/* | |
FreeRTOS V7.4.1 - Copyright (C) 2013 Real Time Engineers Ltd. | |
FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT | |
http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. | |
*************************************************************************** | |
* * | |
* FreeRTOS tutorial books are available in pdf and paperback. * | |
* Complete, revised, and edited pdf reference manuals are also * | |
* available. * | |
* * | |
* Purchasing FreeRTOS documentation will not only help you, by * | |
* ensuring you get running as quickly as possible and with an * | |
* in-depth knowledge of how to use FreeRTOS, it will also help * | |
* the FreeRTOS project to continue with its mission of providing * | |
* professional grade, cross platform, de facto standard solutions * | |
* for microcontrollers - completely free of charge! * | |
* * | |
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< * | |
* * | |
* Thank you for using FreeRTOS, and thank you for your support! * | |
* * | |
*************************************************************************** | |
This file is part of the FreeRTOS distribution. | |
FreeRTOS is free software; you can redistribute it and/or modify it under | |
the terms of the GNU General Public License (version 2) as published by the | |
Free Software Foundation AND MODIFIED BY the FreeRTOS exception. | |
>>>>>>NOTE<<<<<< The modification to the GPL is included to allow you to | |
distribute a combined work that includes FreeRTOS without being obliged to | |
provide the source code for proprietary components outside of the FreeRTOS | |
kernel. | |
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY | |
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | |
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more | |
details. You should have received a copy of the GNU General Public License | |
and the FreeRTOS license exception along with FreeRTOS; if not it can be | |
viewed here: http://www.freertos.org/a00114.html and also obtained by | |
writing to Real Time Engineers Ltd., contact details for whom are available | |
on the FreeRTOS WEB site. | |
1 tab == 4 spaces! | |
*************************************************************************** | |
* * | |
* Having a problem? Start by reading the FAQ "My application does * | |
* not run, what could be wrong?" * | |
* * | |
* http://www.FreeRTOS.org/FAQHelp.html * | |
* * | |
*************************************************************************** | |
http://www.FreeRTOS.org - Documentation, books, training, latest versions, | |
license and Real Time Engineers Ltd. contact details. | |
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, | |
including FreeRTOS+Trace - an indispensable productivity tool, and our new | |
fully thread aware and reentrant UDP/IP stack. | |
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High | |
Integrity Systems, who sell the code with commercial support, | |
indemnification and middleware, under the OpenRTOS brand. | |
http://www.SafeRTOS.com - High Integrity Systems also provide a safety | |
engineered and independently SIL3 certified version for use in safety and | |
mission critical applications that require provable dependability. | |
*/ | |
/* | |
* main-blinky.c is included when the "Blinky" build configuration is used. | |
* main-full.c is included when the "Full" build configuration is used. | |
* | |
* main-blinky.c (this file) defines a very simple demo that creates two tasks, | |
* one queue, and one timer. It also demonstrates how Cortex-M3 interrupts can | |
* interact with FreeRTOS tasks/timers. | |
* | |
* This simple demo project runs on the SK-FM3-100PMC evaluation board, which | |
* is populated with an MB9B500 microcontroller. | |
* | |
* The idle hook function: | |
* The idle hook function demonstrates how to query the amount of FreeRTOS heap | |
* space that is remaining (see vApplicationIdleHook() defined in this file). | |
* | |
* The main() Function: | |
* main() creates one software timer, one queue, and two tasks. It then starts | |
* the scheduler. | |
* | |
* The Queue Send Task: | |
* The queue send task is implemented by the prvQueueSendTask() function in | |
