blob: 48a1a7921369901bf4ca990dcd7ce840eb0ed0c9 [file] [log] [blame]
/*
* FreeRTOS Kernel <DEVELOPMENT BRANCH>
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/*
* Changes from V2.5.2
*
+ usCriticalNesting now has a volatile qualifier.
*/
/* Standard includes. */
#include <stdlib.h>
#include <signal.h>
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the MSP430 port.
*----------------------------------------------------------*/
/* Constants required for hardware setup. The tick ISR runs off the ACLK,
* not the MCLK. */
#define portACLK_FREQUENCY_HZ ( ( TickType_t ) 32768 )
#define portINITIAL_CRITICAL_NESTING ( ( uint16_t ) 10 )
#define portFLAGS_INT_ENABLED ( ( StackType_t ) 0x08 )
/* We require the address of the pxCurrentTCB variable, but don't want to know
* any details of its type. */
typedef void TCB_t;
extern volatile TCB_t * volatile pxCurrentTCB;
/* Most ports implement critical sections by placing the interrupt flags on
* the stack before disabling interrupts. Exiting the critical section is then
* simply a case of popping the flags from the stack. As mspgcc does not use
* a frame pointer this cannot be done as modifying the stack will clobber all
* the stack variables. Instead each task maintains a count of the critical
* section nesting depth. Each time a critical section is entered the count is
* incremented. Each time a critical section is left the count is decremented -
* with interrupts only being re-enabled if the count is zero.
*
* usCriticalNesting will get set to zero when the scheduler starts, but must
* not be initialised to zero as this will cause problems during the startup
* sequence. */
volatile uint16_t usCriticalNesting = portINITIAL_CRITICAL_NESTING;
/*-----------------------------------------------------------*/
/*
* Macro to save a task context to the task stack. This simply pushes all the
* general purpose msp430 registers onto the stack, followed by the
* usCriticalNesting value used by the task. Finally the resultant stack
* pointer value is saved into the task control block so it can be retrieved
* the next time the task executes.
*/
#define portSAVE_CONTEXT() \
asm volatile ( "push r4 \n\t" \
"push r5 \n\t" \
"push r6 \n\t" \
"push r7 \n\t" \
"push r8 \n\t" \
"push r9 \n\t" \
"push r10 \n\t" \
"push r11 \n\t" \
"push r12 \n\t" \
"push r13 \n\t" \
"push r14 \n\t" \
"push r15 \n\t" \
"mov.w usCriticalNesting, r14 \n\t" \
"push r14 \n\t" \
"mov.w pxCurrentTCB, r12 \n\t" \
"mov.w r1, @r12 \n\t" \
);
/*
* Macro to restore a task context from the task stack. This is effectively
* the reverse of portSAVE_CONTEXT(). First the stack pointer value is
* loaded from the task control block. Next the value for usCriticalNesting
* used by the task is retrieved from the stack - followed by the value of all
* the general purpose msp430 registers.
*
* The bic instruction ensures there are no low power bits set in the status
* register that is about to be popped from the stack.
*/
#define portRESTORE_CONTEXT() \
asm volatile ( "mov.w pxCurrentTCB, r12 \n\t" \
"mov.w @r12, r1 \n\t" \
"pop r15 \n\t" \
"mov.w r15, usCriticalNesting \n\t" \
"pop r15 \n\t" \
"pop r14 \n\t" \
"pop r13 \n\t" \
"pop r12 \n\t" \
"pop r11 \n\t" \
"pop r10 \n\t" \
"pop r9 \n\t" \
"pop r8 \n\t" \
"pop r7 \n\t" \
"pop r6 \n\t" \
"pop r5 \n\t" \
"pop r4 \n\t" \
"bic #(0xf0),0(r1) \n\t" \
"reti \n\t" \
);
/*-----------------------------------------------------------*/
/*
* Sets up the periodic ISR used for the RTOS tick. This uses timer 0, but
* could have alternatively used the watchdog timer or timer 1.
*/
static void prvSetupTimerInterrupt( void );
/*-----------------------------------------------------------*/
/*
* Initialise the stack of a task to look exactly as if a call to
* portSAVE_CONTEXT had been called.
*
* See the header file portable.h.
*/
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
TaskFunction_t pxCode,
void * pvParameters )
{
/*
* Place a few bytes of known values on the bottom of the stack.
* This is just useful for debugging and can be included if required.
