorityTaskWoken = pdTRUE; |
| } |
| } |
| } |
| #endif /* #if ( configUSE_PREEMPTION == 1 ) */ |
| } |
| #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ |
| } |
| } |
| taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); |
| |
| traceRETURN_vTaskGenericNotifyGiveFromISR(); |
| } |
| |
| #endif /* configUSE_TASK_NOTIFICATIONS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| |
| BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask, |
| UBaseType_t uxIndexToClear ) |
| { |
| TCB_t * pxTCB; |
| BaseType_t xReturn; |
| |
| traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear ); |
| |
| configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES ); |
| |
| /* If null is passed in here then it is the calling task that is having |
| * its notification state cleared. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| taskENTER_CRITICAL(); |
| { |
| if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED ) |
| { |
| pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION; |
| xReturn = pdPASS; |
| } |
| else |
| { |
| xReturn = pdFAIL; |
| } |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_xTaskGenericNotifyStateClear( xReturn ); |
| |
| return xReturn; |
| } |
| |
| #endif /* configUSE_TASK_NOTIFICATIONS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
| |
| uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask, |
| UBaseType_t uxIndexToClear, |
| uint32_t ulBitsToClear ) |
| { |
| TCB_t * pxTCB; |
| uint32_t ulReturn; |
| |
| traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear ); |
| |
| configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES ); |
| |
| /* If null is passed in here then it is the calling task that is having |
| * its notification state cleared. */ |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| taskENTER_CRITICAL(); |
| { |
| /* Return the notification as it was before the bits were cleared, |
| * then clear the bit mask. */ |
| ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ]; |
| pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear; |
| } |
| taskEXIT_CRITICAL(); |
| |
| traceRETURN_ulTaskGenericNotifyValueClear( ulReturn ); |
| |
| return ulReturn; |
| } |
| |
| #endif /* configUSE_TASK_NOTIFICATIONS */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
| |
| configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_ulTaskGetRunTimeCounter( xTask ); |
| |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter ); |
| |
| return pxTCB->ulRunTimeCounter; |
| } |
| |
| #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
| |
| configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn; |
| |
| traceENTER_ulTaskGetRunTimePercent( xTask ); |
| |
| ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE(); |
| |
| /* For percentage calculations. */ |
| ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100; |
| |
| /* Avoid divide by zero errors. */ |
| if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 ) |
| { |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime; |
| } |
| else |
| { |
| ulReturn = 0; |
| } |
| |
| traceRETURN_ulTaskGetRunTimePercent( ulReturn ); |
| |
| return ulReturn; |
| } |
| |
| #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) |
| |
| configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void ) |
| { |
| configRUN_TIME_COUNTER_TYPE ulReturn = 0; |
| BaseType_t i; |
| |
| traceENTER_ulTaskGetIdleRunTimeCounter(); |
| |
| for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ ) |
| { |
| ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter; |
| } |
| |
| traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn ); |
| |
| return ulReturn; |
| } |
| |
| #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) |
| |
| configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void ) |
| { |
| configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn; |
| configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0; |
| BaseType_t i; |
| |
| traceENTER_ulTaskGetIdleRunTimePercent(); |
| |
| ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES; |
| |
| /* For percentage calculations. */ |
| ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100; |
| |
| /* Avoid divide by zero errors. */ |
| if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 ) |
| { |
| for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ ) |
| { |
| ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter; |
| } |
| |
| ulReturn = ulRunTimeCounter / ulTotalTime; |
| } |
| else |
| { |
| ulReturn = 0; |
| } |
| |
| traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn ); |
| |
| return ulReturn; |
| } |
| |
| #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, |
| const BaseType_t xCanBlockIndefinitely ) |
| { |
| TickType_t xTimeToWake; |
| const TickType_t xConstTickCount = xTickCount; |
| |
| #if ( INCLUDE_xTaskAbortDelay == 1 ) |
| { |
| /* About to enter a delayed list, so ensure the ucDelayAborted flag is |
| * reset to pdFALSE so it can be detected as having been set to pdTRUE |
| * when the task leaves the Blocked state. */ |
| pxCurrentTCB->ucDelayAborted = pdFALSE; |
| } |
| #endif |
| |
| /* Remove the task from the ready list before adding it to the blocked list |
| * as the same list item is used for both lists. */ |
| if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
| { |
| /* The current task must be in a ready list, so there is no need to |
| * check, and the port reset macro can be called directly. */ |
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */ |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| |
| #if ( INCLUDE_vTaskSuspend == 1 ) |
| { |
| if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) ) |
| { |
| /* Add the task to the suspended task list instead of a delayed task |
| * list to ensure it is not woken by a timing event. It will block |
| * indefinitely. */ |
| listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
| } |
| else |
| { |
| /* Calculate the time at which the task should be woken if the event |