* this file. prvQueueSendTask() sits in a loop that causes it to repeatedly | |
* block for 200 milliseconds, before sending the value 100 to the queue that | |
* was created within main(). Once the value is sent, the task loops back | |
* around to block for another 200 milliseconds. | |
* | |
* The Queue Receive Task: | |
* The queue receive task is implemented by the prvQueueReceiveTask() function | |
* in this file. prvQueueReceiveTask() sits in a loop that causes it to | |
* repeatedly attempt to read data from the queue that was created within | |
* main(). When data is received, the task checks the value of the data, and | |
* if the value equals the expected 100, toggles an LED on the 7 segment | |
* display. The 'block time' parameter passed to the queue receive function | |
* specifies that the task should be held in the Blocked state indefinitely to | |
* wait for data to be available on the queue. The queue receive task will only | |
* leave the Blocked state when the queue send task writes to the queue. As the | |
* queue send task writes to the queue every 200 milliseconds, the queue receive | |
* task leaves the Blocked state every 200 milliseconds, and therefore toggles | |
* the LED every 200 milliseconds. | |
* | |
* The LED Software Timer and the Button Interrupt: | |
* The user button SW2 is configured to generate an interrupt each time it is | |
* pressed. The interrupt service routine switches an LED in the 7 segment | |
* display on, and resets the LED software timer. The LED timer has a 5000 | |
* millisecond (5 second) period, and uses a callback function that is defined | |
* to just turn the LED off again. Therefore, pressing the user button will | |
* turn the LED on, and the LED will remain on until a full five seconds pass | |
* without the button being pressed. | |
*/ | |
/* Kernel includes. */ | |
#include "FreeRTOS.h" | |
#include "task.h" | |
#include "queue.h" | |
#include "timers.h" | |
/* Fujitsu drivers/libraries. */ | |
#include "mb9bf506n.h" | |
#include "system_mb9bf50x.h" | |
/* Priorities at which the tasks are created. */ | |
#define mainQUEUE_RECEIVE_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 ) | |
#define mainQUEUE_SEND_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 ) | |
/* The rate at which data is sent to the queue, specified in milliseconds, and | |
converted to ticks using the portTICK_RATE_MS constant. */ | |
#define mainQUEUE_SEND_FREQUENCY_MS ( 200 / portTICK_RATE_MS ) | |
/* The number of items the queue can hold. This is 1 as the receive task | |
will remove items as they are added, meaning the send task should always find | |
the queue empty. */ | |
#define mainQUEUE_LENGTH ( 1 ) | |
/* The LED toggle by the queue receive task. */ | |
#define mainTASK_CONTROLLED_LED 0x8000UL | |
/* The LED turned on by the button interrupt, and turned off by the LED timer. */ | |
#define mainTIMER_CONTROLLED_LED 0x8000UL | |
/*-----------------------------------------------------------*/ | |
/* | |
* Setup the NVIC, LED outputs, and button inputs. | |
*/ | |
static void prvSetupHardware( void ); | |
/* | |
* The tasks as described in the comments at the top of this file. | |
*/ | |
static void prvQueueReceiveTask( void *pvParameters ); | |
static void prvQueueSendTask( void *pvParameters ); | |
/* | |
* The LED timer callback function. This does nothing but switch off the | |
* LED defined by the mainTIMER_CONTROLLED_LED constant. | |
*/ | |
static void vLEDTimerCallback( xTimerHandle xTimer ); | |
/*-----------------------------------------------------------*/ | |
/* The queue used by both tasks. */ | |
static xQueueHandle xQueue = NULL; | |
/* The LED software timer. This uses vLEDTimerCallback() as its callback | |
function. */ | |
static xTimerHandle xLEDTimer = NULL; | |
/*-----------------------------------------------------------*/ | |
int main(void) | |
{ | |
/* Configure the NVIC, LED outputs and button inputs. */ | |
prvSetupHardware(); | |
/* Create the queue. */ | |
xQueue = xQueueCreate( mainQUEUE_LENGTH, sizeof( unsigned long ) ); | |
if( xQueue != NULL ) | |
{ | |
/* Start the two tasks as described in the comments at the top of this | |
