blob: 7afbe96429999337050aaf3eaa2d9e5047e6da11 [file] [log] [blame]
/*
* FreeRTOS Kernel <DEVELOPMENT BRANCH>
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/*
Changes from V3.0.0
Changes from V3.0.1
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#if !defined(_SERIES) || _SERIES != 18
#error "WizC supports FreeRTOS on the Microchip PIC18-series only"
#endif
#if !defined(QUICKCALL) || QUICKCALL != 1
#error "QuickCall must be enabled (see ProjectOptions/Optimisations)"
#endif
#include <stddef.h>
#include <pic.h>
#define portCHAR char
#define portFLOAT float
#define portDOUBLE portFLOAT
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint8_t
#define portBASE_TYPE char
typedef portSTACK_TYPE StackType_t;
typedef signed char BaseType_t;
typedef unsigned char UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) ( 0xFFFF )
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) ( 0xFFFFFFFF )
#endif
#define portBYTE_ALIGNMENT 1
/*-----------------------------------------------------------*/
/*
* Constant used for context switch macro when we require the interrupt
* enable state to be forced when the interrupted task is switched back in.
*/
#define portINTERRUPTS_FORCED (0x01)
/*
* Constant used for context switch macro when we require the interrupt
* enable state to be unchanged when the interrupted task is switched back in.
*/
#define portINTERRUPTS_UNCHANGED (0x00)
/* Initial interrupt enable state for newly created tasks. This value is
* used when a task switches in for the first time.
*/
#define portINTERRUPTS_INITIAL_STATE (portINTERRUPTS_FORCED)
/*
* Macros to modify the global interrupt enable bit in INTCON.
*/
#define portDISABLE_INTERRUPTS() \
do \
{ \
bGIE=0; \
} while(bGIE) // MicroChip recommends this check!
#define portENABLE_INTERRUPTS() \
do \
{ \
bGIE=1; \
} while(0)
/*-----------------------------------------------------------*/
/*
* Critical section macros.
*/
extern uint8_t ucCriticalNesting;
#define portNO_CRITICAL_SECTION_NESTING ( ( uint8_t ) 0 )
#define portENTER_CRITICAL() \
do \
{ \
portDISABLE_INTERRUPTS(); \
\
/* \
* Now interrupts are disabled ucCriticalNesting \
* can be accessed directly. Increment \
* ucCriticalNesting to keep a count of how \
* many times portENTER_CRITICAL() has been called. \
*/ \
ucCriticalNesting++; \
} while(0)
#define portEXIT_CRITICAL() \
do \
{ \
if(ucCriticalNesting > portNO_CRITICAL_SECTION_NESTING) \
{ \
/* \
* Decrement the nesting count as we are leaving a \
* critical section. \
*/ \
ucCriticalNesting--; \
} \
\
/* \
* If the nesting level has reached zero then \
* interrupts should be re-enabled. \
*/ \
if( ucCriticalNesting == portNO_CRITICAL_SECTION_NESTING ) \
{ \
portENABLE_INTERRUPTS(); \
} \
} while(0)
/*-----------------------------------------------------------*/
/*
* The minimal stacksize is calculated on the first reference of
* portMINIMAL_STACK_SIZE. Some input to this calculation is
* compiletime determined, other input is port-defined (see port.c)
*/
extern uint16_t usPortCALCULATE_MINIMAL_STACK_SIZE( void );
extern uint16_t usCalcMinStackSize;
#define portMINIMAL_STACK_SIZE \
((usCalcMinStackSize == 0) \
? usPortCALCULATE_MINIMAL_STACK_SIZE() \
: usCalcMinStackSize )
/*
* WizC uses a downgrowing stack
*/
#define portSTACK_GROWTH ( -1 )
/*-----------------------------------------------------------*/
/*
* Macro's that pushes all the registers that make up the context of a task onto
* the stack, then saves the new top of stack into the TCB. TOSU and TBLPTRU
* are only saved/restored on devices with more than 64kB (32k Words) ROM.
*
* The stackpointer is helt by WizC in FSR2 and points to the first free byte.
* WizC uses a "downgrowing" stack. There is no framepointer.
*
* We keep track of the interruptstatus using ucCriticalNesting. When this
* value equals zero, interrupts have to be enabled upon exit from the
* portRESTORE_CONTEXT macro.