| * does not occur. This may overflow but this doesn't matter, the |
| * kernel will manage it correctly. */ |
| xTimeToWake = xConstTickCount + xTicksToWait; |
| |
| /* The list item will be inserted in wake time order. */ |
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake ); |
| |
| if( xTimeToWake < xConstTickCount ) |
| { |
| /* Wake time has overflowed. Place this item in the overflow |
| * list. */ |
| traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST(); |
| vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
| } |
| else |
| { |
| /* The wake time has not overflowed, so the current block list |
| * is used. */ |
| traceMOVED_TASK_TO_DELAYED_LIST(); |
| vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
| |
| /* If the task entering the blocked state was placed at the |
| * head of the list of blocked tasks then xNextTaskUnblockTime |
| * needs to be updated too. */ |
| if( xTimeToWake < xNextTaskUnblockTime ) |
| { |
| xNextTaskUnblockTime = xTimeToWake; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| } |
| } |
| #else /* INCLUDE_vTaskSuspend */ |
| { |
| /* Calculate the time at which the task should be woken if the event |
| * does not occur. This may overflow but this doesn't matter, the kernel |
| * will manage it correctly. */ |
| xTimeToWake = xConstTickCount + xTicksToWait; |
| |
| /* The list item will be inserted in wake time order. */ |
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake ); |
| |
| if( xTimeToWake < xConstTickCount ) |
| { |
| traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST(); |
| /* Wake time has overflowed. Place this item in the overflow list. */ |
| vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
| } |
| else |
| { |
| traceMOVED_TASK_TO_DELAYED_LIST(); |
| /* The wake time has not overflowed, so the current block list is used. */ |
| vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
| |
| /* If the task entering the blocked state was placed at the head of the |
| * list of blocked tasks then xNextTaskUnblockTime needs to be updated |
| * too. */ |
| if( xTimeToWake < xNextTaskUnblockTime ) |
| { |
| xNextTaskUnblockTime = xTimeToWake; |
| } |
| else |
| { |
| mtCOVERAGE_TEST_MARKER(); |
| } |
| } |
| |
| /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */ |
| ( void ) xCanBlockIndefinitely; |
| } |
| #endif /* INCLUDE_vTaskSuspend */ |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( portUSING_MPU_WRAPPERS == 1 ) |
| |
| xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask ) |
| { |
| TCB_t * pxTCB; |
| |
| traceENTER_xTaskGetMPUSettings( xTask ); |
| |
| pxTCB = prvGetTCBFromHandle( xTask ); |
| |
| traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) ); |
| |
| return &( pxTCB->xMPUSettings ); |
| } |
| |
| #endif /* portUSING_MPU_WRAPPERS */ |
| /*-----------------------------------------------------------*/ |
| |
| /* Code below here allows additional code to be inserted into this source file, |
| * especially where access to file scope functions and data is needed (for example |
| * when performing module tests). */ |
| |
| #ifdef FREERTOS_MODULE_TEST |
| #include "tasks_test_access_functions.h" |
| #endif |
| |
| |
| #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) |
| |
| #include "freertos_tasks_c_additions.h" |
| |
| #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT |
| static void freertos_tasks_c_additions_init( void ) |
| { |
| FREERTOS_TASKS_C_ADDITIONS_INIT(); |
| } |
| #endif |
| |
| #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) |
| |
| /* |
| * This is the kernel provided implementation of vApplicationGetIdleTaskMemory() |
| * to provide the memory that is used by the Idle task. It is used when |
| * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide |
| * it's own implementation of vApplicationGetIdleTaskMemory by setting |
| * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined. |
| */ |
| void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, |
| StackType_t ** ppxIdleTaskStackBuffer, |
| uint32_t * pulIdleTaskStackSize ) |
| { |
| static StaticTask_t xIdleTaskTCB; |
| static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ]; |
| |
| *ppxIdleTaskTCBBuffer = &( xIdleTaskTCB ); |
| *ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] ); |
| *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; |
| } |
| |
| #if ( configNUMBER_OF_CORES > 1 ) |
| |
| void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, |
| StackType_t ** ppxIdleTaskStackBuffer, |
| uint32_t * pulIdleTaskStackSize, |
| BaseType_t xPassiveIdleTaskIndex ) |
| { |
| static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ]; |
| static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ]; |
| |
| *ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] ); |
| *ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] ); |
| *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; |
| } |
| |
| #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ |
| |
| #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) |
| |
| /* |
| * This is the kernel provided implementation of vApplicationGetTimerTaskMemory() |
| * to provide the memory that is used by the Timer service task. It is used when |
| * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide |
| * it's own implementation of vApplicationGetTimerTaskMemory by setting |
| * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined. |
| */ |
| void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer, |
| StackType_t ** ppxTimerTaskStackBuffer, |
| uint32_t * pulTimerTaskStackSize ) |
| { |
| static StaticTask_t xTimerTaskTCB; |
| static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ]; |
| |
| *ppxTimerTaskTCBBuffer = &( xTimerTaskTCB ); |
| *ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] ); |
| *pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH; |
| } |
| |
| #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */ |
| /*-----------------------------------------------------------*/ |