file. */ | |
xTaskCreate( prvQueueReceiveTask, ( signed char * ) "Rx", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_RECEIVE_TASK_PRIORITY, NULL ); | |
xTaskCreate( prvQueueSendTask, ( signed char * ) "TX", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_SEND_TASK_PRIORITY, NULL ); | |
/* Create the software timer that is responsible for turning off the LED | |
if the button is not pushed within 5000ms, as described at the top of | |
this file. */ | |
xLEDTimer = xTimerCreate( ( const signed char * ) "LEDTimer", /* A text name, purely to help debugging. */ | |
( 5000 / portTICK_RATE_MS ), /* The timer period, in this case 5000ms (5s). */ | |
pdFALSE, /* This is a one shot timer, so xAutoReload is set to pdFALSE. */ | |
( void * ) 0, /* The ID is not used, so can be set to anything. */ | |
vLEDTimerCallback /* The callback function that switches the LED off. */ | |
); | |
/* Start the tasks and timer running. */ | |
vTaskStartScheduler(); | |
} | |
/* If all is well, the scheduler will now be running, and the following line | |
will never be reached. If the following line does execute, then there was | |
insufficient FreeRTOS heap memory available for the idle and/or timer tasks | |
to be created. See the memory management section on the FreeRTOS web site | |
for more details. */ | |
for( ;; ); | |
} | |
/*-----------------------------------------------------------*/ | |
static void vLEDTimerCallback( xTimerHandle xTimer ) | |
{ | |
/* The timer has expired - so no button pushes have occurred in the last | |
five seconds - turn the LED off. NOTE - accessing the LED port should use | |
a critical section because it is accessed from multiple tasks, and the | |
button interrupt - in this trivial case, for simplicity, the critical | |
section is omitted. */ | |
FM3_GPIO->PDOR1 |= mainTIMER_CONTROLLED_LED; | |
} | |
/*-----------------------------------------------------------*/ | |
/* The ISR executed when the user button is pushed. */ | |
void INT0_7_Handler( void ) | |
{ | |
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; | |
/* The button was pushed, so ensure the LED is on before resetting the | |
LED timer. The LED timer will turn the LED off if the button is not | |
pushed within 5000ms. */ | |
FM3_GPIO->PDOR1 &= ~mainTIMER_CONTROLLED_LED; | |
/* This interrupt safe FreeRTOS function can be called from this interrupt | |
because the interrupt priority is below the | |
configMAX_SYSCALL_INTERRUPT_PRIORITY setting in FreeRTOSConfig.h. */ | |
xTimerResetFromISR( xLEDTimer, &xHigherPriorityTaskWoken ); | |
/* Clear the interrupt before leaving. This just clears all the interrupts | |
for simplicity, as only one is actually used in this simple demo anyway. */ | |
FM3_EXTI->EICL = 0x0000; | |
/* If calling xTimerResetFromISR() caused a task (in this case the timer | |
service/daemon task) to unblock, and the unblocked task has a priority | |
higher than or equal to the task that was interrupted, then | |
xHigherPriorityTaskWoken will now be set to pdTRUE, and calling | |
portEND_SWITCHING_ISR() will ensure the unblocked task runs next. */ | |
portEND_SWITCHING_ISR( xHigherPriorityTaskWoken ); | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvQueueSendTask( void *pvParameters ) | |
{ | |
portTickType xNextWakeTime; | |
const unsigned long ulValueToSend = 100UL; | |
/* Initialise xNextWakeTime - this only needs to be done once. */ | |
xNextWakeTime = xTaskGetTickCount(); | |
for( ;; ) | |
{ | |
/* Place this task in the blocked state until it is time to run again. | |
The block time is specified in ticks, the constant used converts ticks | |
to ms. While in the Blocked state this task will not consume any CPU | |
time. */ | |
vTaskDelayUntil( &xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS ); | |
/* Send to the queue - causing the queue receive task to unblock and | |
toggle an LED. 0 is used as the block time so the sending operation | |
will not block - it shouldn't need to block as the queue should always | |
be empty at this point in the code. */ | |
xQueueSend( xQueue, &ulValueToSend, 0 ); | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvQueueReceiveTask( void *pvParameters ) | |