*
* If this is called from an ISR then the interrupt enable bits must have been
* set for the ISR to ever get called. Therefore we want to save
* ucCriticalNesting with value zero. This means the interrupts will again be
* re-enabled when the interrupted task is switched back in.
*
* If this is called from a manual context switch (i.e. from a call to yield),
* then we want to keep the current value of ucCritialNesting so it is restored
* with its current value. This allows a yield from within a critical section.
*
* The compiler uses some locations at the bottom of RAM for temporary
* storage. The compiler may also have been instructed to optimize
* function-parameters and local variables to global storage. The compiler
* uses an area called LocOpt for this wizC feature.
* The total overheadstorage has to be saved in it's entirety as part of
* a task context. These macro's store/restore from data address 0x0000 to
* (OVERHEADPAGE0-LOCOPTSIZE+MAXLOCOPTSIZE - 1).
* OVERHEADPAGE0, LOCOPTSIZE and MAXLOCOPTSIZE are compiler-generated
* assembler definitions.
*/
#define portSAVE_CONTEXT( ucInterruptForced ) \
do \
{ \
portDISABLE_INTERRUPTS(); \
\
_Pragma("asm") \
; \
; Push the relevant SFR's onto the task's stack \
; \
movff STATUS,POSTDEC2 \
movff WREG,POSTDEC2 \
movff BSR,POSTDEC2 \
movff PRODH,POSTDEC2 \
movff PRODL,POSTDEC2 \
movff FSR0H,POSTDEC2 \
movff FSR0L,POSTDEC2 \
movff FSR1H,POSTDEC2 \
movff FSR1L,POSTDEC2 \
movff TABLAT,POSTDEC2 \
if __ROMSIZE > 0x8000 \
movff TBLPTRU,POSTDEC2 \
endif \
movff TBLPTRH,POSTDEC2 \
movff TBLPTRL,POSTDEC2 \
if __ROMSIZE > 0x8000 \
movff PCLATU,POSTDEC2 \
endif \
movff PCLATH,POSTDEC2 \
; \
; Store the compiler-scratch-area as described above. \
; \
movlw OVERHEADPAGE0-LOCOPTSIZE+MAXLOCOPTSIZE \
clrf FSR0L,ACCESS \
clrf FSR0H,ACCESS \
_rtos_S1: \
movff POSTINC0,POSTDEC2 \
decfsz WREG,W,ACCESS \
SMARTJUMP _rtos_S1 \
; \
; Save the pic call/return-stack belonging to the \
; current task by copying it to the task's software- \
; stack. We save the hardware stack pointer (which \
; is the number of addresses on the stack) in the \
; W-register first because we need it later and it \
; is modified in the save-loop by executing pop's. \
; After the loop the W-register is stored on the \
; stack, too. \
; \
movf STKPTR,W,ACCESS \
bz _rtos_s3 \
_rtos_S2: \
if __ROMSIZE > 0x8000 \
movff TOSU,POSTDEC2 \
endif \
movff TOSH,POSTDEC2 \
movff TOSL,POSTDEC2 \
pop \
tstfsz STKPTR,ACCESS \
SMARTJUMP _rtos_S2 \
_rtos_s3: \
movwf POSTDEC2,ACCESS \
; \
; Next the value for ucCriticalNesting used by the \
; task is stored on the stack. When \
; (ucInterruptForced == portINTERRUPTS_FORCED), we save \
; it as 0 (portNO_CRITICAL_SECTION_NESTING). \
; \
if ucInterruptForced == portINTERRUPTS_FORCED \
clrf POSTDEC2,ACCESS \
else \
movff ucCriticalNesting,POSTDEC2 \
endif \
; \
; Save the new top of the software stack in the TCB. \
; \
movff pxCurrentTCB,FSR0L \
movff pxCurrentTCB+1,FSR0H \
movff FSR2L,POSTINC0 \
movff FSR2H,POSTINC0 \
_Pragma("asmend") \
} while(0)
/************************************************************/
/*
* This is the reverse of portSAVE_CONTEXT.