*
* pxTopOfStack = ( StackType_t ) 0x1111;
* pxTopOfStack--;
* pxTopOfStack = ( StackType_t ) 0x2222;
* pxTopOfStack--;
* pxTopOfStack = ( StackType_t ) 0x3333;
* pxTopOfStack--;
*/
/* The msp430 automatically pushes the PC then SR onto the stack before
* executing an ISR. We want the stack to look just as if this has happened
* so place a pointer to the start of the task on the stack first - followed
* by the flags we want the task to use when it starts up. */
*pxTopOfStack = ( StackType_t ) pxCode;
pxTopOfStack--;
*pxTopOfStack = portFLAGS_INT_ENABLED;
pxTopOfStack--;
/* Next the general purpose registers. */
*pxTopOfStack = ( StackType_t ) 0x4444;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x5555;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x6666;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x7777;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x8888;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x9999;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0xaaaa;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0xbbbb;
pxTopOfStack--;
#ifdef __MSPGCC__
*pxTopOfStack = ( StackType_t ) 0xcccc;
#else
/* The MSP430 EABI expects the function parameter in R12. */
*pxTopOfStack = ( StackType_t ) pvParameters;
#endif
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0xdddd;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0xeeee;
pxTopOfStack--;
#ifdef __MSPGCC__
/* The mspgcc ABI expects the function parameter in R15. */
*pxTopOfStack = ( StackType_t ) pvParameters;
#else
*pxTopOfStack = ( StackType_t ) 0xffff;
#endif
pxTopOfStack--;
/* The code generated by the mspgcc compiler does not maintain separate
* stack and frame pointers. The portENTER_CRITICAL macro cannot therefore
* use the stack as per other ports. Instead a variable is used to keep
* track of the critical section nesting. This variable has to be stored
* as part of the task context and is initially set to zero. */
*pxTopOfStack = ( StackType_t ) portNO_CRITICAL_SECTION_NESTING;
/* Return a pointer to the top of the stack we have generated so this can
* be stored in the task control block for the task. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
BaseType_t xPortStartScheduler( void )
{
/* Setup the hardware to generate the tick. Interrupts are disabled when
* this function is called. */
prvSetupTimerInterrupt();
/* Restore the context of the first task that is going to run. */
portRESTORE_CONTEXT();
/* Should not get here as the tasks are now running! */
return pdTRUE;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* It is unlikely that the MSP430 port will get stopped. If required simply
* disable the tick interrupt here. */
}
/*-----------------------------------------------------------*/
/*
* Manual context switch called by portYIELD or taskYIELD.
*
* The first thing we do is save the registers so we can use a naked attribute.
*/
void vPortYield( void ) __attribute__( ( naked ) );
void vPortYield( void )
{
/* We want the stack of the task being saved to look exactly as if the task
* was saved during a pre-emptive RTOS tick ISR. Before calling an ISR the
* msp430 places the status register onto the stack. As this is a function
* call and not an ISR we have to do this manually. */
asm volatile ( "push r2" );
_DINT();
/* Save the context of the current task. */
portSAVE_CONTEXT();
/* Switch to the highest priority task that is ready to run. */
vTaskSwitchContext();
/* Restore the context of the new task. */
portRESTORE_CONTEXT();
}
/*-----------------------------------------------------------*/
/*
* Hardware initialisation to generate the RTOS tick. This uses timer 0
* but could alternatively use the watchdog timer or timer 1.
*/
static void prvSetupTimerInterrupt( void )
{
/* Ensure the timer is stopped. */
TACTL = 0;
/* Run the timer of the ACLK. */
TACTL = TASSEL_1;
/* Clear everything to start with. */
TACTL |= TACLR;
/* Set the compare match value according to the tick rate we want. */
TACCR0 = portACLK_FREQUENCY_HZ / configTICK_RATE_HZ;
/* Enable the interrupts. */
TACCTL0 = CCIE;
/* Start up clean. */
TACTL |= TACLR;
/* Up mode. */
TACTL |= MC_1;
}
/*-----------------------------------------------------------*/
/*
* The interrupt service routine used depends on whether the pre-emptive
* scheduler is being used or not.
*/
#if configUSE_PREEMPTION == 1
/*
* Tick ISR for preemptive scheduler. We can use a naked attribute as
* the context is saved at the start of vPortYieldFromTick(). The tick
* count is incremented after the context is saved.
*/
interrupt( TIMERA0_VECTOR ) void prvTickISR( void ) __attribute__( ( naked ) );
interrupt( TIMERA0_VECTOR ) void prvTickISR( void )
{
/* Save the context of the interrupted task. */
portSAVE_CONTEXT();
/* Increment the tick count then switch to the highest priority task
* that is ready to run. */
if( xTaskIncrementTick() != pdFALSE )
{
vTaskSwitchContext();
}
/* Restore the context of the new task. */
portRESTORE_CONTEXT();
}
#else /* if configUSE_PREEMPTION == 1 */
/*
* Tick ISR for the cooperative scheduler. All this does is increment the
* tick count. We don't need to switch context, this can only be done by
* manual calls to taskYIELD();
*/
interrupt( TIMERA0_VECTOR ) void prvTickISR( void );
interrupt( TIMERA0_VECTOR ) void prvTickISR( void )
{
xTaskIncrementTick();
}
#endif /* if configUSE_PREEMPTION == 1 */