{ | |
unsigned long ulReceivedValue; | |
for( ;; ) | |
{ | |
/* Wait until something arrives in the queue - this task will block | |
indefinitely provided INCLUDE_vTaskSuspend is set to 1 in | |
FreeRTOSConfig.h. */ | |
xQueueReceive( xQueue, &ulReceivedValue, portMAX_DELAY ); | |
/* To get here something must have been received from the queue, but | |
is it the expected value? If it is, toggle the LED. */ | |
if( ulReceivedValue == 100UL ) | |
{ | |
/* NOTE - accessing the LED port should use a critical section | |
because it is accessed from multiple tasks, and the button interrupt | |
- in this trivial case, for simplicity, the critical section is | |
omitted. */ | |
if( ( FM3_GPIO->PDOR3 & mainTASK_CONTROLLED_LED ) != 0 ) | |
{ | |
FM3_GPIO->PDOR3 &= ~mainTASK_CONTROLLED_LED; | |
} | |
else | |
{ | |
FM3_GPIO->PDOR3 |= mainTASK_CONTROLLED_LED; | |
} | |
} | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvSetupHardware( void ) | |
{ | |
const unsigned short usButtonInputBit = 0x01U; | |
const unsigned short usGPIOState = 0xFF00U; | |
SystemInit(); | |
SystemCoreClockUpdate(); | |
/* Analog inputs are not used on the LED outputs. */ | |
FM3_GPIO->ADE = 0x00FF; | |
/* LED seg1 to GPIO output (P18->P1F). */ | |
FM3_GPIO->DDR1 = 0xFF00; | |
FM3_GPIO->PFR1 = 0x0000; | |
/* LED seg2 to GPIO output (P30->P3F). */ | |
FM3_GPIO->DDR3 = 0xFF00; | |
FM3_GPIO->PFR3 = 0x0000; | |
/* Start with all LEDs off. */ | |
FM3_GPIO->PDOR3 = usGPIOState; | |
FM3_GPIO->PDOR1 = usGPIOState; | |
/* Set the switches to input (P18->P1F). */ | |
FM3_GPIO->DDR5 = 0x0000; | |
FM3_GPIO->PFR5 = 0x0000; | |
/* Assign the button input as GPIO. */ | |
FM3_GPIO->PFR1 |= usButtonInputBit; | |
/* Button interrupt on falling edge. */ | |
FM3_EXTI->ELVR = 0x0003; | |
/* Clear all external interrupts. */ | |
FM3_EXTI->EICL = 0x0000; | |
/* Enable the button interrupt. */ | |
FM3_EXTI->ENIR |= usButtonInputBit; | |
/* Setup the GPIO and the NVIC for the switch used in this simple demo. */ | |
NVIC_SetPriority( EXINT0_7_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY ); | |
NVIC_EnableIRQ( EXINT0_7_IRQn ); | |
} | |
/*-----------------------------------------------------------*/ | |
void vApplicationMallocFailedHook( void ) | |
{ | |
/* Called if a call to pvPortMalloc() fails because there is insufficient | |
free memory available in the FreeRTOS heap. pvPortMalloc() is called | |
internally by FreeRTOS API functions that create tasks, queues, software | |
timers, and semaphores. The size of the FreeRTOS heap is set by the | |
configTOTAL_HEAP_SIZE configuration constant in FreeRTOSConfig.h. */ | |
for( ;; ); | |
} | |
/*-----------------------------------------------------------*/ | |
void vApplicationStackOverflowHook( xTaskHandle pxTask, signed char *pcTaskName ) | |
{ | |
( void ) pcTaskName; | |
( void ) pxTask; | |
/* Run time stack overflow checking is performed if | |
configconfigCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook | |
function is called if a stack overflow is detected. */ | |
for( ;; ); | |
} | |
/*-----------------------------------------------------------*/ | |
void vApplicationTickHook( void ) | |
{ | |
/* A tick hook is used by the "Full" build configuration. The Full and | |
blinky build configurations share a FreeRTOSConfig.h header file, so this | |
simple build configuration also has to define a tick hook - even though it | |
does not actually use it for anything. */ | |
} | |
/*-----------------------------------------------------------*/ | |
void vApplicationIdleHook( void ) | |
{ | |
volatile size_t xFreeHeapSpace; | |
/* This function is called on each cycle of the idle task. In this case it | |
does nothing useful, other than report the amount of FreeRTOS heap that | |
remains unallocated. */ | |
xFreeHeapSpace = xPortGetFreeHeapSize(); | |
if( xFreeHeapSpace > 100 ) | |
{ | |
/* By now, the kernel has allocated everything it is going to, so | |
if there is a lot of heap remaining unallocated then | |
the value of configTOTAL_HEAP_SIZE in FreeRTOSConfig.h can be | |
reduced accordingly. */ | |
} | |
} | |
/*-----------------------------------------------------------*/ | |