*/
#define portRESTORE_CONTEXT() \
do \
{ \
_Pragma("asm") \
; \
; Set FSR0 to point to pxCurrentTCB->pxTopOfStack. \
; \
movff pxCurrentTCB,FSR0L \
movff pxCurrentTCB+1,FSR0H \
; \
; De-reference FSR0 to set the address it holds into \
; FSR2 (i.e. *( pxCurrentTCB->pxTopOfStack ) ). FSR2 \
; is used by wizC as stackpointer. \
; \
movff POSTINC0,FSR2L \
movff POSTINC0,FSR2H \
; \
; Next, the value for ucCriticalNesting used by the \
; task is retrieved from the stack. \
; \
movff PREINC2,ucCriticalNesting \
; \
; Rebuild the pic call/return-stack. The number of \
; return addresses is the next item on the task stack. \
; Save this number in PRODL. Then fetch the addresses \
; and store them on the hardwarestack. \
; The datasheets say we can't use movff here... \
; \
movff PREINC2,PRODL // Use PRODL as tempregister \
clrf STKPTR,ACCESS \
_rtos_R1: \
push \
movf PREINC2,W,ACCESS \
movwf TOSL,ACCESS \
movf PREINC2,W,ACCESS \
movwf TOSH,ACCESS \
if __ROMSIZE > 0x8000 \
movf PREINC2,W,ACCESS \
movwf TOSU,ACCESS \
else \
clrf TOSU,ACCESS \
endif \
decfsz PRODL,F,ACCESS \
SMARTJUMP _rtos_R1 \
; \
; Restore the compiler's working storage area to page 0 \
; \
movlw OVERHEADPAGE0-LOCOPTSIZE+MAXLOCOPTSIZE \
movwf FSR0L,ACCESS \
clrf FSR0H,ACCESS \
_rtos_R2: \
decf FSR0L,F,ACCESS \
movff PREINC2,INDF0 \
tstfsz FSR0L,ACCESS \
SMARTJUMP _rtos_R2 \
; \
; Restore the sfr's forming the tasks context. \
; We cannot yet restore bsr, w and status because \
; we need these registers for a final test. \
; \
movff PREINC2,PCLATH \
if __ROMSIZE > 0x8000 \
movff PREINC2,PCLATU \
else \
clrf PCLATU,ACCESS \
endif \
movff PREINC2,TBLPTRL \
movff PREINC2,TBLPTRH \
if __ROMSIZE > 0x8000 \
movff PREINC2,TBLPTRU \
else \
clrf TBLPTRU,ACCESS \
endif \
movff PREINC2,TABLAT \
movff PREINC2,FSR1L \
movff PREINC2,FSR1H \
movff PREINC2,FSR0L \
movff PREINC2,FSR0H \
movff PREINC2,PRODL \
movff PREINC2,PRODH \
; \
; The return from portRESTORE_CONTEXT() depends on \
; the value of ucCriticalNesting. When it is zero, \
; interrupts need to be enabled. This is done via a \
; retfie instruction because we need the \
; interrupt-enabling and the return to the restored \
; task to be uninterruptable. \
; Because bsr, status and W are affected by the test \
; they are restored after the test. \
; \
movlb ucCriticalNesting>>8 \
tstfsz ucCriticalNesting,BANKED \
SMARTJUMP _rtos_R4 \
_rtos_R3: \
movff PREINC2,BSR \
movff PREINC2,WREG \
movff PREINC2,STATUS \
retfie 0 ; Return enabling interrupts \
_rtos_R4: \
movff PREINC2,BSR \
movff PREINC2,WREG \
movff PREINC2,STATUS \
return 0 ; Return without affecting interrupts \
_Pragma("asmend") \
} while(0)
/*-----------------------------------------------------------*/
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
/*-----------------------------------------------------------*/
extern void vPortYield( void );
#define portYIELD() vPortYield()
#define portNOP() _Pragma("asm") \
nop \
_Pragma("asmend")
/*-----------------------------------------------------------*/
#define portTASK_FUNCTION( xFunction, pvParameters ) \
void pointed xFunction( void *pvParameters ) \
_Pragma(asmfunc xFunction)
#define portTASK_FUNCTION_PROTO portTASK_FUNCTION
/*-----------------------------------------------------------*/
#define volatile
#define register
#endif /* PORTMACRO_H */